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Using a rigorous and vector multipole method, we compute both losses and dispersion properties of
microstructured optical fibers with finite cross sections. We restrict our study to triangular lattices of
air-hole inclusions in a silica matrix, taking into account material dispersion. The fiber core is modeled
by a missing inclusion. The influence of pitch, hole diameter, and number of hole rings on chromatic
dispersion is described, and physical insights are given to explain the behavior observed. It is shown
that flattened dispersion curves obtained for certain microstructured fiber configurations are unsuitable
for applications because of the fibers’ high losses and that they cannot be improved by a simple increase
of the number of air-hole rings. © 2003 Optical Society of America
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1. Introduction and Background

Microstructured optical fibers �MOFs� are generally
made from regular lattices of cylindrical inclusions,
for example, air holes, in a dielectric matrix. MOF
cores usually consist of a defect of the lattice, which
can be an inclusion of a different type or size or, in
bulk core MOFs, a missing inclusion. In recent pub-
lications,1,2 attention was drawn to the peculiar and
interesting dispersion properties that MOFs can ex-
hibit and that indicate that MOFs may be good can-
didates for dispersion management in optical
communication systems. In this paper we use a
fully vector and rigorous multipole method3,4 that
was recently developed by the present authors and by
Mc Phedran and Botten5 in Sydney to explore the
dependence of chromatic dispersion on wavelength
and MOF geometry. We concentrate here on a silica
bulk core MOF with a triangular lattice of air holes
�see Fig. 1�. The most important point in which the
research reported here contrasts with that on MOF
dispersion published previously is that the multipole
method described herein is able to deal with finite
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cross-section MOFs. We could therefore study the
influence of the extent of the confining air-hole region
on dispersion and on its associated losses.

Our multipole method is a standard multipole
method extended to conical mounts. It is based on
local expansions of the vector fields in Fourier Bessel
series and uses addition theorems to link these local
expansions. Boundary conditions are implemented
analytically for circular inclusions, so the only ap-
proximations are the truncation of the Fourier Bessel
series �see Refs. 4 and 6 for a complete study� as well
as the fundamental hypothesis of the invariance of
the fiber along its axis. If the inclusions overlap, our
method is not appropriate. With the MOF geometry
and the wavelength as inputs, the method gives the
modes of the MOF as an output. Material disper-
sion can thus be included in a natural way in the
MOF geometry, for example by use of Sellmeier ex-
pansions.7,8

A mode of a MOF is characterized by its field pat-
tern and propagation constant � �or, equivalently, by
its effective index neff � ��k0, where k0 is the free-
space wave number�. Because of the losses that re-
sult from the finite transverse extent of the confining
structure, the effective index is a complex value; its
imaginary part ��neff� is related to the losses � in
decibels per meter through the relation

� �
20

ln�10�

2�

�
��neff� � 106 , (1)



where � is given in micrometers. Dispersion param-
eter D is computed through the usual formula from
the real part of effective index ��neff� �Ref. 8�:

D � �
�

c
�2 ��neff�

��2 . (2)

As in ordinary waveguides, the dispersion of guided
modes results from both material and waveguide dis-
persion. The remarkable feature of MOFs is that
the waveguide dispersion can be modified signifi-
cantly by means of a wide range of geometrical pa-
rameters, namely, the positions and sizes of the
different holes. The behavior of waveguide disper-
sion can be understood from heuristic considerations
of effective media: At short wavelengths, light can
distinguish the details of the structure, resulting in a
greater concentration in the high-index region �i.e.,
the core whose index is that of the matrix�. In this
situation the effective index is smaller than the re-
fractive index of the matrix. At longer wavelengths
the structure tends to a homogeneous one, and the
effective index of the mode will consequently be
upper-bounded by the homogenized refractive index
of the structure, which is much lower than the refrac-
tive index of the matrix as a result of the air inclu-
sions. These heuristic considerations are unable to
predict MOF chromatic dispersion precisely: A pre-
cise numerical study is required. Moreover, in prac-
tical applications the losses have a vital importance.

