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Plasmon-soliton waves in planar slot waveguides. I. Modeling
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We present two complementary models to study stationary nonlinear solutions in one-dimensional plasmonic
slot waveguides made of a finite-thickness nonlinear dielectric core surrounded by metal regions. The considered
nonlinearity is of focusing Kerr type. In the first model, it is assumed that the nonlinear term depends only on
the transverse component of the electric field and that the nonlinear refractive index change is small compared
to the linear part of the refractive index. This first model allows us to describe analytically the field profiles
in the whole waveguide using Jacobi elliptic special functions. It also provides a closed analytical formula for
the nonlinear dispersion relation. In the second model, the full dependency of the Kerr nonlinearity on the
electric-field components is taken into account and no assumption is required on the amplitude of the nonlinear
term. The disadvantage of this approach is that the field profiles must be computed numerically. Nevertheless,
analytical constraints are obtained to reduce the parameter space where the solutions of the nonlinear dispersion
relations are sought.
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I. INTRODUCTION

Studies of stationary nonlinear waves possessing the prop-
erties of both plasmons and solitons started in the early 1980s
when this type of waves was described by Agranovich et al.
[1]. Two main types of structures supporting plasmon-soliton
waves were studied. The first type contains one or two
semi-infinite nonlinear media and was extensively studied in
Refs. [2–16]. Transverse electric (TE) and transverse magnetic
(TM) polarized waves were investigated in configurations
built of semi-infinite nonlinear layers, a metal layer, and,
in some cases, additional dielectric layers. The second type
of structure contains a finite-size nonlinear dielectric layer
sandwiched between two semi-infinite metal layers. This type
of structure will be called here nonlinear slot waveguide
(NSW). Studies of configurations with a nonlinear dielectric
core started in the early 1980s from fully dielectric structures
[17–23]. The solutions of Maxwell’s equations in a finite-size
nonlinear dielectric were given in terms of Jacobi elliptic
functions [24]. A symmetry breaking bifurcation was predicted
for the fundamental symmetric mode giving birth to an
asymmetric mode [18,19]. Various methods to study fully
dielectric waveguides with both nonlinear core and cladding
were proposed [25–32].

In 2007, Feigenbaum and Orenstein [33] made the first
attempt to study waveguides with a nonlinear core surrounded
by a metal cladding (NSWs) instead of a dielectric one. Their
method describes subwavelength confinement of light in two-
dimensional plasmon-soliton beams propagating in NSWs.
Such a strong confinement is ensured by a linear plasmon
profile in the transverse direction and by the self-focusing
effect in the lateral direction. Recently, numerical [34] and
semianalytical [35,36] methods have been developed to study
up to the three first nonlinear modes in NSWs. Higher-order
modes were also reported in NSWs [37].
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The NSW is an interesting and promising configuration
for two reasons: (i) from the practical point of view, it is
easier to fabricate high quality thin nonlinear films than bulky
layers, like those needed in the configurations with semi-
infinite nonlinear medium and (ii) it has numerous potential
applications. Devices based on the NSW configuration can
be used for phase matching in higher-harmonic generation
processes [38] and for nonlinear plasmonic couplers [39,40].
Nonlinear switching [41] was theoretically predicted in NSW-
based structures that is similar to the nonlinear switching
in graphene couplers [42]. Tapered NSWs might be used
for nanofocusing and loss compensation in order to enhance
nonlinear effects [43].

The field of NSWs is relatively young and there is not a
lot of work describing the properties of these structures. In
this article, we build two new and complementary models
that allow us to study efficiently and accurately the NSW
configurations. These models have been briefly and partially
introduced in Ref. [37] and here we present their detailed
derivations.

In Sec. II, a general description of the problem studied
here is given. Section III presents the theoretical derivation of
our two models. These models are used to thoroughly study
the propagation of plasmon-soliton waves in NSWs in the
following article [44], where analytical and numerical stability
analysis results are also provided.

II. PROBLEM STATEMENT

This article presents a derivation of the dispersion re-
lations for the stationary TM polarized waves propagating
in one-dimensional NSWs depicted schematically in Fig. 1.
We propose two models to study the light propagation in
such structures. The first model is based on the approach
proposed for fully dielectric structures in [17,20] extending
it to structures containing metals. Due to the presence of the
metal cladding, the field continuity conditions result in a new
type of field profiles and very rich dispersion relations. This
approach uses an approximated treatment of the nonlinearity
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FIG. 1. Geometry of the plasmonic NSW with the parameters of
the structure.

in the Kerr medium which allows us to write and solve a single
nonlinear wave equation in the finite-size nonlinear medium.
Using the field continuity conditions at the core interfaces
located at x = 0 and x = d, the analytical formulas for the
dispersion relations and for the field profiles are obtained in
terms of Jacobi elliptic functions [24]. Therefore, this model
will be called Jacobi elliptic function based model (JEM).

The first step of our second model is based on the
approaches from Refs. [9,10] for a single interface between
a nonlinear dielectric and a metal. The second step of this
model is a new extension to treat the two-interface case of
the finite-size nonlinear region. It will be named the interface
model (IM). This model uses a more realistic treatment of
the nonlinear Kerr effect than the JEM (i.e., Kerr nonlinearity
depends on all the components of the electric field). It allows
us to obtain separate dispersion relations on the two interfaces
of the NSW in analytical forms. Comparing the dispersion
equations for the left interface and for the right interface results
in an analytical condition that reduces the parameter space
in which the solutions of Maxwell’s equations in NSWs are
sought. The solutions are found by the numerical integration
of Maxwell’s equation in the core which allows one to relate
the two interfaces. Maxwell’s equations in the core are solved
using the shooting method [45]. If the result of integration is
consistent with the previously assumed values of the field and
its derivatives at the slot interfaces, then the corresponding
effective index β is accepted as a genuine solution in our
problem.

The stationary solutions in our one-dimensional geometry
are sought in the form of monochromatic harmonic waves:

{
EEE (x,z,t)

HHH (x,z,t)

}
=

{
E(x)

H(x)

}
ei(k0βz−ωt), (1)

where E = [Ex,0,iEz] and H = [0,Hy,0]. We write the
imaginary unit i in front of the z component of the electric
field so that all the quantities Ex, Ez, and Hy are real. The
propagation direction is chosen to be z and ω denotes the
angular frequency of the wave. k0 = ω/c denotes the wave
number in vacuum, and c denotes the speed of light in vacuum.
The effective index of the wave is defined as β, so that the
propagation constant is given by k0β. The structure is invariant
along the y direction and, therefore, it is assumed that the field
profiles are invariant along the y coordinate.

