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We present three complementary methods to study stationary nonlinear solutions in one-dimensional nonlinear
metal-dielectric structures. Two of them use an approximate treatment of the Kerr-type nonlinear term taking
into account only the leading electric-field component, while the third one allows for an exact treatment of the
nonlinearity. A direct comparison of the results obtained with all three models is presented and the excellent
agreement between them justifies the assumptions that have been used to construct the models. A systematic
study of the configurations made of two, three, or four layers that contain a semi-infinite Kerr-type nonlinear
dielectric, a metal film, and linear dielectrics is presented. A detailed analysis of properties, type, and number
of solutions in these three types of structures is performed. The parameter ranges where plasmon-soliton waves
exist are found. Structures with realistic optogeometric parameters where plasmon solitons exist at power levels
already used in spatial soliton studies are proposed and studied.
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I. INTRODUCTION

Stationary nonlinear waves coupling together a surface
plasmon and a spatial optical soliton have been under inves-
tigation since the 1980s, when they were constructed for the
first time by Ariyasu et al. [1] using a semianalytical approach
first suggested by Agranovich et al. [2] and used also in
Ref. [3]. Many theoretical and numerical works on this type of
nonlinear wave followed [4–16]. For reviews one can refer to
Refs [17,18]. More recently, Feigenbaum and Orenstein [19]
coined the term plasmon soliton to name the wave propagating
in a metal slot waveguide with a Kerr-type nonlinear dielectric
core. Linked to the growth of the plasmonic research field
[20,21], several articles studied plasmon solitons in detail
using various approaches [22–29]. Nevertheless, in spite of
all these results, experimental observation of plasmon solitons
is lacking due to the too high power or, equivalently, too
high nonlinear refractive index change required to generate
the coupling between the plasmon and the soliton. This issue
has been solved, at least theoretically but using realistic
parameters, in our recent Letter [27]. The proposed planar
structure is made of a bulk nonlinear dielectric substrate
covered by a thin linear dielectric film with a refractive index
lower than that of the nonlinear medium and a thin metal layer
on top, in contact with a low-index linear external medium.
It was shown that such a structure supports plasmon solitons
with a peak power density as low as 1 GW/cm2. This level of
power density was already used experimentally to generate and
record spatial solitons in fully dielectric planar chalcogenide
waveguides [30].

In the present work the details of the method used in
Ref. [27] (which was based on the approach proposed in
Refs. [1,2]) are provided and two complementary approaches
that confirm the validity of these results are also described.
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The first one is a semianalytical approach that does not require
any hypothesis concerning the field shape except for zero value
boundary conditions at infinity and that takes into account both
longitudinal and transverse components of the electric field in
the Kerr-type nonlinear term. This method extends to the four-
layer configuration in the work published by Yin et al. [23]. The
second approach, which is more numerical, is based on a finite-
element method that finds iteratively both the field profile and
the propagation constant of the nonlinear stationary waves.

Concerning the results, this work is limited to one-
dimensional stationary nonlinear solutions since they represent
a necessary preliminary step to more complicated studies
such as temporal evolution and stability analysis or two-
dimensional problems. For a review of all-dielectric nonlinear
planar structures the reader can refer to Refs. [31,32]. Our
work is also limited to the focusing Kerr-type nonlinearity as
most of the materials used in integrated optics with third-order
nonlinearity are of this type [33]. Complete results for planar
structures containing two, three, or four layers are given,
including the type and the number of nonlinear solutions as
a function of the optogeometric parameters of the structure.
These results illustrate that low-power plasmon solitons were
not found previously mainly due to the limited parameter
region in which they exist. They also prove that the simplest
planar structures supporting low-power plasmon solitons with
a pronounced soliton peak and with a plasmonic part in a
low-index external medium such as air or water should involve
four layers, as suggested in Ref. [27].

The outline of the article is the following. After the
statement of the problem in Sec. II, three different approaches
to compute its solutions are described in Sec. III. These
methods are validated through comparisons with already
published results and through mutual comparisons in Secs. IV
and V. In Sec. V the properties of solutions in two-, three-, and
four-layer configurations are described with a more detailed
analysis for the last one. Details of the derivations are provided
in Appendixes A and B.

1050-2947/2014/89(2)/023816(19) 023816-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevA.89.023816


WALASIK, RENVERSEZ, AND KARTASHOV PHYSICAL REVIEW A 89, 023816 (2014)

FIG. 1. Geometry of the one-dimensional four-layer nonlinear
configuration.

II. PROBLEM

In this article we present three methods based on Maxwell’s
equations, to study the properties of stationary solutions in one-
dimensional structures composed of a semi-infinite nonlinear
medium and layers of metal and linear dielectrics as depicted
in Fig. 1. In all the described approaches only transverse-
magnetic (TM) polarized waves are considered due to the
presence of the metal layer. We found no localized solutions
for the transverse-electric (TE) polarization.

The first model extends and modifies the approach pre-
sented in Ref. [1] and uses two assumptions: (i) The non-
linearity depends only on the transverse component of the
electric field and (ii) the nonlinear permittivity modifications
are low compared to the linear part of the permittivity. These
assumptions allow us to write a single nonlinear wave equation
for one of the magnetic-field components. This equation is then
solved analytically [2], resulting in closed formulas for the
dispersion relation and for the electromagnetic-field shapes.
This model will be called the field-based model (FBM).

The second model, named in this article the exact model
(EM) because it does not require any of the two above
assumptions, is based on the approaches from Refs. [15,23]. It
also provides a closed formula for the nonlinear dispersion
relation, but the field shapes in the nonlinear medium are
not given in an analytical form and have to be computed
numerically by solving a system of two coupled first-order
nonlinear differential equations.

The third model, in contrast with the two previous semiana-
lytical ones, uses a numerical finite-element method (FEM) to
solve the nonlinear scalar TM problem in layered structures.
This approach finds the solutions using the fixed power
algorithm from Refs. [34–36] adapted to one-dimensional
planar metal-dielectric structures.

Our models are written for TM light polarization where the
magnetic field has only one component HHH = [0,Hy,0] and
the electric field has two components EEE = [Ex,0,iEz]. The
stationary solutions in one-dimensional geometry are sought
in the form of monochromatic harmonic waves:{

EEE (x,z,t)
HHH (x,z,t)

}
=

{
E(x)
H(x)

}
ei(k0βz−ωt). (1)

The propagation direction is chosen to be z and ω denotes
the angular frequency of the wave. Here k0 = ω/c denotes the
wave number in vacuum, c denotes the speed of light in vac-
uum, and β denotes the effective index of the propagating wave
(the propagation constant is expressed as k0β). The structure
is invariant along the y direction and therefore it is assumed
that the field shapes are invariant along the y coordinate.

In this work a nonlinear Kerr-type dielectric is considered
in which the permittivity depends on the electric-field intensity

ε = εl + α|E|2. Only the case of a focusing nonlinearity (α >

0) is studied. The relation between the nonlinear parameter
α and the coefficient n2, which appear in the definition of
an intensity-dependent refractive index n = n0 + n2I , is α =
ε0cεln2 (for n2I � n0), where the intensity is defined as I =
ε0c

√
εl|E|2/2 [37], n0 denotes the linear part of the refractive

index, and the vacuum permittivity is denoted by ε0.

III. DERIVATION OF THE MODEL

A. Maxwell’s equations

The derivation of our models starts from the general form
of Maxwell’s equations in the case of nonmagnetic materials
(relative permeability μ = 1) without free charges (ρf = 0)
and free currents (Jf = 0) [38]:

∇ × EEE = −∂BBB

∂t
, (2a)

∇ × HHH = ∂DDD

∂t
, (2b)

∇ · DDD = 0, (2c)

∇ · BBB = 0. (2d)

The magnetic induction vector is defined as BBB = μ0HHH

and the displacement vector isDDD = ε0ε̃EEE . The vacuum perme-
ability is denoted by μ0 and the relative complex permittivity
tensor is assumed to be diagonal with isotropic losses:

ε̃ = ε + i ε
′′ =

⎛⎝εx 0 0
0 εy 0
0 0 εz

⎞⎠ + i

⎛⎝ε′′ 0 0
0 ε′′ 0
0 0 ε′′

⎞⎠, (3)

where εj (j ∈ {x,y,z}) and ε′′ are real quantities.
To derive the nonlinear dispersion relations for our structure

we use only the real part of the permittivity tensor ε as in e.g.,
Refs. [1,2,4–6,23] (the imaginary part will be used later in the
calculation of losses). Equations (2a) and (2b) are written for
TM light polarization. Using the definitions of the magnetic
induction and the displacement vector, Eq. (2a) gives

i
∂Ez

∂x
− ∂Ex

∂z
= μ0

∂Hy

∂t
(4a)

and Eq. (2b) yields
∂Hy

∂z
= ε0εx

∂Ex

∂t
, (4b)

∂Hy

∂x
= iε0εz

∂Ez

∂t
, (4c)

where the x, z, and time dependences are omitted in the
field components and the permittivity to simplify the notation.
Using Eq. (1), the z and time derivatives are eliminated from
Eqs. (4a)–(4c) to finally give

k0βEx − dEz

dx
= ωμ0Hy, (5a)

Ex = β

ε0εxc
Hy, (5b)

Ez = 1

ε0εzω

dHy

dx
. (5c)
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The nonlinearity is of the isotropic Kerr type so that all
the elements of the permittivity tensor depend in the same
way on the electric field intensity in the nonlinear medium.
Consequently, the relative permittivity εj is written as

εj (x) = εl,j (x) + εnl(x). (6)

In Eq. (6), j ∈ {x,y,z} and εl,j denotes the linear, real part
of the permittivity, εnl = α(x)|E(x)|2 denotes the nonlinear
part of the permittivity limited to the optical Kerr effect
that depends on the electric field intensity, and α(x) denotes
the function that takes values of the nonlinear parameters
associated with different layers (in linear materials it is null).