Detailed studies of losses in MOFs versus pitch of the
air-hole lattice, the hole diameter, and the hole ring
number have already been carried out by the multi-
pole method.4,9 A vector method that uses periodic
boundary conditions10 has already been used to study
dispersion in MOFs,11 but in this model the influence
of the number of hole rings cannot be investigated,
and, above all, the losses cannot be computed.

2. Validation

The method has been checked thoroughly by compar-
ison with other numerical methods, namely; a ficti-
tious source12 and other multipole methods13,14 �more
details of these comparisons can be found in an ear-
lier paper by the present authors and others.4

The symmetry properties of fibers are accurately
satisfied6: For a MOF with a rotational symmetry of
order 6, the fundamental mode is twofold degenerate,
as expected from Mc Isaac’s theory.15

The method that we codeveloped and its numerical
implementation have also been compared with a
plane-wave method for a microstructured optical fi-
ber with a ring of six air holes of diameter d � 5 �m
with pitch 	 � 6.75 �m and a fixed background index
n � 1.45 at � � 1.55 �m; the computed value ��neff�
of the fundamental mode is 1.4447672.6

With respect to chromatic dispersion, our results
are in good agreement �see Table 1� both with the
dispersion and with its slope as measured by Gander
and his colleagues and with the dispersion calculated
by the same authors,16 who used an expansion of the
fields in terms of Hermite–Gaussian functions1 for a
microstructured optical fiber �d � 0.621 �m, with a
pitch 	 � 2.3 �m� at � � 0.813 �m. Our results are
also in good agreement �see Table 1� with the disper-
sion and the slope dispersion calculated by Brechet et
al. for the same structure by a finite-element meth-
od.17

3. Results

In the examples given in what follows, we simulate a
MOF made from a subset of triangular array of cy-
lindrical air inclusions �ni � 1� of lattice pitch 	.
The inclusions have identical circular cross sections
of diameter d; the core is formed by a missing inclu-

Table 1. Comparison of Dispersion D and Its Slope Measured and Calculated at � � 0.813 �m by Gander et al.a

Dispersion Dispersion Slope

Measured Calculated Measured Calculated


77.7b 
77b 0.464a


78.6c 0.450c


76.95 �Nr � 4�d 0.455 �Nr � 4�d


76.78 �Nr � 3�d 0.458 �Nr � 3�d

aThey did not compute the dispersion slope, and the Nr value is not given in their text, so only an estimated value can be deduced from
the scanning-electron micrograph of the MOF that they show as Fig. 2 of their paper16; the results by Brechet et al.17 with a finite-element
method at � � 0.813 �m and the results with our multipole method for two values of Nr at the same wavelength are also shown here. Unit
for dispersion, ps nm
1 km
1; unit for the dispersion slope, ps nm
2 km
1.

bResults of Gander et al.16

cResults of Brechet et al.17

dResults of our multipole method for two values of Nr.

Fig. 1. Cross section of the model MOF with three rings of holes
�the holes are shown colored gray�; Nr � 3. 	 is the pitch of the
triangular lattice, and d is a holes diameter. The solid core con-
sists of one missing hole in the center of the structure.
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sion �see Fig. 1�. The finite thickness of the hole
region about the core can be described by the number
of rings of holes Nr. The matrix and the jacket are
made from silica, so the guiding structure is formed
by a finite number of low-index inclusions in infinite
silica bulk �the Sellmeier expansion is taken from
Ref. 8�. Because the hole region surrounding the
core is bounded, it is clear that propagating modes
are leaky.

We limit our study to the properties of fundamental
mode dispersion, and the wavelengths that we con-
sider here are included in the range 0.6–3 �m. As
shown in Fig. 2 for a fixed hole diameter, a small pitch
generates oscillations of the dispersion, and several
zero-dispersion wavelengths can be found. With a
larger pitch, the dispersion increases monotonically
with wavelength. This property can be understood
as follows: For large pitch, the MOF core is large
too, the waveguide effects on dispersion are therefore
weak; thus the material dispersion dominates. Con-
versely, for smaller pitches the waveguide dispersion
takes over, and we observe oscillations of the disper-
sion curve; the amplitude of these oscillations in-
creases as the pitch decreases. In the short-
wavelength limit, material dispersion is so negative

that waveguide dispersion cannot compensate for its
effect. This remark explains why, for submicromet-
ric wavelengths, all the dispersions tend toward ma-
terial dispersion.