III. MODEL DERIVATION

A. Maxwell’s equations

The derivation of our models starts from the general
form of Maxwell’s equations in the case of nonmagnetic

materials (relative permeability μ = 1) without free charges
(ρf = 0) and free currents (Jf = 0) [46]. For the harmonic
monochromatic TM waves described by Eq. (1) and for an
isotropic relative permittivity ε the Maxwell’s equations read

k0βEx − dEz

dx
= ωμ0Hy, (2a)

Ex = β

ε0εc
Hy, (2b)

Ez = 1

ε0εω

dHy

dx
, (2c)

where ε0 and μ0 denote vacuum permittivity and permeability,
respectively. The nonlinearity studied here is of the Kerr type

ε = εl(x) + εnl(x), (3)

where εl denotes the linear, real part of the permittivity, εnl =
α(x)|E(x)|2 describes the nonlinear part of the permittivity
limited to the isotropic optical Kerr effect that depends on
the electric field intensity, and α(x) is the function that takes
values of the nonlinear parameters associated with different
layers (in linear materials it is null). The imaginary part of the
permittivity is neglected in the modal studies presented here.

The formulation of the Kerr effect used in this study can be
found in the majority of the works on the nonlinear waveguides
and nonlinear surface waves [1–7,9–23,25–30,33–36,47–74].
It describes sufficiently well the nonlinear effects studied here.
As a first approximation, to describe the physics of our system
we do not need to use the more complex form of the Kerr
nonlinear term which was described in Ref. [75].

B. Jacobi elliptic function based model

We start the presentation of the models for NSWs with
the approach that uses strong assumptions on the form of the
nonlinear Kerr term but it provides the dispersion relations
and the field profiles in analytical forms. This model provides
more insight and understanding of the nature of the problem
of finding stationary solutions in NSWs than the second, more
numerical model. First, we will solve the nonlinear wave
equation inside the waveguide core and find the nonlinear field
profiles. Knowing the field profiles, we will be able to derive
the dispersion relations for the NSW using the continuity
conditions on the two nonlinear core interfaces.

1. Assumptions

In the frame of the Jacobi elliptic function based model
(JEM), the Kerr-type nonlinearity is not treated in an exact
manner. We assume that the nonlinear response of the material
is isotropic and depends only on the transverse component of
the electric field Ex in the following way [12,16,37]:

ε(x) = εl(x) + α(x)E2
x(x). (4)

Functions εl(x) and α(x) are stepwise functions which take the
values indicated in Table I depending on the layer (see Fig. 1
for layer numbering).
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TABLE I. Values of the functions εl(x) and α(x) describing the
properties of the materials in different layers. The nonlinear parameter
n2 in layer 2 is denoted by n

(2)
2 .

Layer Abscissa εl(x) α(x)

1 x < 0 ε1 = εl,1 0
2 0 � x � d εl,2 ε0cεl,2n

(2)
2 = α2

3 x > d ε3 = εl,3 0

2. Derivation of the nonlinear dispersion equation

The derivation of the JEM starts with Eqs. (2). These
equations are combined together with Eq. (4) and, with the
help of the approximations about small nonlinear permittivity
change, we obtain the nonlinear wave equation:

d2Hy

dx2
− k2

0q
2(x)Hy + k2

0a(x)H 3
y = 0, (5)

where

q2(x) = β2 − εl(x), a(x) = β2α(x)/[ε0εl(x)c]2, (6)

and we have used the relations ω = ck0 and c2 = 1/(ε0μ0). For
the q notation used in Eq. (6), we follow the definition already
used in several articles including ones dedicated to the slot
configuration that allows a general definition valid for all the
structure layers even if in the nonlinear core, for some cases,
q2(x) can be negative [1,4,6,16,38]. A detailed derivation of
Eq. (5) is presented in Refs. [16,76]. We use the first-integral
treatment approach [9,10] and integrate Eq. (5) in each of the
structure layers separately. The result reads(

dHy

dx

)2

− k2
0q(x)2H 2

y + k2
0
a(x)

2
H 4

y = c0(x). (7)

The right-hand side of this equation is given by a piecewise
function c0(x) that corresponds to the value of the integration
constant in each layer. The left-hand side of Eq. (7) gives us
a formula for a field based quantity that is constant in each
of the layers of our one-dimensional nonlinear waveguide. In
semi-infinite layers (layers 1 and 3) [16], the function c0(x)
is zero, because both the magnetic field Hy and its derivative
dHy/dx tend to zero as x → ±∞. Additionally, in these linear
layers a(x) is equal to zero. Thus, in the cladding, Eqs. (5)
reduces to a standard linear wave equation whose solutions
are given by

H1 = H0e
k0q1x for − ∞ � x < 0, (8a)

H3 = Hde
−k0q3(x−d) for d � x < +∞, (8b)

where only the appropriate exponential solutions are con-
sidered. Here the magnetic-field amplitudes at the interfaces
x = 0 and x = d are denoted by H0 and Hd , respectively, and
qk denotes a constant value of the q(x) function in kth layer (for
k ∈ {1,2,3}) since εl(x) is piecewise constant. In the nonlinear
core of our structure, the function c0(x) takes a constant value
denoted hereafter as c0. Inside of this core region regardless of
at which x abscissa we calculate the left-hand side of Eq. (7),
the result will always be equal to the integration constant c0.

Since Hy is the only component of the magnetic field, in
the following derivation we omit the y subscript and instead

we use a subscript that enumerates the layer in which the field
profile is defined (see Fig. 1). It is worth mentioning that this
derivation is fully different from the one described in Ref. [16]
due to the fact that, in the present study, the size of the nonlinear
region is finite and not semi-infinite which precludes the use
of the well-known secant hyperbolic function and forces the
use of Jacobi elliptic functions and a careful analysis of the
continuity conditions at the core interfaces.

The integration constant c0 can be expressed as a function
of the magnetic-field amplitude H0 using the continuity
conditions for the tangential electromagnetic-field components
(Hy , Ez) at x = 0 in Eq. (7):

c0 = k2
0

[
(εl,2/ε1)2q2

1 − q2
2 + a2H

2
0

/
2
]
H 2

0 , (9)

where a2 denotes the constant value of a(x) function in the
nonlinear core [layer 2; see Eq. (6) and Table I] and where,
based on the assumption that the nonlinear permittivity change
is small, we have substituted ε2|x=0+ by εl,2 in the fraction
numerator. Similar expression can be obtained for the second
interface at x = d. Equations (7) and (9) allow us to find the
sign of the integration constant c0 for certain types of solutions.
The solutions can be later classified according to the sign of c0.
Looking at Eq. (7) we notice that for Hy field profiles that cross
zero, at the point where Hy = 0, the only nonzero term on the
left-hand side of this equation is (dHy/dx)2, which is strictly
positive. Therefore, for this type of solution, c0 can only be
positive. From Eq. (9) we notice that for negative q2

2 , the value
of the integration constant c0 is also positive.