B. Field-based model

1. Nonlinear wave equation

From Eqs. (5), the problem of finding stationary solutions
using a nonlinear wave equation is formulated. The derivation
presented here is similar to the one proposed by Agranovich
et al. [2], in which the first description of the nonlinear
localized surface plasmon polariton waves was given. In this
seminal paper, the analytical expressions for the dispersion
relation and for the field shapes of the nonlinear solutions at
a single metal–nonlinear dielectric interface were found in a
TM case using the assumption that only two of the permittivity
tensor elements depend on the longitudinal electric-field
component [39] εx = εy = εl + α|Ex |2, where nonlinearity is
defocusing (α < 0). Later on, this model was improved by
introducing more realistic assumptions about the nonlinear
term (e.g., focusing nonlinearity depending only on the
transverse component of the electric field [8,17]). It was also
extended to consider TE polarized waves as well as focusing
and defocusing Kerr nonlinearities [5,6]. Furthermore, the
model of Agranovich et al. was expanded to consider nonlinear
waves guided by a thin metal film sandwiched between
nonlinear dielectrics [1,3,9–11].

Our FBM improves and extends previous approaches in
three ways: (i) It improves the nonlinearity treatment so that
all the diagonal elements of the permittivity tensor depend on
the electric field in a nonlinear manner [Eq. (6)], (ii) it improves
the way the nonlinearity is taken into account in the dispersion
relation derivation [Eqs. (14)–(20)] and in the electric-field
shape calculations (Sec. III B 4), and (iii) it extends the existing
model from a three-layer structure to a four-layer structure
(the benefits of using four-layer structures are discussed in
Sec. V C). The derivation given below follows the lines
presented in Ref. [1] with the improvements mentioned above.

Taking the derivative of Eq. (5c) with respect to x and using
Eqs. (5a), (5b), and (6) gives

d2Hy

dx2
= k2

0

(
εz

εx

β2 − εz

)
Hy + ε0ω

dεnl

dx
Ez. (7)

Making use of Eq. (5c) in the last term allows us to eliminate
both electric-field components from the equation, yielding an
equation for the magnetic-field component:

d2Hy

dx2
= k2

0

(
εz

εx

β2 − εz

)
Hy + 1

εz

dεnl

dx

dHy

dx
. (8)

At this point an important assumption about the FBM
is made. It is assumed that the nonlinear contribution to

the permittivity is small compared to the linear part of
permittivity εnl � εl,j for j ∈ {x,z} and both εnl and Hy in
the nonlinear medium vary in the x direction on scales larger
than the wavelength. These hypotheses are valid for low-power
solutions and are verified a posteriori by analyzing the field
profiles. If they are fulfilled the last term in Eq. (8) is small
and it can be omitted. Then the nonlinear wave equation can
be written in the form

d2Hy

dx2
= k2

0

(
εz

εx

β2 − εz

)
Hy. (9)

The approximation made above affects only solutions in the
nonlinear layer. Solutions in the linear layers are calculated in
an exact way.

In the following, only materials with equal linear parts of
the permittivity tensor elements εl,x = εl,z ≡ εl are studied.
The nonlinearity considered for our FBM is of the usual
Kerr type, where only the transverse-electric-field component
Ex contributes to the nonlinear response (this component is
usually much stronger than the longitudinal component in the
studied photonic structures [8]):

εx(x) = εz(x) = ε(x) = εl(x) + α(x)E2
x(x). (10)

Using this form of nonlinearity, Eq. (5b), and again the assump-
tion that εnl � εl (this assumption justifies the replacement
of k0βHy/ε0εxω by k0βHy/ε0εlω in the nonlinear term) the
nonlinear wave equation can be rewritten in its final form

d2Hy

dx2
− k2

0q(x)2Hy + k2
0a(x)H 3

y = 0, (11)

where

q(x)2 = β2 − εl(x) (12)

and a(x) = β2α(x)/[ε0εl(x)c]2 is nonzero only in the nonlin-
ear layer. Here εl(x) and α(x) are stepwise functions that take
values indicated in Table I depending on the layer as presented
in Fig. 1.

Equation (11) is equivalent to Eqs. (4) in Ref. [1] and to
Eq. (14) in Ref. [8] with a slight difference in the nonlinear
term due the to more consistent nonlinearity treatment used
here. The nonlinear function a(x) differs by a factor β2/εl

between our approach and the approaches from Refs. [1,8].
This results in discrepancies between our model and the older
models mainly when the effective index of the nonlinear wave
is much higher than the linear part of the nonlinear medium
refractive index.

TABLE I. Values of the functions describing the properties of the
materials in different layers. The second-order nonlinear refractive
index in layer 1 is denoted by n

(1)
2 .

Layer Abscissa εl(x) ε(x)′′ α(x)

1 x < 0 εl,1 ε ′′
1 ε0cεl,1n

(1)
2 = α1

2 0 � x < L ε2 = εl,2 ε ′′
2 0

3 L � x < L + d ε3 = εl,3 ε ′′
3 0

4 x � L + d ε4 = εl,4 ε ′′
4 0
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2. Dispersion relation

The FBM provides solutions of the nonlinear wave equation
[Eq. (11)] for the Hy field component. The solutions of this
equation are studied separately in each layer of the structure.
Then the use of boundary and continuity conditions allows
us to obtain the nonlinear dispersion relation for the studied
problem.

The solution of Eq. (11) is well known in the literature
[2,5,40,41]. In the nonlinear layer the solution is in the form
[the y subscript of the magnetic field is omitted as in our
models there is only one magnetic-field component, while the
subscript 1 indicates the nonlinear layer (see Fig. 1)]

H1 =
√

2

a1

q1

cosh[k0q1(x − x0)]
for x < 0, (13a)

where the x0 is a free integration parameter that can be
arbitrarily chosen and qk and ak denote the constant value of
the q(x) and a(x) functions in the kth layer. If x0 is negative,
is has the physical meaning of the soliton peak position in the
nonlinear dielectric. If it is positive, there is no maximum of
the H1 component in this layer.

In linear layers the nonlinear term in Eq. (11) vanishes and
the solutions of the linear wave equation are expressed in a
standard form of decreasing and increasing exponentials (for
the layer indices see Fig. 1)

H2 = A+ek0q2x + A−e−k0q2x for 0 � x < L, (13b)

H3 = B+ek0q3(x−L) + B−e−k0q3(x−L) for L � x < L + d,

(13c)

H4 = Ce−k0q4[x−(L+d)] for x � L + d. (13d)

The use of the boundary condition Hy
x→∞−−−→ 0 in layer 4

results in the single term in Eq. (13d).
Finally, using the conditions for the continuity of the Hy

and Ez fields at the interfaces [Ez is calculated using Eq. (5c)],
the analytical form of the nonlinear dispersion relation of the
four-layer model is obtained:

�+(q̃4 + q̃3) exp(2k0q̃3ε3d) + �−(q̃4 − q̃3) = 0, (14a)

where

�± =
(

1 ± q̃1,nl|x=0

q̃3

)
+

(
q̃1,nl|x=0

q̃2
± q̃2

q̃3

)
tanh(k0q2L)

(14b)
with

q̃k = qk

εk

for k ∈ {2,3,4}, (15)

q̃1,nl = q̃1 tanh(k0q1x0). (16)

Some assumptions have to be made in order to obtain the closed
form of the expression for q̃1 and therefore of the nonlinear
dispersion relation. The exact expression for q̃1 reads

q̃1 = q1

ε1
= q1

εl,1 + α1E2
x

. (17)

Here the model presented by Ariyasu et al. is improved once
again. In Ref. [1] the nonlinear term is omitted at this step
and q̃1 = q1/εl,1. Nevertheless, one can go beyond and find

the first-order approximation for q̃1 taking into account the
nonlinearity. Here q̃1 is expressed in terms of the magnetic
field H1. Using Eq. (5b),

q̃1 = q1

εl,1 + α1
(

k0β

ωε0εl,1

)2
H 2

1

, (18)

where at this stage the assumption that ε1 = εl,1 was used in
the nonlinear term in the denominator of Eq. (18). Use of
Eq. (13a) and the definition of a(x) function results in

q̃1 = q1

εl,1 + 2q2
1 sech2[k0q1(x − x0)]

. (19)

To obtain the dispersion relation we need to know the value
of q̃1,nl at the interface x = 0, which is

q̃1,nl|x=0 = q1 tanh(k0q1x0)

εl,1 + 2q2
1 sech2(k0q1x0)

. (20)

Now the dispersion relation (14) depends only on the wave
number k0; material and structure parameters εl,1, ε2, ε3, ε4, L,
and d; the parameter x0; and the effective index β. By fixing the
values of the material and geometric parameters and x0, one
obtains a nonlinear expression that is satisfied only for a limited
set of β values. We are interested only in the solutions with β >√

εl,1 because the solutions we look for should be localized
either in the nonlinear dielectric or at the metal–nonlinear
dielectric interface (see the definition of q [Eq. (12)] and the
field profiles [Eqs. (13)]). It is worth noting that the dispersion
relation does not depend on the nonlinear parameter α1. This is
a consequence of the fact that the nonlinear solution depends
on the nonlinear permittivity modification εnl ∝ α1E

2
x and not

on the field amplitude or nonlinear parameter itself. Changing
the nonlinearity coefficient does not result in a change of the
effective indices that verify the dispersion relation but only in
a change of the field amplitude, as can be seen by rescaling all
the fields by a factor

√
α1.