From Fig. 2 it can be noticed that there is a pitch
value �	 � 2.675 �m� for which the dispersion curve
is flat over a large range of wavelengths when the
average value is taken as 27.9 ps nm
1 km
1 near
1.85 �m, with the amplitude of dispersion oscillation
equal to 0.2 ps nm
1 km
1 in a wavelength interval
of 0.3 �m. For the same pitch but with Nr � 4 �data
not shown� the dispersion curve is much less flat than
with Nr � 3, and the average level of the dispersion
has decreased; it is 23.7 ps nm
1 km
1 near 1.85 �m,
with an amplitude of oscillation of 3.8 ps nm
1 km
1

in a wavelength interval of 0.5 �m. Notice that in
both cases the corresponding losses �5.9 � 105 dB
km
1 for Nr � 3 and 6.1 � 104 dB km
1 for Nr � 4�
prohibit the use of these MOFs for practical applica-
tions. One can try to overcome this drawback by
again increasing the number of rings, but this change
entails a new change of the dispersion curve, as we
show in detail in what follows. This example clearly
shows the necessity for studying both losses and dis-
persion to achieve realistic dispersion engineering.

Another conclusion to draw from Fig. 2 is the ex-
istence of a wavelength, �cross � 1.93 �m, for which
the losses are almost independent of pitch 	, at least
in the range of 	 from 1.55 to 3.2 �m. This phenom-
enon occurs for other values of Nr: For Nr � 4, �cross
is �2.15 �m �see Fig. 3�; for Nr � 2, �cross is �1.63 �m
�data not shown�. The value of �cross increases
slowly with Nr. A straight scale-law argument can-
not be used because the hole’s diameter is kept con-
stant for the various structures. Besides, in as
much as material dispersion depends on the actual
wavelength, one must take care in using scaling ar-
guments to try to explain this behavior. Material
dispersion could also have an influence on the extent
of the crossing region. Currently, the crossing re-
gion is approximately 0.1 �m large. From a math-

Fig. 2. �a� Dispersion and �b� losses for a three-ring MOF as a
function of wavelength and pitch 	. The material dispersion is
also shown. Hole diameter d, 0.8 �m.

Fig. 3. Losses for a four-ring MOF as a function of wavelength
and pitch 	. Hole diameter d, 0.8 �m. The y scale is linear,
unlike for Fig. 2�b�.
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ematical point of view, for a fixed value of Nr the
crossing phenomenon corresponds to point ��cross,
	cross� of surface ���, 	� where the curve defined by
����	 � 0 crosses the curve given by �2���	2 � 0.
It seems more difficult to give the physical meaning of
this phenomenon.

It can be seen from Fig. 4 that the oscillation am-
plitudes in dispersion curves increase with hole di-
ameter �for d � 1.00 �m, i.e., d�	 � 0.645, the
oscillation amplitude �becomes 300 ps nm
1 km
1�.
This behavior can be explained by consideration of
MOF core size and by a competition between material
dispersion and waveguide dispersion, similar to that
given above for the influence of the pitch. It is worth
noting that the value Dmax of the dispersion’s local
maximum increases with hole diameter for all dis-
persion curves that we have computed. For three-
ring MOFs with a fixed pitch 	 � 1.55 �m, the
wavelength �Dmax

associated with the local maximum
Dmax of dispersion increases with the diameter of the
holes. One can use this property to shift the disper-
sion curves efficiently to obtain the required �Dmax

.
One can try to reduce the huge losses 
more than

1.0 � 102 dB km
1 near � � 1.3 �m for all the curves
plotted in Fig. 4�a�� by increasing the number of hole

rings Nr, but once again dispersion profiles are mod-
ified. We now describe the influence of this crucial
parameter. As shown in Fig. 5�a�, when there is no
local maximum of dispersion for MOFs with few
rings, the dispersion decreases as the number of rings
is increased. The difference between successive dis-
persion curves of two MOFs decreases as the number

Fig. 4. �a� Dispersion and �b� losses for a three-ring MOF as a
function of wavelength and hole diameter d. The material dis-
persion is also shown. Pitch 	, 1.55 �m.