We are searching for guided waves in three-layer structures.
Looking at Eqs. (8), we notice that the condition for the waves
to be localized in the waveguide core is satisfied when both
q1 and q3 are real and positive quantities. In order to satisfy
this condition, we will look only for the solutions with β2 >

max{ε1,ε3} [for the definition of q(x) and qk; see Eq. (6) and
the text after Eqs. (8)]. The quantity q2 can be either real or
imaginary leading to positive or negative values of q2

2 .
In order to find the solutions of the nonlinear wave equation

[Eq. (5)] in the nonlinear core, we rewrite its first integral
[Eq. (7)] in the form

dH2√
Ac0 + AQH 2

2 − H 4
2

= ±
√

1

A
dx, (10)

using the reduced parameters Q and A:

Q = k2
0q

2
2 , A = (

k2
0a2

/
2
)−1

. (11)

In this study, we deal only with the focusing Kerr-type
dielectrics; therefore, A is always positive. Parameter Q can
be either positive or negative depending on the sign of q2

2 .
Solutions of Eq. (10) take different forms depending on the
sign of parameter c0. We will solve this equation in the two
possible cases. The detail of this derivation is provided in
Ref. [76].

First case: c0 > 0. At first, we consider the case where
c0 > 0. The solution of the nonlinear wave equation [Eq. (7)
or Eq. (10)] for this case is given by

H2(x) = δ cn{
√

s/A (x − x0)|m}, (12)
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where cn(u|m) is a Jacobi elliptic function with an argument
u and a parameter m [24], and

m = δ2/s, s = γ 2 + δ2, (13a)

γ 2 = (
√

A2Q2 + 4Ac0 − AQ)/2, (13b)

δ2 = (
√

A2Q2 + 4Ac0 + AQ)/2, (13c)

x0 = −
√

A/s cn−1
[
H2(0)/δ

∣∣m]
. (13d)

Here cn−1(u|m) is the inverse of the Jacobi elliptic function
cn(u|m).

Now we derive the dispersion relation for NSWs. Using
the analytical formula for the field profile in the nonlinear
core [Eq. (12)], the field profiles in metal claddings given by
Eqs. (8), and Maxwell’s equations [Eqs. (2)], we write the
continuity conditions for the tangential electromagnetic-field
components Hy and Ez at the interfaces between the nonlinear
core and the metal cladding x = d (the continuity conditions
at x = 0 was already used to evaluate the integration constant
[see Eq. (9)]) as follows.

(1) The continuity condition for the magnetic-field compo-
nent H2|x=d− = H3|x=d+ yields

δ cn[
√

s/A (d − x0) | m] = Hd. (14)

(2) The continuity condition for the tangential electric-field
component Ez,2|x=d− = Ez,3|x=d+ transformed with the use
of Eq. (2c), the formulas for the Jacobi elliptic function
derivatives, and the symmetry properties of Jacobi elliptic
functions gives

δε3
√

s/(k0q3εl,2

√
A) sn[

√
s/A (d − x0) | m]

× dn[
√

s/A (d − x0)|m] = Hd, (15)

where, based on the assumption that the nonlinear permittivity
change is small, we substituted ε2|x=0+ by εl,2 in the denomi-
nator on the left-hand side.

Comparing the two expressions for Hd given by Eqs. (14)
and (15), we obtain the nonlinear dispersion relation in its final
form for the case of c0 > 0:

k0q3εl,2

√
A cn[

√
s/A(d − x0)|m]

= ε3k0q3εl,2
√

s sn[
√

s/A (d − x0)|m]

× dn[
√

s/A (d − x0)|m]. (16)

Second case: c0 < 0. For c0 < 0, the solution of the
nonlinear wave equation [Eq. (7) or Eq. (10)] is given by

H2(x) = γ dn{
√

γ 2/A (x − x0)|m}, (17)

where dn(u|m) is a Jacobi elliptic function [24] and

m = (γ 2 − δ2)/γ 2, (18a)

γ 2 = (AQ +
√

A2Q2 − 4A|c0|)/2, (18b)

δ2 = (AQ −
√

A2Q2 − 4A|c0|)/2, (18c)

x0 = −
√

A/γ 2 dn−1[H2(0)/γ |m]. (18d)

Here dn−1(u|m) is the inverse of the Jacobi elliptic function
dn(u|m).

The method used to derive the dispersion relation for
this case is exactly the same as in the previous one. Using
the analytical formula for the field profile in the nonlinear
core [Eq. (17)], the field profiles in metal claddings given
by Eqs. (8), and Maxwell’s equations [Eqs. (2)], we write
the continuity conditions for the tangential electromagnetic-
field components Hy and Ez at the interfaces between the
nonlinear core and the metal cladding x = d. The two resulting
expressions for Hd are compared and give the nonlinear
dispersion relation in its final form for the case c0 < 0:

k0q3εl,2

√
A dn[

√
γ 2/A(d − x0)|m]

= ε3m
√

γ 2 sn[
√

γ 2/A (d − x0)|m]

× cn[
√

γ 2/A (d − x0)|m]. (19)

Equations (16) and (19) build the full dispersion relation for
the NSW. In order to obtain the dispersion diagram for a fixed
structure and wavelength (ε1, εl,2, n

(2)
2 , ε3, d, λ) we scan H0

values. For a fixed H0, using Eq. (9) we identify intervals of β

where c0 is positive or negative. In these intervals, we find β

values that satisfy Eq. (16) or Eq. (19) depending on the sign
of c0. The resulting nonlinear dispersion curves of the NSW
are given in Figs. 1(a) and 7 of the following article [44].

C. Interface model

In Sec. III B, we have derived the JEM that treats the Kerr
nonlinearity present in the core of the NSW in a simplified
way [see Eq. (4)]. The used assumptions allowed us to obtain
analytical formulas for the nonlinear dispersion relations and
the field profiles of the nonlinear modes of the NSW.

In this section, we will present the derivation of a
model that is more numerical than the JEM but treats the
Kerr-type nonlinearity in a more precise way. It is well
known that the general expression of the nonlinear term
involves the fourth-rank third-order susceptibility tensor [77]
and all the electric-field components. In the simple case where
the nonlinear medium is assumed to be isotropic, the full
expression of the nonlinear term can be chosen as proportional
to the squared norm of the electric field as it is often used in
nonlinear waveguide studies [10,78]. In the present case (we
are studying TM waves) the electric field has only two non null
components Ex and Ez, and as it will be shown later in the
following article [44] |Ez| is not always negligible compared
to |Ex | in the nonlinear slot waveguides with metal cladding.
Consequently, the permittivity of the nonlinear core in the
frame of the interface model (IM) is described by

ε2(x) = εl,2(x) + α2
[
E2

x(x) + E2
z (x)

]
. (20)

Moreover, there is no theoretical limitation of the values of
the nonlinear permittivity change. In the IM, the solutions
of Maxwell’s equations are sought numerically, as explained
in the following. The field profiles inside the nonlinear core
are found by numerical integration of Maxwell’s equations
that couple the Ex and Ez field components. The novelty of
our numerical method lays in the fact that the parameter space
where the solutions are being sought is reduced by a constraint
that is expressed in an analytical form. Below the derivation
of this constraint is presented and the numerical procedure

013825-4



PLASMON-SOLITON WAVES IN PLANAR . . . . I. MODELING PHYSICAL REVIEW A 93, 013825 (2016)

of finding the nonlinear dispersion relations using the IM is
shortly described.