3. Power and losses

The power density transmitted per unit length along y

direction is expressed as a longitudinal z component of
the pointing vector S = 1

2 Re(E × H∗) integrated over the
transverse dimension x,

P =
∫ +∞

−∞
Szdx = 1

2

∫ +∞

−∞
ExH

∗
y dx, (21)

which is rewritten using Eq. (5b) in the form

P = β

2cε0

∫ +∞

−∞

1

εx(x)
|Hy |2dx. (22)

In the FBM, having determined the effective indices β, a closed
analytical expression for the approximated power density of
the corresponding plasmon-soliton waves can be found for
each layer. The final formulas are provided in Appendix A 1.

An important part of the study of nonlinear wave prop-
agation is the calculation of losses. In our FBM, the losses
are estimated using the approach based on the imaginary part
of permittivity and the field profiles [the complex permittivity
function is denoted by ε̃(x) = ε(x) + iε′′(x) and it takes values
given in Table I]. This method is described in the case of
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linear waveguides in Ref. [42] and has already been used for
nonlinear plasmon-soliton studies [8,17,27].

The expression that provides an approximation of the
imaginary part of the effective index β ′′ is [42]

β ′′ = ε0c

4

∫ +∞
−∞ ε′′(x)|E|2dx

P
. (23)

The imaginary part of the refractive index is connected with
the losses in decibel per meter L in the following way [43]:

L = 40π

ln(10)λ
β ′′, (24)

where λ it the free-space wavelength expressed in meters.

4. Expressions for the electric-field components

In our FBM, the wave equation for the Hy magnetic-field
component [Eq. (11)] is solved and the analytical expressions
for the field shape of this component are provided [Eqs. (13)].
In the case of a linear medium, knowing the expression
for magnetic field, one can easily calculate the electric-
field components using Eqs. (5b) and (5c). In the nonlinear
case this problem requires precautions. The exact expres-
sions for the two electric-field components are provided in
Appendix A 2.

C. Exact model

1. First integral nonlinear medium treatment

Below we present the derivation of the model that allows
the exact treatment of the Kerr nonlinearity. This derivation is
based on the approaches presented first by Mihalache et al. [15]
for two-layer configurations and later extended to three-layer
configurations and generalized to the case of power-law Kerr
nonlinearity by Yin et al. [23]. Here we limit ourselves to
the usual cubic nonlinearity, but we extend the approach to a
four-layer configuration.

This derivation starts from Maxwell’s equations [Eqs. (5)].
In this approach the magnetic field is eliminated from these
equations. The use of Eq. (5b) in Eqs. (5a) and (5c) gives

dEz

dx
=

(
βk0 − k0

β
εx

)
Ex. (25a)

d(εxEx)

dx
= βk0εzEz. (25b)

Equation (25a) is derived with respect to x and the last term
is replaced using Eq. (25b), resulting in

d2Ez

dx2
= βk0

dEx

dx
− k2

0εzEz. (26)

Multiplying Eq. (26) by dEz/dx and using Eq. (25a) once
more gives

d2Ez

dx2

dEz

dx
= βk0

dEx

dx

(
βk0 − k0

β
εx

)
Ex − k2

0εzEz

dEz

dx
.

(27)

In this approach a full Kerr dependence of the permittivity of
the following form is assumed in the nonlinear layer [compare

with Eqs. (6) and (10)]:

εx = εz = ε1 = εl,1 + α1
(
E2

x + E2
z

)
. (28)

Inserting this definition into Eq. (27) one obtains

d2Ez

dx2

dEz

dx
= (βk0)2Ex

dEx

dx
− k2

0εl,1

(
Ex

dEx

dx
+ Ez

dEz

dx

)
− k2

0α1
(
E2

x + E2
z

) (
Ex

dEx

dx
+ Ez

dEz

dx

)
. (29)

Integrating this equation by parts with respect to x gives(
dEz

dx

)2

= (βk0)2E2
x − k2

0εl,1
(
E2

x + E2
z

)
− k2

0
α1

2

(
E2

x + E2
z

)2 + C0, (30)

where C0 is the integration constant. Here C0 is set to 0
taking into consideration the fact that a semi-infinite nonlinear
medium is studied, where the electric fields Ex , Ez, and their
derivatives vanish as x → −∞. The final step of this derivation
is to compare the right-hand side of Eq. (30) with the square
of the right-hand side of Eq. (25a). This comparison yields(

ε2
1

β2
− 2ε1

)
E2

x + εl,1
(
E2

x + E2
z

) + α1

2

(
E2

x + E2
z

)2 = 0,

(31)

which is the first step in obtaining the nonlinear dispersion
relation in the EM.

2. Dispersion relation and field shapes

In the previous section a method that allows the treatment
of the nonlinearity in an exact manner, without the approxi-
mations used in the FBM, was presented. Besides, there is no
difficulty in solving Maxwell’s equations in the linear layers.

Using the relations between the amplitudes of x and z

components of the electric field provided in Appendix B
and the continuity conditions for the fields Ez and Hy

[computed using Eq. (5b)] at the boundaries between layers,
the longitudinal component of the electric field at the nonlinear
interface Ez,0 ≡ Ez(x = 0−) is expressed as a function of the
total electric-field amplitude at this interface E0:

E2
z,0 = (ε2β/q2)2

ε2
1,0[(1 + φ)/(1 − φ)]2 + (ε2β/q2)2

E2
0 , (32a)

φ = �+
+e−k0q2L−k0q3d + �−

−e−k0q2L+k0q3d

�+
−ek0q2L+k0q3d + �−

+ek0q2L−k0q3d
, (32b)

�
sgn(m)
sgn(p) = ε2/q2 + mε3/q3

ε3/q3 + pε4/q4
where {m,p} = {1,−1},

(32c)

and

E0 = (
E2

x,0 + E2
z,0

)1/2
, (33)

and an additional subscript 0 denotes values of functions at
x = 0−. Using Eqs. (32a) and (33) to eliminate Ex and Ez

from Eq. (31) taken at x = 0− results in the final form of the
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nonlinear dispersion relation for the EM:(
ε1,0ε2

q2

)2

− 2ε1,0

(
ε2β

q2

)2

+
(

εl,1 + α1

2
E2

0

)
×

[
ε2

1,0

(
1 + φ

1 − φ

)2

+
(

ε2β

q2

)2 ]
= 0. (34)

For a given set of optogeometric parameters and a given
wavelength, it contains as a unique free parameter the total
electric-field amplitude at the nonlinear interface E0. Fixing
arbitrarily E0 allows us to solve this equation for all the
possible values of β.

After obtaining the effective indices of the nonlinear waves
propagating in a given structure the field profiles corresponding
to these values of β must be calculated. In the EM, contrarily
to the FBM, no analytical formulas for the field shapes in
the nonlinear layer are provided. However, a system of two
coupled first-order differential equations for the electric-field
components can be derived to allow field shape computations.
Equation (25b) is written in the form

dεx

dx
Ex + dEx

dx
εx = βk0εzEz. (35)

Using Eq. (28) in the first term and calculating the derivative
gives

2α1

(
Ex

dEx

dx
+ Ez

dEz

dx

)
Ex + dEx

dx
ε1 = βk0ε1Ez. (36)

Replacing dEz/dx using Eq. (25a) and reorganizing the terms
results in the first coupled differential equation

dEx

dx
=

βk0ε1Ez − 2α1EzE
2
x

(
βk0 − k0

β
ε1

)
ε1 + 2α1E2

x

. (37)

The second coupled differential equation used to calculate the
field profiles is Eq. (25a).

D. Finite-element method

In this section, the FEM-based approach used to compute
the stationary solutions propagating in the structure depicted
in Fig. 1 is described. The FEM has already been used to study
stationary solutions in nonlinear waveguides since the 1980s
[44–46]. For a general and recent review of the finite-element
method in the frame of optical waveguides, the reader can refer
to Chap. 4 of Ref. [43]. In the present case, the problem is
relatively simple since it is both one dimensional and reduced
to a scalar case.