Fig. 5. �a� Dispersion and �b� losses as a function of the wave-
length, and number of rings Nr 
the types of curves have the same
values for �a� and �b��. Pitch 	 2.0 �m; hole diameter d, 0.5 �m.
�c� Dispersion for three wavelengths as a function of the number of
rings Nr for the same MOF.

1 February 2003 � Vol. 42, No. 4 � APPLIED OPTICS 637



of rings increases, as shown in Fig. 5�c�. This figure
clearly shows that the dispersion converges to a limit
when the number of rings is increased. The conver-
gence speed depends on the wavelength: The larger
the wavelength, the slower the convergence 
in Fig.
5�c� for � � 1.52 �m the limit is not yet reached with
eight rings�. It is worth noting that the losses asso-
ciated with the flattened dispersion curve obtained
with the seven-ring MOF of Fig. 5�a� are still large
�more than 1.0 � 104 dB km
1 near � � 1.3 �m�.
This influence of Nr on dispersion can be understood
in the following way: When losses are weak, a sup-
plementary ring will not change the mode drastically.
In contrast, when the mode is not well confined in the
core, a supplementary ring will modify the mode sig-
nificantly. We can thus assume that the field pat-
tern associated with the mode converges with
increasing Nr; the convergence is slower for larger
wavelengths because modes are less confined for
these wavelengths. As opposed to the example in
Fig. 5�a�, for structures whose dispersion does exhibit
oscillatory behavior 
e.g., structures of small pitch in
Fig. 2�a�, which have a high diameter�pitch ratio�, an
increase of Nr results in amplification of the oscilla-
tion amplitude �see Fig. 6�.

4. Conclusion and Discussion

As was shown in Section 3, one cannot keep the flat-
tened dispersion with a fixed D value obtained for
certain MOFs and at the same time reduce the MOFs’
losses through a simple increase of their number of
air-hole rings.

It must also be pointed out that an increase of the
number of rings can reduce the losses of higher-order
modes. As a consequence, a monomode fiber may
become multimode for some configurations. Never-
theless, if large differences between the real parts of
neff for the modes are found, mode coupling between
the fundamental mode and the higher-order mode
should be suppressed. We continue to study these
effects and the influence of the jacket on dispersion.

The high loss figures that we have reported
throughout this paper might give the wrong impres-

sion that low losses are not feasible in microstruc-
tured fibers, but low-loss MOFs are possible with
appropriate geometric parameters9 
see also the loss
curve at small wavelengths for d � 1.0 �m in Fig.
4�b��. For example, with 	 � 2.26 �m, d � 1.51 �m,
and Nr � 3 the losses that we compute are below 1 �
10
4 dB km
1 at a wavelength of 0.76 �m. The
same structure with Nr � 7 corresponds to that stud-
ied experimentally by Kubota and his colleagues.18

The measured global losses at a wavelength of 0.85
�m are 7.1 dB km
1, which clearly shows that the
losses in MOFs can be limited by Rayleigh scattering,
structural imperfections, and absorption and not by
the geometrical losses. But interesting dispersion
properties seem to imply geometrical parameters
that are not necessarily compatible with low losses
and few air-hole rings.

The issue for dispersion engineering applications is
to find MOF parameters that produce both ultraflat-
tened dispersion curves �negative, positive, or nearly
zero� about the specified wavelength �for example, 1.3
or 1.55 �m� and low losses �near or below 1 dB km
1�.
Consequently, for such engineering the finite size of
the fiber cross section must be considered. Accurate
design of such MOFs is currently under study.19
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