1. Analytical constraint

The derivation of the IM starts from Maxwell’s equations
[Eqs. (2)]. In this approach the magnetic field is eliminated
from these equations. The use of Eq. (2b) in Eqs. (2a) and (2c)
gives [10,16,37,76]

dEz

dx
= k0

(
β − ε

β

)
Ex, (21a)

d(εEx)

dx
= βk0εEz. (21b)

Let us first consider the region of the nonlinear core. In this
region, Eq. (21a) is derived with respect to x, and transformed
with the use of Eqs. (21b) and (20). Then, we use the first-
integral approach, and integrate by parts the resulting equation,
to finally obtain (for the detailed derivation see Ref. [76])

(
dEz

dx

)2

=(βk0)2E2
x − k2

0εl,2
(
E2

x + E2
z

)

− k2
0
α2

2

(
E2

x + E2
z

)2 + C0, (22)

where the linear permittivity of the core εl,2 and the nonlinear
parameter α2 of the core appear (see Table I), and C0 denotes
the integration constant.

In problems with a semi-infinite nonlinear medium, the
magnetic field Hy and its x derivative vanish when x → ±∞.
In such cases, these boundary conditions allow us to set the
integration constant C0 in Eq. (22) to zero [16]. Here, we deal
with a problem in which the nonlinear medium is sandwiched
between two linear (metal) layers, and therefore the nonlinear
medium has a finite size. In this case, the integration constant
cannot be set automatically to zero.

The comparisons of the right-hand side of Eq. (22) with the
square of the right-hand side of Eq. (21a) gives
(
ε2

2/β
2 − 2ε2

)
E2

z+εl,2
(
E2

x + E2
z

) + α2/2
(
E2

x + E2
z

)2 = C0.

(23)

Equation (23) together with continuity conditions for the
tangential components of the electromagnetic field will be
helpful in finding the constraints reducing the parameter space
where the solutions of Maxwell’s equations are sought, in order
to find the dispersion curves for the NSW configuration.

We warn that the quantities Ax , Az and Bx , Bz defined
below denote the amplitudes of the electric-field components
at the outer side of core interfaces (in the metal cladding
layers). On the contrary, the quantities Ex,0, Ez,0 and Ex,d ,
Ez,d refer to the amplitudes of the electric fields at the inner
interfaces of the core (in the nonlinear dielectric). We use
the continuity conditions for the tangential components of
the electromagnetic field in order to relate the values of the
electric-field components Ex and Ez at the nonlinear interfaces
x = 0+ and x = d− to the values of the total electric-field
amplitude, defined as

Ep ≡
√

E2
x,p + E2

z,p, (24)

where the additional subscript p ∈ {0,d} denotes the x coordi-
nate at which the quantity is calculated. The field distributions
for the electric-field components in the semi-infinite linear
metal regions are found by solving linear wave equations for
these components. The components of the electric field in the
cladding metal layers are given by the following.

(1) In the left metal region (x < 0—layer 1 in Fig. 1):

Ex,1 = Axe
k0q1x, Ez,1 = Aze

k0q1x. (25)

(2) In the right metal region (x > d—layer 3 in Fig. 1):

Ex,3 = Bxe
−k0q3(x−d), Ez,3 = Bze

−k0q3(x−d). (26)

Only one exponential term is present in each of the expressions
so that the electric field decays exponentially for x → ±∞.
The pairs of parameters Ax , Az and Bx , Bz are not independent
and the relationship between them can be found using Eq. (21b)
for linear and uniform layers.

Using the continuity conditions for the tangential field
components (Hy and Ez) at both interfaces (x = 0 and x = d)
allows us to find four relations between the electric-field
amplitudes at the outer interfaces (Ax , Az, Bx , Bz) and the
inner left (Ex,0, Ez,0) and the inner right (Ex,0, Ez,0) interfaces:

Az = Ez,0, (27a)

Bz = Ez,d, (27b)

Ax = ε2,0Ex,0/ε1, (27c)

Bx = ε2,dEx,d/ε3, (27d)

where ε2,0 denotes the value of the nonlinear permittivity at
the left interface of the core and is equal to ε2|x=0+ = εl,2 +
α2E

2
0 , and ε2,d denotes the value of the nonlinear permittivity

at the right interface of the core and is equal to ε2|x=d− =
εl,2 + α2E

2
d . The relations given by Eqs. (27) together with

Eqs. (2b) and (2c) in the linear layers allow us to express the
electric-field components at the left interface x = 0+ (Ex,0,
Ez,0) as a function of the total electric-field amplitude at this
interface E0:

E2
x,0 = (ε1βE0)2/[(ε2,0q1)2 + (ε1β)2], (28a)

E2
z,0 = (ε2,0q1E0)2/[(ε2,0q1)2 + (ε1β)2]. (28b)

Similarly, we can express the electric-field components at the
right interface x = d− (Ex,d , Ez,d ) as a function of a total
electric-field amplitude at this interface Ed :

E2
x,d = (ε3βEd )2/[(ε2,dq3)2 + (ε3β)2], (29a)

E2
z,d = (ε2,dq3Ed )2/[(ε2,dq3)2 + (ε3β)2]. (29b)

Equation (23) can now be rewritten on each interface in such
a way that it depends only on the total electric-field amplitude
at this interface (as a parameter), the effective index β as an
unknown, and the optogeometric material parameters which
are known and fixed for a given NSW. Inserting Eqs. (28a) and
(28b) into Eq. (23) taken at x = 0+, we obtain the nonlinear
dispersion relation at the left interface (x = 0):

[( ε2,0

β

)2 − 2ε2,0
]
(ε1β)2

(ε2,0q1)2 + (ε1β)2
+ εl,2 + α2

2
E2

0 = C0

E2
0

. (30)
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Inserting Eqs. (29a) and (29b) into Eq. (23) taken at x = d−,
we obtain the dispersion relation at the right interface (x = d).
It is identical to Eq. (30) after the substitutions: ε2,0 by ε2,d , ε1

by ε3, and E0 by Ed .
Comparing the dispersion relation for the single interface at

x = 0 [Eq. (30)] with the one obtained at x = d, we eliminate
the integration constant C0 and obtain the final equation of the
IM:[( ε2,0

β

)2 − 2ε2,0
] (ε1β)2

(ε2,0q1)2+(ε1β)2 + εl,2 + α2
2 E2

0[( ε2,d

β

)2 − 2ε2,d

] (ε3β)2

(ε2,d q3)2+(ε3β)2 + εl,2 + α2
2 E2

d

= E2
d

E2
0

. (31)

Equation (31) represents the constraint that will be used
in the numerical algorithm computing the dispersion curves
presented in Sec. III C 2, in order to reduce the dimension of the
parameter space where the solutions of Maxwell’s equations
in NSW structures are sought.

It is worth noticing that, in Eq. (31), neither the wavelength
of light λ nor the width of the waveguide core d appear.
This means that the condition given by Eq. (31) is identical,
regardless of the values of λ and d. This condition depends
only on the material parameters (ε1, εl,2, α2, and ε3) and the
field intensities at both nonlinear core interfaces (E0 and Ed ).
The size of the core and the wavelength will appear in our
next step—the numerical integration of Maxwell’s equations
leading to the field profiles in the core of the waveguide and
to the dispersion curves of the NSW.