The FEM is an approximation method of the solutions of
differential partial equations. It is built from an equivalent
formulation, the variational one, of the initial problem. To
get this new formulation (also called a weak formulation)
the initial differential partial equations are multiplied by
chosen form functions that belong to a particular function
space depending notably on the boundary conditions used
and the type of differential partial equations. The next step
to establish the FEM is the discretization, in which one shifts
from an infinite-dimensional functional space to a finite-size
one that allows the numerical resolution. It must be pointed
out that the weak formulation of the scalar problem for the

full structure, deduced from Eq. (9) or its approximated form
given by Eq. (11), must takes into account all the continuity
relations fulfilled by the electromagnetic field at the structure
interfaces. This implies that the full TM wave equation
for the Hy component must be used to obtain the correct
weak formulation that deals with both the inhomogeneous
permittivity term induced by the nonlinearity and the structure
interfaces. The corresponding weak formulation is

−
∫

F

1

k2
0ε(x)

∇φ(x) · ∇φ′(x)dx +
∫

F

φ(x)φ′(x)dx

= β2
∫

F

1

ε(x)
φ(x)φ′(x)dx ∀φ′ ∈ H1

0(F ), φ ∈ H1
0(F ),

(38)

in which H1
0(F ) is the Sobolev space of order 1 with

the null Dirichlet boundary conditions on the domain of
integration F (in the present case the full x cross section of
the structure). In Eq. (38) φ stands for the Hy component
and φ′ denotes the test form functions. The electric-field
components are calculated using Eqs. (5b) and (5c) with the
method described in Appendix A 2. The FEM is implemented
using the free software GMSH as a mesh generator and GETDP

as a solver [47–49]. These software programs have already
been used to solve both two-dimensional scalar and vector
nonlinear electromagnetic waveguide problems [36,50]. The
nonlinearity considered in these two references was of the
simplified Kerr type like in Eq. (11). The algorithm used for
this plasmon-soliton study is the fixed power one [34–36]
in which, for a given structure, the wave power is the input
parameter and the outputs are the propagation constant and
the corresponding fields. This algorithm involves an iterative
process requiring successive resolutions of generalized linear
eigenvalue problems, where the square of the propagation con-
stant (k0β)2 is the eigenvalue and the field is the eigenvector.
The iterative process is stopped when an arbitrary criterion
on the convergence of the propagation constant is reached.
Typically, |(βn − βn−1)/βn| < δ, where n denotes the step
number in the procedure and δ = 10−6 is chosen in the present
work. To fulfill this criterion between 10 and 15 steps are
needed, depending on the structure parameters and the initial
field used. It is worth noticing that, in the frame of the fixed
power algorithm, different initial fields provide at the end of
the iterative process the same results, except if the structure
exhibits multiple solutions for the same power. In this last
case, the solution obtained at the end of the iterative process
depends on the initial field.

IV. LIMITING CASES FOR SEMIANALYTICAL MODELS

A. Field-based model

In order to verify our analytical results for the FBM,
several comparisons with the formulas from previous works for
simpler structures are realized in this section. The dispersion
relations obtained in the frame of the FBM are considered in
three limiting cases.
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1. Three-layer structure

Assuming that L → 0, one notices immediately that
tanh(k0q2L) → 0 and Eq. (14b) simplifies to

�± =
(

1 ± q̃1,nl|x=0

q̃3

)
. (39)

Inserting this expression into Eq. (14a), after some simple
algebra, yields

tanh(k0q3d) = − q̃3(q̃1,nl|x=0 + q̃4)

q̃3
2 + q̃4q̃1,nl|x=0

. (40)

If q̃1,nl|x=0 is approximated by q1 tanh(k0q1x0)/εl,1 (see also
Sec. III B 2) then the above equation is identical to Eq. (8)
in Ref. [1] for the case of the three-layer structure, where
the metal film is sandwiched between linear and nonlinear
dielectrics.

2. Two-layer structure

An elegant way of finding the dispersion relation for the
two-layer structure is to infinitely separate both interfaces of
the three-layer structure. This is done by letting d → ∞. Then
tanh(k0q3d) → 1 and Eq. (40) becomes

(q̃1,nl|x=0 + q̃3)(q̃3 + q̃4) = 0. (41)

This equation has two solutions. The first one

q̃1,nl|x=0 = −q̃3 (42)

describes the dispersion relation for the waves localized at
the interface between the nonlinear and linear layers. This
equation has a structure that resembles Eq. (7) in Ref. [2]. The
differences between the two expressions result from different
assumptions on the type of nonlinearity used, as described at
the beginning of Sec. III B 1. The second solution

q̃3 = −q̃4 (43)

gives the linear plasmon dispersion relation at the interface
between two linear layers (3 and 4) [compare with Eq. (2.12)
in Ref. [20]].

3. Linear case

In order to obtain the limiting expressions for the linear
case (α1 → 0) in the FBM one must assume that x0 → +∞.
This can be understood by looking at the formula for the
magnetic-field shape in the nonlinear layer (13a). For large
values of x0 the argument of the hyperbolic cosine tends to
−∞, i.e., in this case Eq. (13a) reduces to

H1(x) ∝ ek0q1(x−x0). (44)

This means that the field in the layer 1 is now described by a
decaying exponential, which is in agreement with the solution
of Maxwell’s equations in this layer in the linear regime.

Now the dispersion relation in the limiting case for three-
and two-layer structures in the linear regime can be computed.
Letting x0 → +∞, from Eq. (16) one obtains that q̃1,nl → q̃1.
In this case, Eq. (40) becomes

tanh(k0q3d) = − q̃3(q̃1 + q̃4)

q̃3
2 + q̃4q̃1

. (45)

After some algebra, it transforms to

e−2k0q3d = (q̃3 + q̃1)(q̃3 + q̃4)

(q̃3 − q̃1)(q̃3 − q̃4)
, (46)

which is equivalent to Eq. (2.28) in Ref. [20] giving the disper-
sion relation for linear plasmons of a metallic film sandwiched
between two linear dielectrics [an insulator/metal/insulator
(IMI) structure] or of a dielectric film sandwiched between
two metals (a metal/insulator/metal structure).

For two-layer structure it is now straightforward to see
that if q̃1,nl → q̃1 then Eq. (42) is reduced to the dispersion
relation of the linear case [Eq. (43)]. These three limiting cases
show that our extended FBM fully recovers already known
dispersion relations, including nonlinear ones, of simpler
structures.

B. Exact model

In order to check the agreement between the results of
our EM and the previously published results [23] the limiting
case of the EM nonlinear dispersion relation for the three-
layer structure is considered. Assuming that L → 0, Eq. (32b)
simplifies to

φ = �+
+e−k0q3d + �−

−ek0q3d

�+
−ek0q3d + �−

+e−k0q3d
. (47)

In the next step the expressions 1/φ − 1 and 1/φ + 1 appear-
ing in Eq. (32a) are expanded. Using Eqs. (47) and (32c), after
lengthy but simple algebra one obtains

1

φ
− 1 = 2Mε̄3[ε̄3 sinh(k0q3d) + ε̄4 cosh(k0q3d)], (48a)

1

φ
+ 1 = 2Mε̄3[ε̄3 cosh(k0q3d) + ε̄4 sinh(k0q3d)], (48b)

where ε̄k = εk/qk (for k ∈ {2,3,4}) and

M = 1

(ε̄2 − ε̄3)(ε̄3 + ε̄4)ek0q3d + (ε̄2 + ε̄3)(ε̄3 − ε̄4)e−k0q3d
.

(49)

As an intermediate step Eq. (32a) is rewritten in the form

E2
z,0 = (ε2β/q2)2 (1/φ − 1)2

ε2
1,0 (1/φ + 1)2 + (ε2β/q2)2 (1/φ − 1)2 E2

0 . (50)

Inserting Eqs. (48) into Eq. (50) and defining

Q = q4ε3 tanh(k0q3d) + q3ε4, (51a)

R = q4ε3 + q3ε4 tanh(k0q3d), (51b)

one obtains

E2
z,0 = β2ε2

3Q
2E2

0

β2ε2
3Q

2 + ε2
1q

2
3R2

. (52)

This last equation is identical to formula (11) in Ref. [23].
Equation (52) is then inserted into Eq. (31) in order to
obtain the dispersion relation for a three-layer structure. The
procedure of transforming this equation to obtain two separate
dispersion relations, on a linear/nonlinear interface and a
linear/linear interface (d → ∞), is described in Ref. [23].
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V. RESULTS

As already mentioned above, theoretical studies of plasmon
solitons or more generally nonlinear localized surface waves
started more than 30 years ago with the seminal paper of
Agranovich et al. [2]. However, no experimental results con-
firming the existence of these nonlinear waves propagating in
metal-dielectric structures have been provided. Consequently,
from the modeling point of view, the main challenge is
to design a feasible structure that enables the experimental
realization of plasmon-soliton coupling.