As stated before, Eq. (31) is not a dispersion relation for
the slot waveguide modes but only a constraint that limits the
parameter space where the solutions in the frame of the IM
can be found. In order to obtain the dispersion relations in
the NSW, the field profiles in the core are found by numerical
integration of Maxwell’s equations. Maxwell’s equations are
written as a set of coupled equations relating both electric-field
components Ex and Ez. These equations are derived from
Eqs. (21a) and (21b):

dEx

dx
= k0

βε2Ez − 2α2EzE
2
x

(
β − ε2

β

)
ε2 + 2α2E2

x

, (32a)

dEz

dx
= k0

(
β − ε2

β

)
Ex. (32b)

2. Numerical algorithm and nonlinear dispersion relations

In this section, we present the description of the numerical
algorithm that is used to find the dispersion relation for the
modes of a NSW in the frame of the IM. This algorithm uses the
shooting method [45] to find solutions of Maxwell’s equations
in the waveguide core and finally the nonlinear dispersion
relation for the NSW.

In a general case, the numerical procedure would be the
following. First, for a given structure, we fix the parameters
E0, Ed , and β and integrate Maxwell’s equations [Eqs. (32)]
in the waveguide core with the values E0 and β as initial
parameters. The results of the integration are the field profiles
Ex(x) and Ez(x) inside the nonlinear core and, in particular,
the computed total electric field amplitude at the interface
x = d denoted by E

(num)
d . Next, we verify if the result of the

numerical integration fulfills the conditions resulting from the
problem formulation as follows.

(1) Is E
(num)
d equal to the initially fixed value Ed?

(2) Does the x derivative of the product of the permittivity
and the transverse electric field ε2Ex at the interface x = d−
have the correct sign? The condition for the correct sign reads

Ex,d

d(ε2Ex)

dx

∣∣∣∣
x=d−

= −k0q3ε3B
2
x , (33)

and it is derived in Ref. [76]. The right-hand side of Eq. (33) is
positive as ε3 of the metal is negative and all the other quantities
there are positive. Therefore, the sign of the derivative
[d(ε2Ex)/dx]|x=d− must be identical to the sign of Ex,d .

(3) Do the components of electric field at x = d fulfill the
conditions given by Eqs. (29a) and (29b)?

If these three conditions are fulfilled, then the triplet (E0,
Ed , and β) and the corresponding field profiles are accepted
as a genuine solution of our problem.

In the general case described above, the parameter space
where the solutions are sought is three dimensional and it
is spanned by E0, Ed , and β. In standard problems, the
dimension of this parameter space can be further reduced by
constraints resulting from, e.g., structure symmetry. Usually it
relates the values of the electric field E0 and Ed , leaving two
independent variables E0 and β. However, we remind that the
choice of the independent variables is arbitrary, and it is often
the computational simplicity or efficiency that determines this
choice.

In our eigenvalue problem derived from Maxwell’s equa-
tions for layered structures with a nonlinear guiding layer, we
split the solution-search procedure into two cases, in which
we will be able to simplify it and look for the solutions in only
two-dimensional spaces. The reason for the split is the fact
that the constraint reducing the dimension of the parameter
space where the solutions are sought is different for each of
the cases. The two cases allowing us to investigate our problem
in an efficient way are as follows.1

(1) The case of symmetric (Ex,0 = Ex,d ) or antisymmetric
solutions (Ex,0 = −Ex,d ) (for both symmetric and antisym-
metric solutions E0 = Ed ) in a symmetric NSW (ε1 = ε3). In
this case, we look for the solutions of Maxwell’s equations in
a two-dimensional space spanned by E0 and β for each of the
cases Ex,0 = ±Ex,d . For E0 = Ed in symmetric structures,
Eq. (31) represents an identity and it is satisfied for all values
of β. Therefore, Eq. (31) will not provide any help in further
reducing the parameter space where the solutions are sought.

(2) The case of either the asymmetric solutions (E0 �= Ed )
in a symmetric NSW structure (ε1 = ε3) or any solution in
an asymmetric NSW (ε1 �= ε3). For these types of solutions,

1In the second case, we use a nonstandard approach, where the
free parameters are chosen in a different way than in the traditional
shooting method [45]. Nonetheless, the numerical results obtained
with this approach are physically meaningful, as it can be seen
from the numerical examples presented in the following article [44]
(the results of our shooting method used for asymmetric structures
converge, in the limiting case of a symmetric structure, to the results
of a standard shooting method). The mathematical proof of the
equivalence of these two approaches is beyond the scope of this
work.
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Eq. (31) is not an identity and results in a constraint on
the three-dimensional space where the solutions are sought.
Equation (31) is transformed to the form

p4β
4 + p2β

2 + p0 = 0, (34)

where

p4 = 2ε2,dε
2
3E

2
d

(
ε2

2,0 + ε2
1

) − 2ε2,0ε
2
1E

2
0

(
ε2

2,d + ε2
3

)
+ f

(
ε2

2,0 + ε2
1

)(
ε2

2,d + ε2
3

)
, (35a)

p2 = ε2
2,0ε

2
1E

2
0

(
ε2

2,d + ε2
3

) − ε2
2,dε

2
3E

2
d

(
ε2

2,0 + ε2
1

)
+ 2ε2,0ε2,dε1ε3

(
ε2,dε1E

2
0 − ε2,0ε3E

2
d

)
− f

[
ε2

2,0ε1
(
ε2

2,d + ε2
3

) + ε2
2,dε3

(
ε2

2,0 + ε2
1

)]
, (35b)

p0 = ε2
2,0ε

2
2,dε1ε3

(
ε3E

2
d − ε1E

2
0 + f

)
, (35c)

f = εl,2
(
E2

0 + E2
d

) + α2

2

(
E4

0 + E4
d

)
. (35d)

This shows that Eq. (31) is satisfied only by a finite set of
β values. Since we look for forward-propagating nonlinear
modes and material losses are neglected, the only physically
meaningful solutions of Eq. (34) are the ones where β is real
and positive. Therefore, the two possible roots are

β± =

√√√√−p2 ±
√

p2
2 − 4p4p0

2p4
. (36)

Only the real solutions among β± are used further in the
process of the resolution of the nonlinear problem.

Using Eq. (31), the three-dimensional space from the
general case is now reduced to a two-dimensional space
[one for each of the real effective indices given by Eq. (36)]
spanned by E0 and Ed . Therefore, instead of scanning a full
three-dimensional space spanned by E0 and Ed , and β we need
to scan only a two-dimensional space spanned by E0 and Ed ,
and finally to test only β values given by Eq. (36). In other
words, for a pair (E0, Ed ) we just need to check if the field
integration gives valid results [i.e., if conditions (1)–(3), page
6 in Sec. III C 2 are fulfilled] for real values among β±. If all
the conditions are fulfilled, then the triplet (E0, Ed , and β)
and the corresponding field profiles are accepted as a genuine
solution of our problem.