To reach this goal, several conditions must be satisfied si-
multaneously. First, a structure that supports plasmon solitons
of a solitonic type (with a pronounced soliton peak inside a
nonlinear dielectric, which facilitates experimentally both its
excitation and its discrimination from linear waves) must be
found. Second, solutions should appear for physically realistic
combinations of material parameters, beam power, and non-
linear coefficient. The last, more practical, and supplementary
requirement is to design a structure in which the plasmon field
is accessible both for measurements using the tip of a scanning
near-field optical microscope and for potential applications
such as sensing [51–54].

This task has already been fulfilled in Ref. [27] in which
a simple structure that supports low-power plasmon solitons
is described. Nevertheless, not all the details of the design
process were given there. They are provided in this section,
which gives also a complete description of all the nonlinear
stationary solutions that can be generated in planar structures
made of a combination of semi-infinite nonlinear dielectric,
metal film, and linear dielectric layers. This section starts with
the two-layer configuration and finishes with the four-layer
one, which is shown to be the simplest device that fulfills all
the requirements to facilitate the experimental observation of
plasmon solitons as defined above.

A. Two-layer configuration

In the case of the two-layer configuration (single interface
between a nonlinear dielectric and a metal) the only nonlinear
solutions that we are able to find using our three models are
of the plasmonic type (no pronounced soliton peak in the
nonlinear medium). These results are in agreement with the
conclusions drawn by looking at the solutions of the FBM and
the continuity conditions for the field at the interface. The main
results from the FBM are summarized as follows.

(i) The field in the nonlinear material is described by the
formula (13a) with the free parameter x0.

(ii) The field in the metal is given by the exponential
function (13d) (with L = d = 0) and decreases to 0 as x tends

to infinity to satisfy the boundary condition Hy
x→+∞−−−−→ 0.

(iii) In order to obtain the nonlinear dispersion relation we
use the conditions for the continuity of the fields at the interface
x = 0: (a) For the magnetic field H1 = H4, so that in Eq. (13d)
C = H0, and (b) for the longitudinal component of the electric
field Ez,1 = Ez,4, which using Eq. (5c) is expressed in terms
of the x derivative of Hy and the permittivity of the media:

1

ε1

dH1

dx
= 1

ε4

dH4

dx
. (53)

Because the permittivities of the metal and the nonlinear
dielectric have opposite signs (ε1ε4 < 0), from the condition
(b) it is seen that the derivatives of Hy must have opposite
signs at both sides of the interface. From Eq. (13d) it
follows that dH4/dx|x=0+ < 0. This implies that the derivative
on the nonlinear side of the interface has to be positive
(dH1/dx|x=0− > 0). By looking at Eq. (13a) one can see that
this condition is fulfilled only if x0 > 0. This allows us to
conclude that only the plasmonic-type solutions exist on a
single metal–nonlinear dielectric interface.

B. Three-layer configuration

In this section results obtained for three-layer configu-
rations (L is set to 0) are presented. First, to confirm the
validity of our FBM its results are compared with the results
from Ref. [1]. Then the general classification of nonlinear
solution types is described and illustrated. Finally, the structure
parameter scans are performed in order to find configurations
supporting low-power plasmon solitons.

1. Comparison of FBM results with those of Ariyasu et al.

In Sec. IV A it was shown that the nonlinear dispersion
relation for the four-layer FBM reproduces several known
analytical results including those for the three-layer model
proposed in Ref. [1]. In order to check the validity of our
model, the graphical comparisons between the nonlinear
dispersion curves for the three-layer structure presented in
Ref. [1] and the results of our modeling are presented. The
parameters used in our simulations are the same as those used
in Fig. 1 of Ref. [1]. The linear part of the nonlinear medium
refractive index is ε̃l,1 = 16 − 0.0096i, the metal permittivity
is ε̃3 = −1000 − 160i, and the linear dielectric permittivity is
ε̃4 = 16. The thickness of the metal film is d = 50 nm, the
wavelength used is λ = 5.5 μm, and the nonlinear parameter
is n

(1)
2 = 10−7 m2/W.

Figures 2(a) and 2(c) show the dispersion relation in which
the real part of the effective index β is plotted as a function
of the power density of the nonlinear wave P . The original
results from Ref. [1] are depicted by the red solid curve
and the results obtained with our FBM for the three-layer
structure are presented by the green dashed curve. For the
low-effective-index branch the two curves are in relatively
good agreement. In contrast, for the high-effective-index
branch a small discrepancy between the results appears.

Two reasons explain the differences between these curves.
First, a different form of the nonlinear permittivity tensor is
used (see Sec. III B 1) and as a consequence different values
of the effective nonlinear function a(x) in Eq. (11) [compare
with α′ defined in Eq. (4b) in Ref. [1]]. The difference between
the two solutions is small for the parameter range, where the
effective index is close to the linear refractive index of the
nonlinear material and larger for higher values of the effective
index. This is in full agreement with the explanation presented
at the end of Sec. III B 1. Second, a closer examination of
Eq. (4b) and Eqs. (9)–(11) in Ref. [1] reveals that to compute
the power the authors made the approximation β2 = εl,1. To
reproduce the original results provided in Fig. 1 of Ref. [1],
this approximation for power calculations is used in our model
for the test purpose. The corresponding blue dotted curve in

023816-8



STATIONARY PLASMON-SOLITON WAVES IN METAL- . . . PHYSICAL REVIEW A 89, 023816 (2014)

Ref. [1] Ref. [1]

Ref. [1]

( )

( ) ( )

( )

Ref. [1]

FIG. 2. (Color online) Comparison of the original results from
the article of Ariyasu et al. [1] (Fig. 1 digitized) (red solid curve)
and results obtained with our FBM (green dashed curve) with some
specific approximations (blue dotted curve) (see the text for more
details) for (a) and (c) the real part and (b) and (d) the imaginary part
of the dispersion relation for the three-layer structure. In (c) the green
and blue curves overlap perfectly. The labeled points A–I correspond
to the field shapes depicted in Fig. 3. Point I lies beyond the plotting
range (see Sec. V B 2 for explanation).

Fig. 2(a) is closer to the original results than the green curve
obtained with our full FBM.

Figures 2(b) and 2(d) show the comparison of the original
results from Ref. [1] and our results for the dependence of
the imaginary part of the effective index β ′′ as a function of
the power density. The results obtained with our FBM (green
dashed curve) lie slightly above the original results (red solid
curve). The comparison of the formulas used to calculate losses
[Eq. (8) in Ref. [8] and Eq. (23) for our formulation] shows that
losses are calculated in different ways. In Ref. [1] the authors
use Eq. (8) from Ref. [8], where losses are proportional to the
product of the imaginary part of permittivity with the power
density P in each layer (β ′′ ∝ ∫

ε′′Pdx). The power density
is proportional to the Pointing vector and in the frame of a
linear approximation P ∝ E2

x . In our formulation [Eq. (23)]
the losses [green curve in Figs. 2(b) and 2(d)] depend on both
components of the electric fields [β ′′ ∝ ∫

ε′′(E2
x + E2

z )dx]. If
a formulation in which the losses are proportional only to the
transverse-field component in our FBM is used, very good
agreement with the original results is reached [see the blue
dotted curve in Figs. 2(b) and 2(d)].

Even if small numerical discrepancies between our im-
proved approach and the original results of Ariyasu et al.
appear due to different approximations used, they are fully
understood. Our extended FBM is able to reproduce the results
published by Ariyasu et al. with good agreement.

2. Nonlinear wave-type classification

In this section a classification of the types of solutions that
exist in the three-layer structures is presented. It is useful for
the remainder of this work to classify and name different types
of solutions as they will be similar in four-layer configurations.
In Fig. 2 nine points were labeled from A to I in order to
describe the type and the transformation of solutions along
the nonlinear dispersion curve. The magnetic-field profiles
corresponding to these points are shown in Figs. 3(a)–3(i).

From the analytical considerations it has already been
shown in Sec. IV A 3 that for x0 → +∞ the solutions
correspond to the linear limiting case. In this case for the
symmetric three-layer IMI structure two solutions exist: a
symmetric (long-range) plasmon and an antisymmetric (short-
range) plasmon [54,55]. Points A and G were obtained for
x0 = λ = 5.5 μm and the corresponding solutions are close
to the linear ones. For both solutions the power density is
relatively low P < 0.1 W/m (this type of solution is obtained
for even lower powers if one selects larger values of x0).
The corresponding field shapes are like the linear solutions.
Figure 3(a) presents a field shape that is very close to the
symmetric linear plasmon and Fig. 3(g) shows a field profile
very similar to the antisymmetric linear plasmon.

In the following the field transformation along the disper-
sion curves is described in detail. First, the transformation of
the symmetric-type plasmonic solutions, located at the lower
branch of the dispersion curve, is studied. Decreasing the
value of x0 to 1 μm (all other parameters being identical),
we obtain the field shape corresponding to point B. The power
density of this nonlinear wave is P ≈ 2 W/m and the field
shape still resembles the symmetric linear plasmon but the
field is now asymmetric and the energy is more localized on
the interface between the metal film and the linear dielectric.
Upon a further decrease of the value of x0 to 0.1 μm (point C)
the power density of the solution increases to ≈5.5 W/m and
the field shape becomes even more asymmetric. The solutions
described above are referred to as symmetric-type nonlinear
plasmons.

When x0 becomes negative one obtains a new class of
solutions, where the local magnetic-field maxima are located
both at the interface between the metal film and the linear
dielectric and inside the nonlinear medium. Upon a decrease
of the parameter x0 down to −0.1 μm the power density still
increases (to around 7.5 W/m corresponding to point F ) and
reaches its maximum at point E for x0 = −1 μm. A further
reduction of x0 leads to a decrease of the total power density
(P ≈ 2.5 W/m for point D corresponding to x0 = −5.5 μm).
Point D lies close to the end of the branch corresponding to
x0 → −∞ associated with the isolated classical soliton that
does not interact with the metal film. Even though the field
profiles C and F at first glance look almost identical, there
is an important qualitative difference between them. On one
hand, profile C (x0 = 0.1 μm) is classified as a plasmonic-type
solution because there is no field maximum in the nonlinear
layer. On the other hand, profile F (x0 = −0.1 μm) does have
a local maximum in the nonlinear layer (located close to the
metal interface) and therefore it belongs to another class of
solutions.

For all the solutions presented in Figs. 3(d)–3(f) the peak
amplitude of the solitonic part (in the nonlinear dielectric)
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FIG. 3. Magnetic-field component Hy profiles for the three-layer structure described in Sec. V B 1 corresponding to the points indicated on
the dispersion plot in Fig. 2. In all the figures showing field shapes in this paper the coordinates inside the thin intermediate films are not on
the same scale as those used in the other layers for better visibility of the field behavior. In the top row the symmetric-type nonlinear plasmons
are shown, in the middle row the nonlinear plasmon solitons are shown, and in the bottom row the antisymmetric-type nonlinear plasmons are
shown. The columns correspond to different values of |x0|: the left column to 5.5 μm, the middle column to 1 μm, and the right column to
0.1 μm.

remains at approximately the same level and only the max-
imum of the plasmon field on the metal–linear dielectric
interface decreases with a decrease of the x0 value. All
the solutions in the second row of Fig. 3 will be called
solitonic-type solutions or nonlinear plasmon solitons.

It is also worth noting that the solitonic-type solution cannot
be obtained at any desired power density. Following the dashed
green curve in Fig. 2(c) and knowing the field shapes, one
can see that for power densities between 6.5 and 10.5 W/m
two solitonic-type solutions with different x0 correspond to
one power density. For power densities between 2.5 and
6.5 W/m and for a maximum power density of 10.5 W/m
there is only one solitonic-type solution corresponding to each
power density. Below 2.5 W/m and above 10.5 W/m no
solitonic-type solution exists.

Finally, the transformation of solutions lying along the
upper branch of the dispersion relation [see Fig. 2(a)] is
described. The branch starts with the solution described above,
very similar to the antisymmetric linear plasmon (point G).
Decreasing the value of x0 to 1 μm results in the field profile
corresponding to point H . The field shape of this solution is

like the antisymmetric linear solution, but it is distorted. The
field distribution is asymmetric and this time the field is more
localized at the metal–nonlinear dielectric interface (contrary
to the case of symmetric-type solutions, where the field tends
to localize on the opposite metal interface). Decreasing x0 even
further down to 0.1 μm, we obtain the field shape presented
in Fig. 3(i). Here the field is almost entirely localized at the
metal–nonlinear dielectric interface and is therefore even more
asymmetric. The corresponding power density is 2.5 W/m and
the effective index is so high (β = 4.57) that it is beyond the
plot in Fig. 2(a). The solutions presented in Figs. 3(g)–3(i) will
be called antisymmetric-type nonlinear plasmons.

3. Low-power solution search

The simplest structures in which it is possible to obtain the
solutions of the plasmon-soliton type are three-layer structures,
as already been shown in Sec. V B 2. The study presented
in Ref. [1] deals only with configurations, where the linear
parts of the permittivities of linear and nonlinear dielectrics
are equal. Below a more general case is studied, in which a
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( ) ( )

FIG. 4. (Color online) (a) Number of solutions as a function of
the parameter x0 and of the external linear layer refractive index

√
ε4.

(b) Peak power (GW/cm2) for the low-power solutions close to the
cutoff value of

√
ε4. In this and all the following peak power color

maps in this paper, only solutions with peak power below 30 GW/cm2

are plotted, the existence of solutions with higher peak power is
marked in gray, and white denotes regions with no solutions. The
parameters εl,1 = 2.42, n

(1)
2 = 10−17 m2/W, d = 40 nm, ε3 = −20,

and λ = 1.55 μm were used.

permittivity contrast between the linear and nonlinear di-
electrics is introduced. For this study the FBM limited to
three layers (L is set to 0 and only layers 1, 3, and 4 are
present) is used. The configurations where εl,1 � ε4 are chosen
to guarantee that the solutions are localized at the interface
between layers 3 and 4 as β � √

εl,1 [see Eqs. (12) and (13d)].
From the practical point of view this condition can also be
justified by looking at typical material properties. For the
glasses it is known that, in most cases, the nonlinear coefficient
n2 increases with the increase of the linear refractive index
[56,57]. This justifies our choice to consider a linear permit-
tivity of the linear layer to be lower that of the nonlinear layer.

In order to obtain color maps in this section and the next
one, the scans over parameters were performed using the
FBM in such a way that only solutions with the effective
index

√
εl,1 < β < 4

√
εl,1 were sought. For lower effective

indices no localized solution exists as pointed out at the end of
Sec. III B 2 and higher effective indices are not interesting
for our purpose because the corresponding solutions have
an extremely high power density and the nonlinear index
modification is too high to be physically meaningful.

Figure 4(a) shows the dependence of the total number
of solutions on the parameter x0 and on the linear external
dielectric refractive index

√
ε4. For the symmetric structure√

ε4 = √
εl,1 = 2.4 (as discussed in Sec. V B 2) and for qua-

sisymmetric configurations with low-refractive-index contrast
�ε = εl,1 − ε4 � 0.16 one solitonic-type solution (region A)
and two (symmetric-type and antisymmetric-type) plasmonic
solutions (region B) exist. Upon a decrease of the linear
layer refractive index (increasing the index contrast between
nonlinear and external dielectrics) a narrow region C with two
solitonic-type solutions appears. These solutions do not exist
for negative values of x0 close to zero. A further decrease
of the linear layer refractive index causes both solitonic-
type solutions to vanish around

√
ε4 = 2.22. In the case of

plasmonic-type solutions (x0 > 0) the decrease of the linear
layer refractive index causes the symmetric-type solution to
vanish (at a cutoff index value of

√
ε4 ≈ 2.24) and only

the antisymmetric-type solution remains (region D) (even for√
ε4 = 1, which is not shown on this plot).

( )

(
)

(
)

( )

FIG. 5. (Color online) Comparison of the field profiles (a) Hy(x)
and (b) Ez(x) for the two plasmon solitons existing in region C in
Fig. 4(a) for the same x0 value.

Figure 4(b) shows the peak power of the solutions in a
transition region close to the cutoff linear layer refractive
index. The maximal peak power was set to 30 GW/cm2,
which, taking into account the nonlinearity parameter used
n

(1)
2 = 10−17 m2/W, involves a maximum nonlinear index

modification �n � 3 × 10−3. This value of n2 is typical for
chalcogenide glasses [56,58] or for hydrogenated amorphous
silicon, which seems to be a promising material for nonlinear
integrated optics [59,60]. It can be seen that the low-power
solutions exist only in a very narrow range of

√
ε4 values.

The solitonic-type solutions have their lowest peak intensities
slightly below the cutoff index and plasmonic-type solutions
above this value, as can be seen in Fig. 4(b). These studies
confirm [for a symmetric configuration (ε4 = εl,1)] and com-
plete the results given in Ref. [1] (see row 5 of Table I therein)
to include the more general case (ε4 = εl,1).

Figure 5 shows a comparison of the magnetic field Hy and
the longitudinal component of the electric field Ez for the
solitonic-type solutions that appear in the three-layer structure
for the same value of x0 [region C in Fig. 4(a)]. Here the
parameters are ε4 = 2.232 and x0 = −1 μm. The solution with
the lower effective index β has a lower peak amplitude for
the solitonic part than the one for the higher-effective-index
solution. The solitonic part is broader and the plasmonic part’s
peak amplitude is slightly higher in the former case.

Now the influence of the metal permittivity changes on
the behavior of the solitonic-type solutions in three-layer
structures is analyzed. The center of the solitonic part is set
to be at a distance of ten wavelengths from the metal film
(x0 = −15.5 μm). The number of solutions as a function of
the metal permittivity and of the linear dielectric permittivity
is studied. From Fig. 6(a) it can be seen that two effects occur
with an increase (decrease of the absolute value) of the metal
permittivity. First, the index contrast between layers 1 and 4 for
which solutions can be found increases. Second, the allowed
external dielectric permittivity range where two solitonic-type
solutions occur for one value of x0 expands. There is also a
metal permittivity cutoff above which no solution exists. This
cutoff occurs when |ε3| ≈ ε4. From Fig. 6(b), which shows
the peak power for low-power plasmon solitons, it can be seen
that the low-power solutions lie in a very narrow region close
to the line separating regions with one and two solutions.