Note that for the case (2) associated with asymmetric
solutions, we reduce the phase space of possible solutions
in terms of the effective index β. Another option would be
to try to solve Eq. (31) with respect to Ed . However, this
way of proceeding would be more cumbersome for this case
of asymmetric solutions in our problem. It turns out that
Eq. (31) can be written as a polynomial of Ed in a form
E8

d + r6E
6
d + r4E

4
d + r0 = 0. This equation can be reduced to

a fourth-order polynomial in E2
d , for which finding solutions

is more difficult than in the case of Eq. (34) that is reducible to
a second-order polynomial equation in β2. The block scheme
representing the full numerical procedure to find the dispersion
relation is given in Ref. [76].

IV. CONCLUSIONS

We have presented two complementary models based on
Maxwell’s equations to study the properties of the stationary
TM solutions in planar nonlinear structures made of a focusing
Kerr nonlinear dielectric core surrounded by semi-infinite
metal regions. The first model uses a simplified treatment of the
nonlinearity that takes into account only the transverse compo-
nent of the electric field in the nonlinear term and assumes that
the nonlinear refractive index change is small compared to the
linear refractive index. It provides an analytical description
of both the field profiles, in the whole waveguide using
Jacobi elliptic special functions, and the nonlinear dispersion
relations. These features allow one to study rapidly and
accurately the properties of the NSW structures as a function of
their opto-geometric parameters. The second model takes into
account the full dependency of the Kerr nonlinear term on all
electric-field components and no assumption is required on the
amplitude of the nonlinear term. It allows us both to determine
the domain of validity of the first model and to investigate
with accuracy the effects of high nonlinearities. These two
models prove their usefulness in the next article (Ref. [44])
where we provide a complete and accurate study of nonlinear
slot waveguides. It is worth mentioning that these models can
be extended to more complicated geometries, refractive index
forms, and/or nonlinear terms.
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APPENDIX: LIMITING CASES FOR TWO-LAYER
STRUCTURES

In this section we will derive the expressions for the
dispersion relations in the limiting case of the single interface
between a metal and a nonlinear dielectric. This will prove
that our models reproduce already known results for simpler
structures. These limiting case dispersion relations will also
provide approximated analytical expressions for the propa-
gation constant of highly asymmetric modes of NSW that
resemble nonlinear plasmons on a single interface as shown in
the following article [44].

1. Jacobi elliptic function based model

In Sec. III B, we have stated that in the case of a semi-infinite
nonlinear medium (a single interface between a metal and a
nonlinear dielectric) the integration constant in Eq. (7) should
be set to zero as both the magnetic field Hy and its derivative
tend to zero at infinity. One way to find the dispersion relation
for nonlinear waves propagating along a single interface is
to use Eq. (9). Setting c0 = 0 in this equation we obtain an
analytical formula for the effective indices:

(εl,2/ε1)2q2
1 − q2

2 + a2

2
H 2

0 = 0. (A1)
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Using the definitions of qk and a2 [see Table I, Eq. (6), and
the text after Eqs. (8)] in Eq. (A1), we find the analytical
expression for the effective index of a nonlinear wave at a
single interface between a metal and a nonlinear dielectric in
an explicit form:

β =
√√√√ ε1εl,2(εl,2 − ε1)

ε2
l,2 − ε2

1 + n
(2)
2 ε2

1H 2
0

2ε0cεl,2

. (A2)

Another way to find the dispersion relation for nonlinear waves
propagating along a single interface is to set c0 = 0 at the
later stage of the JEM derivation, namely in Eqs. (16) or (19)
and in the definitions of the related parameters [Eqs. (13)
or (18), respectively]. In both cases, this procedure yields
[76] (using the expressions for the limiting values of Jacobi
elliptic functions in the case of the parameter m = 1 provided
in Ref. [24])

tanh [k0q2(d − x0)] = εl,2q3

ε3q2
. (A3)

Equation (A3) describes the nonlinear dispersion relation for
plasmon solitons on a single interface (at x = d) between a
metal and a nonlinear dielectric. Equation (A3) is equivalent to
Eq. (42) from Ref. [16], which gives the dispersion relation for
a single metal-nonlinear dielectric interface obtained using the
field based model developed in Ref. [16], taking into account
that (i) in the frame of the JEM we used the assumption
that ε2 = εl,2 in the continuity conditions used to derive
the nonlinear dispersion relations (see Sec. III B) and (ii) in
Ref. [16] the interface is located at x = 0.

Equations (A2) and (A3) give also approximated expres-
sions for the effective indices of highly asymmetric solutions in
NSWs, as it will be proven by the numerical results presented in
Ref. [44]. Highly asymmetric solutions are strongly localized
on one of the interfaces and therefore the problem can be
simplified to a single-interface problem. A comparison of
the approximated solution given by Eqs. (A2) and (A3) with
the exact solutions of the JEM will be given in Sec. III B of
Ref. [44].

It is worth noting that using Eq. (A2) in the linear case
(H0 → 0 or n

(2)
2 → 0), we recover the dispersion relation for

a linear surface plasmon propagating along a single interface
[see Eq. (2.14) in Ref. [79]]:

β = √
ε1εl,2/(ε1 + εl,2). (A4)

2. Interface model

Equation (30) and the corresponding one obtained at x = d,
when considered separately, give the dispersion relation for a
single interface between a metal and a nonlinear dielectric. In
this case, the nonlinear medium is semi-infinite which means
that C0 must be set to zero (see Sec. III C 1). Setting C0 = 0
in Eq. (30) yields

[( ε2,0

β

)2 − 2ε2,0
]
(ε1β)2

(ε2,0q1)2 + (ε1β)2
+ εl,2 + α2

2
E2

0 = 0. (A5)

This equation can be solved analytically for β. The solution
depends on the parameters of the structure (ε1, εl,2, α2, ε3) and
on the electric-field amplitude at the interface E0. It is given
by

β =
√√√√ ε1ε

2
2,0

(
εl,2 − ε1 + α2

2 E2
0

)
(
ε2

2,0 + ε2
1

)(
εl,2 + α2

2 E2
0

) − 2ε2
1ε2,0

. (A6)

Only the positive root is considered because we are interested
here in forward-propagating waves only. Equation (A6) can be
compared to Eq. (11) in Ref. [74] and to Eq. (14) in Ref. [10]
derived for the case of a single metal-nonlinear dielectric
interface.

The solution for a single-interface problem provides a good
approximation (in terms of effective index β and field profiles)
for first-order highly asymmetric modes in the NSWs whose
field profiles are mostly localized on one interface of the
core (see also the discussion in Sec. A 1). These solutions are
invariant with respect to the waveguide width as they interact
strongly only with one of the core interfaces. More comments
and illustrations of this property will be presented in Sec. III B
in Ref. [44], where we discuss the results for the symmetric
NSWs. In the linear limit α2E

2
0 → 0, Eq. (A6) transforms to

Eq. (A4), as expected.
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https://tel.archives-ouvertes.fr/tel-01080690
[77] R. W. Boyd, Nonlinear Optics (Academic, New York, 2007).
[78] N. N. Akhmediev, Sov. Phys. JETP 57, 1111 (1983).
[79] S. A. Maier, Plasmonics: Fundamentals and Applications

(Springer, Berlin, 2007).