As a conclusion, we see that asymmetric structures (with
εl,1 > ε4) are able to support the solitonic-type solutions
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FIG. 6. (Color online) (a) Number of solitonic-type solutions in
a three-layer structure with the same parameters as in Fig. 4, but for a
fixed x0 = −15.5 μm, as a function of the metal permittivity ε3 and
of the linear dielectric permittivity ε4. (b) Peak power (GW/cm2) for
the low-power solutions.

at much lower powers than symmetric structures. However,
in order to obtain really low power densities the index
contrast between the two dielectrics has to be precisely
chosen [see Figs. 4(b) and 6(b)]. The asymmetric three-layer
configurations fulfill two out of three conditions set at the
beginning of this section: They support both plasmonic- and
solitonic-type plasmon solitons and it is possible to obtain
low-power solitonic-type solutions. However, these solutions
are obtained for configurations in which the linear medium
refractive index is close to the linear part of the nonlinear
material refractive index. Highly nonlinear glasses [56,61] and
hydrogenated amorphous silicon [59,60], which can be used as
a nonlinear medium, have a high refractive index

√
εl,1 > 2.

Therefore, the linear dielectric also has to be a high-index
material. Consequently, the last goal cannot be fulfilled: It is
not possible to access or measure directly the plasmonic part of
the solution if the external layer is filled with a solid. In order
to reach this goal, a configuration where the linear refractive
index of the external layer is low enough

√
ε4 � 1.3 needs to

be found, so that this external medium can be, e.g., water or air.
This last problem is solved by the use of four-layer structures,
as shown in the next section.

C. Four-layer configuration

In this section the results obtained with our three models
for four-layer configurations are presented. At the beginning,
we show and analyze the typical dispersion curve of four-
layer configurations. Then the comparison between the results
obtained using our three models is performed. The very good
agreement between these results confirms the validity of our
models. The analysis of the structure parameters is performed
and the ranges where low-power plasmon solitons exist are
identified. Later, the advantages of the four-layer structures
over three-layer structures are discussed. Finally, the influence
of the two geometric parameters of the structure (d and L) on
the plasmon-solitons properties is presented.

1. Dispersion relation

The four-layer structure with parameters ε̃l,1 = 2.47072 −
10−5i, n

(1)
2 = 10−17 m2/W (chalcogenide glass), ε̃2 =

1.4432 − 10−5i (silica), ε̃3 = −96 − 10i (gold), ε̃4 =
2.47072 − 10−5i, L = 15 nm, d = 40 nm, and λ = 1.55 μm
is considered. In Fig. 7(a) the dispersion relation β(P ) for this

( ) (

P
S

P
S

)

FIG. 7. (Color online) Dispersion relation for the (a) real and
(b) imaginary parts of the effective index in the four-layer structure
with ε4 = εl,1 = 2.4707 as a function of power density P . Plasmonic-
type solutions are denoted by a blue dotted line and solitonic-type
solutions by a red solid line. Point D is located outside the plot
boundaries (see the text for explanation). The inset in (a) presents a
zoom of the lower branch in the vicinity of point B.

configuration is presented. There are two separate branches on
this plot. The higher branch starts in the linear regime with
the plasmonic-type solution (P type, blue dotted curve). With
an increase of the power the propagation constant increases.
The highest power density of the plasmonic-type solution is
P ≈ 18 GW/m. A further increase of the propagation constant
is accompanied by a decrease of the power density until
P ≈ 14 GW/m, where another turning point occurs. Slightly
above this bend the solution changes its type to solitonic (S
type, red solid curve). The solitonic-type solution increases its
power with the increase of β for the range of P and β shown
in this plot. The lower branch of the dispersion is purely of
the solitonic type. It starts at the level P ≈ 3 GW/m and the
power density increases with the increase of the propagation
constant. At P ≈ 11.1 GW/m, which is the maximum power
density for this branch, there is a turning point and P starts
to decrease with the increase of β. The branch terminates at a
power level P ≈ 10.8 GW/m. Both ends of the lower branch
correspond to x0 → −∞.

In Fig. 7(b) the imaginary part of the effective index β ′′
is shown. It can be seen that the low-index solitonic-type
branch is a long-range one (it has low losses because the
solutions lying on this branch are mainly localized in the
nonlinear dielectric). The high-index plasmonic-type branch
and its solitonic-type continuation are short-range solutions
(the high losses of these solutions come from the fact that an
important part of the field of these solutions is localized on the
lossy metal film).

In Fig. 8 the characteristic magnetic-field profiles corre-
sponding to points A–D in Fig. 7(a) are depicted. In Fig. 7(a)
the solutions located at the lower branch are presented, both
obtained for x0 = −1 μm. In Fig. 7(b) the solutions located at
the higher branch are shown. The solitonic-type solution (D)
was obtained for x0 = −0.1 μm (the corresponding β = 6.28
and P = 45 GW/cm2) and the plasmonic-type solution (C)
for x0 = 0.1 μm.

2. Comparison between the results of the three models

Figure 9 presents a comparison of the results for the four-
layer configuration obtained with the three different models
described in Sec. III: the FBM, the EM, and the FEM-based
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FIG. 8. (Color online) Magnetic-field profiles corresponding to
the solutions marked by points (a) A and B and (b) C and D in
Fig. 7(a).

model. For this comparison the four-layer structure previously
presented in Ref. [27] is chosen. The parameters of the
structure are the same as in the previous section but the external
permittivity is now set to ε4 = 1 (air). Here only the lowest
branch of solitonic-type solutions in this structure is presented
for relatively low powers.

First, the results provided by the two semianalytical models
are compared. For the low-field amplitudes at the interface
between layers 1 and 2 [defined by Eq. (33)] E0 � 0.75 GV/m,
and therefore low maximal nonlinear permittivity change
(εnl � 0.1), both models are in very good agreement. For
higher values of E0 the discrepancy between the FBM and the
EM appears. This discrepancy can be explained by looking
at the assumptions that were used to build the models. As
described in Sec. III B, the FBM was formulated by assuming
that the nonlinear refractive index changes are small. In this
case it is possible to neglect the longitudinal component of the
electric field Ez in the nonlinear contribution to the permittivity

( )

( )

FIG. 9. (Color online) Comparison of the nonlinear dispersion
relations obtained from the EM (red solid curve), the FBM (black
dashed curve), and the FEM (open circles) for a four-layer structure
with parameters from Ref. [27]. The nonlinear variation of the
effective index (β − √

εl,1) is presented on the left vertical axis
as a function of the electric-field amplitude at the buffer linear
dielectric–nonlinear dielectric interface (x = 0) and of the power
density P (on the top axis). On the right vertical axis the maximal
nonlinear permittivity change corresponding to the soliton peak is
shown.
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FIG. 10. (Color online) Comparison of the magnetic-field pro-
files obtained with the EM (red solid curve), the FBM (black
dashed curve), and the FEM (green dotted curve) for E0 values
(a) 0.02 GV/m, (b) 0.5 GV/m, and (c) 1 GV/m.

because it is much smaller than the transverse component Ex .
For higher nonlinear index modifications both fields contribute
with a comparable weight to the nonlinear effects. This is why
the results of the FBM differ from those obtained with the EM,
which takes both electric-field components into account. The
highest maximal permittivity change shown in Fig. 9 is of the
order of 0.3. Even for such high εnl the electric-field component
ratio is Ex/Ez ≈ 10/1. This justifies the assumption used in
the FBM that allowed us to neglect the longitudinal field in
the nonlinear contribution to the permittivity. The maximal
relative difference between the results provided by the two
models for the effective index variation β − √

εl,1 is of the
order of 10% for E0 ≈ 1.4 GV/m.

The results of the FEM-based model shown in Fig. 9 overlap
with the FBM results. This is due to the choice made for
the FEM algorithm used, which takes into account only the
transverse component of the electric field while computing the
nonlinear effects. The FEM solves numerically the nonlinear
wave equation [Eq. (11)], which is the heart of the FBM.
For these reasons it is understandable that this model nicely
reproduces the results of the FBM.

In Fig. 10 a comparison of the field shapes obtained using
our three models is presented. Only the Hy field component
is shown because all the important observations can be
made using this component. The analysis of the electric-field
components Ex and Ez does not lead to any new conclusions
and consequently it is omitted. As described in Sec. III C 2,
the field shapes in the nonlinear layer in the EM are not given
by an analytical formula but are described by the system of
the first-order differential equations [Eqs. (25a) and (37)].
This system is solved using the fourth-order Runge-Kutta
method [62]. The boundary conditions, allowing us to solve
this system of equations, take into account the values of
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FIG. 11. (Color online) (a) Number of solitonic-type solutions in
a four-layer structure as a function of the buffer layer thickness L and
of the external layer refractive index

√
ε4 and (b) a zoom of the most

complex part of the plot.

the electric-field components Ex,0 and Ez,0 at the interface
between the nonlinear dielectric and the buffer linear dielectric
film (layer 2 in Fig. 1). These values are found for a given
value of E0 using Eqs. (32a) and (33). In Fig. 10(a) the field
profiles for E0 = 0.02 GV/m are presented. In Fig. 10(b)
E0 = 0.5 GV/m and in Fig. 10(c) E0 = 1 GV/m. In all the
cases, the fields obtained with the FBM and the FEM-based
method are in very good agreement. The fields obtained using
the EM also overlap very well with the previous ones despite
the small discrepancies of the corresponding propagation
constants.