013825-9

http://dx.doi.org/10.1364/JOSAB.30.002507
http://dx.doi.org/10.1364/JOSAB.30.002507
http://dx.doi.org/10.1364/JOSAB.30.002507
http://dx.doi.org/10.1364/JOSAB.30.002507
http://dx.doi.org/10.1103/PhysRevA.89.023816
http://dx.doi.org/10.1103/PhysRevA.89.023816
http://dx.doi.org/10.1103/PhysRevA.89.023816
http://dx.doi.org/10.1103/PhysRevA.89.023816
http://dx.doi.org/10.1007/BF01441299
http://dx.doi.org/10.1007/BF01441299
http://dx.doi.org/10.1007/BF01441299
http://dx.doi.org/10.1007/BF01441299
http://dx.doi.org/10.1364/JOSAB.3.001529
http://dx.doi.org/10.1364/JOSAB.3.001529
http://dx.doi.org/10.1364/JOSAB.3.001529
http://dx.doi.org/10.1364/JOSAB.3.001529
http://dx.doi.org/10.1109/JQE.1986.1072954
http://dx.doi.org/10.1109/JQE.1986.1072954
http://dx.doi.org/10.1109/JQE.1986.1072954
http://dx.doi.org/10.1109/JQE.1986.1072954
http://dx.doi.org/10.1364/JOSAB.5.000529
http://dx.doi.org/10.1364/JOSAB.5.000529
http://dx.doi.org/10.1364/JOSAB.5.000529
http://dx.doi.org/10.1364/JOSAB.5.000529
http://dx.doi.org/10.1016/0030-4018(83)90270-5
http://dx.doi.org/10.1016/0030-4018(83)90270-5
http://dx.doi.org/10.1016/0030-4018(83)90270-5
http://dx.doi.org/10.1016/0030-4018(83)90270-5
http://dx.doi.org/10.1016/0030-4018(89)90393-3
http://dx.doi.org/10.1016/0030-4018(89)90393-3
http://dx.doi.org/10.1016/0030-4018(89)90393-3
http://dx.doi.org/10.1016/0030-4018(89)90393-3
http://dx.doi.org/10.1007/BF00384682
http://dx.doi.org/10.1007/BF00384682
http://dx.doi.org/10.1007/BF00384682
http://dx.doi.org/10.1007/BF00384682
http://dx.doi.org/10.1016/0030-4018(85)90030-6
http://dx.doi.org/10.1016/0030-4018(85)90030-6
http://dx.doi.org/10.1016/0030-4018(85)90030-6
http://dx.doi.org/10.1016/0030-4018(85)90030-6
http://dx.doi.org/10.1364/JOSAB.8.000395
http://dx.doi.org/10.1364/JOSAB.8.000395
http://dx.doi.org/10.1364/JOSAB.8.000395
http://dx.doi.org/10.1364/JOSAB.8.000395
http://dx.doi.org/10.1364/JOSAB.10.000704
http://dx.doi.org/10.1364/JOSAB.10.000704
http://dx.doi.org/10.1364/JOSAB.10.000704
http://dx.doi.org/10.1364/JOSAB.10.000704
http://dx.doi.org/10.1364/OL.16.001083
http://dx.doi.org/10.1364/OL.16.001083
http://dx.doi.org/10.1364/OL.16.001083
http://dx.doi.org/10.1364/OL.16.001083
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1364/JOSAB.10.000485
http://dx.doi.org/10.1016/0030-4018(94)90738-2
http://dx.doi.org/10.1016/0030-4018(94)90738-2
http://dx.doi.org/10.1016/0030-4018(94)90738-2
http://dx.doi.org/10.1016/0030-4018(94)90738-2
http://dx.doi.org/10.1109/3.364408
http://dx.doi.org/10.1109/3.364408
http://dx.doi.org/10.1109/3.364408
http://dx.doi.org/10.1109/3.364408
http://dx.doi.org/10.1364/JOSAB.14.001219
http://dx.doi.org/10.1364/JOSAB.14.001219
http://dx.doi.org/10.1364/JOSAB.14.001219
http://dx.doi.org/10.1364/JOSAB.14.001219
http://dx.doi.org/10.1364/OL.32.000674
http://dx.doi.org/10.1364/OL.32.000674
http://dx.doi.org/10.1364/OL.32.000674
http://dx.doi.org/10.1364/OL.32.000674
http://dx.doi.org/10.1364/OE.16.021209
http://dx.doi.org/10.1364/OE.16.021209
http://dx.doi.org/10.1364/OE.16.021209
http://dx.doi.org/10.1364/OE.16.021209
http://dx.doi.org/10.1364/OL.36.003374
http://dx.doi.org/10.1364/OL.36.003374
http://dx.doi.org/10.1364/OL.36.003374
http://dx.doi.org/10.1364/OL.36.003374
http://dx.doi.org/10.1103/PhysRevB.84.113409
http://dx.doi.org/10.1103/PhysRevB.84.113409
http://dx.doi.org/10.1103/PhysRevB.84.113409
http://dx.doi.org/10.1103/PhysRevB.84.113409
http://dx.doi.org/10.1007/s11468-014-9773-5
http://dx.doi.org/10.1007/s11468-014-9773-5
http://dx.doi.org/10.1007/s11468-014-9773-5
http://dx.doi.org/10.1007/s11468-014-9773-5
http://dx.doi.org/10.1364/OE.17.020063
http://dx.doi.org/10.1364/OE.17.020063
http://dx.doi.org/10.1364/OE.17.020063
http://dx.doi.org/10.1364/OE.17.020063
http://dx.doi.org/10.1063/1.3482939
http://dx.doi.org/10.1063/1.3482939
http://dx.doi.org/10.1063/1.3482939
http://dx.doi.org/10.1063/1.3482939
http://dx.doi.org/10.1016/j.physleta.2011.03.001
http://dx.doi.org/10.1016/j.physleta.2011.03.001
http://dx.doi.org/10.1016/j.physleta.2011.03.001
http://dx.doi.org/10.1016/j.physleta.2011.03.001
http://dx.doi.org/10.1016/j.optcom.2011.11.110
http://dx.doi.org/10.1016/j.optcom.2011.11.110
http://dx.doi.org/10.1016/j.optcom.2011.11.110
http://dx.doi.org/10.1016/j.optcom.2011.11.110
http://dx.doi.org/10.1103/PhysRevB.88.045443
http://dx.doi.org/10.1103/PhysRevB.88.045443
http://dx.doi.org/10.1103/PhysRevB.88.045443
http://dx.doi.org/10.1103/PhysRevB.88.045443
http://dx.doi.org/10.1103/PhysRevLett.105.116804
http://dx.doi.org/10.1103/PhysRevLett.105.116804
http://dx.doi.org/10.1103/PhysRevLett.105.116804
http://dx.doi.org/10.1103/PhysRevLett.105.116804
http://dx.doi.org/10.1103/PhysRevA.93.013826
http://dx.doi.org/10.1103/PhysRevA.93.013826
http://dx.doi.org/10.1103/PhysRevA.93.013826
http://dx.doi.org/10.1103/PhysRevA.93.013826
http://dx.doi.org/10.1364/OL.5.000323
http://dx.doi.org/10.1364/OL.5.000323
http://dx.doi.org/10.1364/OL.5.000323
http://dx.doi.org/10.1364/OL.5.000323
http://dx.doi.org/10.1007/BF01307323
http://dx.doi.org/10.1007/BF01307323
http://dx.doi.org/10.1007/BF01307323
http://dx.doi.org/10.1007/BF01307323
http://dx.doi.org/10.1103/PhysRevA.31.1189
http://dx.doi.org/10.1103/PhysRevA.31.1189
http://dx.doi.org/10.1103/PhysRevA.31.1189
http://dx.doi.org/10.1103/PhysRevA.31.1189
http://dx.doi.org/10.1007/BF00702600
http://dx.doi.org/10.1007/BF00702600
http://dx.doi.org/10.1007/BF00702600
http://dx.doi.org/10.1007/BF00702600
http://dx.doi.org/10.1016/0030-4018(83)90034-2
http://dx.doi.org/10.1016/0030-4018(83)90034-2
http://dx.doi.org/10.1016/0030-4018(83)90034-2
http://dx.doi.org/10.1016/0030-4018(83)90034-2
http://dx.doi.org/10.1063/1.94956
http://dx.doi.org/10.1063/1.94956
http://dx.doi.org/10.1063/1.94956
http://dx.doi.org/10.1063/1.94956
http://dx.doi.org/10.1007/BF00688841
http://dx.doi.org/10.1007/BF00688841
http://dx.doi.org/10.1007/BF00688841
http://dx.doi.org/10.1007/BF00688841
http://dx.doi.org/10.1007/BF00692557
http://dx.doi.org/10.1007/BF00692557
http://dx.doi.org/10.1007/BF00692557
http://dx.doi.org/10.1007/BF00692557
http://dx.doi.org/10.1364/OL.10.000149
http://dx.doi.org/10.1364/OL.10.000149
http://dx.doi.org/10.1364/OL.10.000149
http://dx.doi.org/10.1364/OL.10.000149
http://dx.doi.org/10.1063/1.95088
http://dx.doi.org/10.1063/1.95088
http://dx.doi.org/10.1063/1.95088
http://dx.doi.org/10.1063/1.95088
http://dx.doi.org/10.1007/BF00704573
http://dx.doi.org/10.1007/BF00704573
http://dx.doi.org/10.1007/BF00704573
http://dx.doi.org/10.1007/BF00704573
http://dx.doi.org/10.1007/BF00818054
http://dx.doi.org/10.1007/BF00818054
http://dx.doi.org/10.1007/BF00818054
http://dx.doi.org/10.1007/BF00818054
http://dx.doi.org/10.1063/1.96680
http://dx.doi.org/10.1063/1.96680
http://dx.doi.org/10.1063/1.96680
http://dx.doi.org/10.1063/1.96680
http://dx.doi.org/10.1016/0030-4018(89)90109-0
http://dx.doi.org/10.1016/0030-4018(89)90109-0
http://dx.doi.org/10.1016/0030-4018(89)90109-0
http://dx.doi.org/10.1016/0030-4018(89)90109-0
http://dx.doi.org/10.1023/A:1006941515679
http://dx.doi.org/10.1023/A:1006941515679
http://dx.doi.org/10.1023/A:1006941515679
http://dx.doi.org/10.1023/A:1006941515679
http://dx.doi.org/10.1364/JOSAB.9.000884
http://dx.doi.org/10.1364/JOSAB.9.000884
http://dx.doi.org/10.1364/JOSAB.9.000884
http://dx.doi.org/10.1364/JOSAB.9.000884
http://dx.doi.org/10.1364/AO.26.003681
http://dx.doi.org/10.1364/AO.26.003681
http://dx.doi.org/10.1364/AO.26.003681
http://dx.doi.org/10.1364/AO.26.003681
http://dx.doi.org/10.1364/JOSAB.11.000045
http://dx.doi.org/10.1364/JOSAB.11.000045
http://dx.doi.org/10.1364/JOSAB.11.000045
http://dx.doi.org/10.1364/JOSAB.11.000045
http://dx.doi.org/10.1364/JOSAB.5.000547
http://dx.doi.org/10.1364/JOSAB.5.000547
http://dx.doi.org/10.1364/JOSAB.5.000547
http://dx.doi.org/10.1364/JOSAB.5.000547
http://dx.doi.org/10.1016/0030-4018(94)90173-2
http://dx.doi.org/10.1016/0030-4018(94)90173-2
http://dx.doi.org/10.1016/0030-4018(94)90173-2
http://dx.doi.org/10.1016/0030-4018(94)90173-2
http://dx.doi.org/10.1364/JOSAB.11.001244
http://dx.doi.org/10.1364/JOSAB.11.001244
http://dx.doi.org/10.1364/JOSAB.11.001244
http://dx.doi.org/10.1364/JOSAB.11.001244
http://dx.doi.org/10.1364/AO.29.003891
http://dx.doi.org/10.1364/AO.29.003891
http://dx.doi.org/10.1364/AO.29.003891
http://dx.doi.org/10.1364/AO.29.003891
http://dx.doi.org/10.1364/OE.17.021732
http://dx.doi.org/10.1364/OE.17.021732
http://dx.doi.org/10.1364/OE.17.021732
http://dx.doi.org/10.1364/OE.17.021732
http://dx.doi.org/10.1103/PhysRevA.82.033812
http://dx.doi.org/10.1103/PhysRevA.82.033812
http://dx.doi.org/10.1103/PhysRevA.82.033812
http://dx.doi.org/10.1103/PhysRevA.82.033812
http://dx.doi.org/10.1364/OE.20.018665
http://dx.doi.org/10.1364/OE.20.018665
http://dx.doi.org/10.1364/OE.20.018665
http://dx.doi.org/10.1364/OE.20.018665
http://dx.doi.org/10.1016/j.optcom.2008.12.025
http://dx.doi.org/10.1016/j.optcom.2008.12.025
http://dx.doi.org/10.1016/j.optcom.2008.12.025
http://dx.doi.org/10.1016/j.optcom.2008.12.025
http://dx.doi.org/10.1364/JOSAB.22.001384
http://dx.doi.org/10.1364/JOSAB.22.001384
http://dx.doi.org/10.1364/JOSAB.22.001384
http://dx.doi.org/10.1364/JOSAB.22.001384
https://tel.archives-ouvertes.fr/tel-01080690