3. Toward low-power solutions

In order to find low-power solitonic-type solutions for
the configurations with a high-index contrast between the
nonlinear dielectric and the linear external dielectric, the
properties of four-layer configurations are investigated. In
this section the parameters used to obtain all the color maps
(two-parameter scans performed with the FBM) are the same
as in Ref. [27] and in Sec. V C 2 except if explicitly stated
otherwise or if the parameters are on the axes of the plot. We
have chosen the value x0 = −15.5 μm for all the illustrations.
In all the plots only the effective indices from the range√

εl,1 < β < 4
√

εl,1 are shown (like in Sec. V B 3).
First, the evolution of the number of solitonic-type solutions

as a function of the linear buffer layer thickness L and of
the external layer refractive index

√
ε4 is analyzed. It can

be seen from Fig. 11 that for low buffer layer thickness 0 <

L � 9 nm the four-layer structure presents behavior similar to
that for the three-layer structure (see Figs. 4 and 6). There
is one solitonic-type solution for the quasisymmetric case
ncutoff ≈ 2.4 <

√
ε4 <

√
εl,1 and no solitonic-type solutions

for higher-index contrasts between the external layer and
the nonlinear dielectric. These two cases are separated by a
narrow region with two solutions, which becomes broader
with an increase of the buffer thickness [see Fig. 11(b)]. For
buffer thickness between 9 and 30 nm there is up to three
solitonic-type solutions possible for the low-index-contrast
regime

√
ε4 > ncutoff and even up to four solutions [yellow

region in Fig. 11(b)] in a small region for a moderate-
index-contrast configuration. For the buffer thickness above
30 nm only a single solitonic-type solution exists in low- and
moderate-index-contrast regimes.

( ) ( )

FIG. 12. (Color online) (a) Number of solutions in a four-layer
structure as a function of the external layer refractive index

√
ε4

and of the parameter x0. (b) Peak power (GW/cm2) for the low-
power solutions. The existence of solutions with higher peak power
is marked in gray.

In the region with three or four solitonic-type solutions
occurring for the same x0 value, two of the corresponding field
shapes are analogous to those presented in Fig. 8(a). The other
solutions have even higher effective indices β and therefore
even narrower solitonic parts and higher peak powers than the
two previously mentioned solutions.

In Fig. 12(a) we show the total number of solutions as a
function of the external layer refractive index

√
ε4 and of the

parameter x0 [in analogy to Fig. 4(a) for three-layer structures].
In this case we see that in a quasisymmetric structure (ε4 ≈
εl,1) there are three (region A) or two (for x0 values close to
zero) solitonic-type solutions and one plasmonic-type solution
(top of the region C). For the region with a moderate-index
contrast (1.7 � √

ε4 � 2.4) there is one solitonic-type solution
(region B) and one plasmonic-type solution (region C).
Finally, for high-index contrast (

√
ε4 � 1.7) there exist two

solitonic-type solutions (region D) and no plasmonic-type
solution (region E). The value of

√
ε4 ≈ 1.7 is a cutoff limit

in the case of both solitonic- and plasmonic-type solutions.
Increasing

√
ε4 for positive x0 values causes the appearance

of a plasmonic-type solution. In contrast, for negative values
of x0 this causes a reduction of the number of solitonic-type
solutions from two to one.

Figure 12(b) shows the peak power of the solutions in four-
layer configurations. Similar to the three-layer case [shown in
Fig. 4(b)], the lowest peak intensities occur below the cutoff
index for solitonic-type solutions and above this value for
plasmonic-type solutions. However, in this case, for plasmon
solitons the region of low-power solutions extends to much
lower external layer refractive indices than in the case of
a three-layer configuration. This means that in a four-layer
configuration not only are we able to find plasmon solitons for
high-index-contrast configurations but also that these solutions
have low peak intensities.

It must be pointed out that the maps presented in Fig. 12
have been obtained for a value of L = 15 nm that corresponds
to a cut in a relatively simple region of the map provided in
Fig. 11. More complicated maps can be obtained for specific
L values [e.g., L = 28 nm (data not shown)], but the nonlinear
solutions obtained still belong to the classification provided in
Sec. V B 2.

Figure 13(a) shows the number of solitonic-type solutions
as a function of the buffer layer thickness L and of the refractive
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FIG. 13. (Color online) (a) Number of solitonic-type solutions as
a function of the buffer layer thickness L and of the refractive index
of this layer

√
ε2. (b) Peak power (GW/cm2) for the low-power

solutions.

index of this layer
√

ε2. It can be seen that for low buffer layer
refractive index (

√
ε2 = 1) the range of thickness where one or

two solutions exist is quite narrow (5–15 nm). Increasing the
buffer layer refractive index, the range of the buffer thickness
where the solutions exist expands (it becomes approximately
45–80 nm for

√
ε2 = 1.75).

Figure 13(b) shows the plasmon-soliton peak power in the
same coordinates as those used in Fig. 13(a). The region where
plasmon solitons have low peak intensities is very narrow and
is located close to the line separating regions with one and two
solutions. Increasing the buffer layer refractive index allows
an increase of the buffer layer thickness required to obtain
solutions with low peak power, which is interesting from a
technological point of view (e.g., it is challenging to fabricate
uniform high-quality thin films on top of chalcogenide glasses
[63]).

Figure 14(a) presents the number of solitonic-type solutions
as a function of the metal layer permittivity ε3 and of the
external medium permittivity ε4 [it can be compared with
Fig. 6(a), which presents the analogous dependence for a
three-layer structure]. The main advantage of the four-layer
structure compared to the three-layer one is that, even for very
low permittivity of the external medium (e.g., 1 for air or 1.32

for water at λ = 1.55 μm) resulting in high index contrast, the
solitonic-type solutions exist. There are two of them for low
metal permittivity values and one for higher metal permittivity
values. In four-layer structures where ε4 ≈ εl,1 even three
solitonic-type solutions exist for the same parameter x0 [the
blue region in Fig. 14(a)].

FIG. 14. (Color online) (a) Number of solitonic-type solutions
as a function of the metal layer permittivity ε3 and of the external
medium permittivity ε4. (b) Peak power (GW/cm2) for the low-power
solutions.
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FIG. 15. (Color online) (a) Number of solitonic-type solutions
as a function of the metal film thickness d and of the buffer layer
thickness L. (b) Effective index β as a function of the buffer layer
thickness L for a fixed metal thickness d = 20 nm.

Figure 14(b) shows the peak power of the solitonic-type
solutions in the same coordinates as those used in Fig. 14(a).
Comparing this figure with the corresponding one for a
three-layer structure in Fig. 6(b), it can be seen that in the
case of four-layer configuration low-power solutions exist for
wider ranges of both ε3 and ε4, which broadens the choice of
possible parameter combinations. This property may facilitate
the fabrication of the structure.

4. Optimization of the four-layer structure

In this section a more detailed investigation of the influence
of the two geometrical parameters of the four-layer structure
(the metal layer thickness d and the buffer layer thickness
L) is shown. Figure 15(a) shows the number of solitonic-type
solutions as a function of these two parameters. For low values
of the thickness of both layers only one solution is obtained.
For higher values of dielectric buffer thickness there exists a
region for which two solutions appear. For even higher values
of L both solutions disappear. The evolution of the solutions
can be followed by looking at Fig. 15(b), which corresponds
to a cut of Fig. 15(a) at d = 20 nm. For low values of L only
a high-effective-index solution exists. Here L ≈ 21 nm is a
cutoff buffer thickness for a second solitonic-type solution. At
this thickness a low-effective-index solution appears. As the
buffer layer thickness increases, these two solutions become
closer to each other to finally merge into one solution for a
particular value of L ≈ 34 nm. Above this value no solitonic-
type solution exists.

( )

(
)

(
)

( )

FIG. 16. (Color online) (a) Total power density (GW/m) of the
low-β solitonic-type solution. (b) Peak power (GW/cm2) for the
low-power solutions.
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FIG. 17. (Color online) (a) Peak power of the solitonic part
(GW/cm2) and (b) decimal logarithm of the peak power of the
plasmonic part Iplas ≡ I (x = L + d): log10[Iplas/(W cm−2)] for the
low-power solitonic-type solutions as a function of the metal
thickness d and of the parameter x0 for the buffer thickness fixed at
L = 16 nm. In color solutions with solitonic part peak power below
30 GW/cm2 are plotted.

In Fig. 16(a) the total power density for the solitonic-type
solution with the lower β is shown in the same coordinates
as those used in Fig. 15(a). The solutions with the lowest
power density are located close to the cutoff buffer thickness
[left region of Fig. 16(a)]. In Fig. 16(b) the peak power for
the low-power solutions is shown. Plasmon solitons with the
lowest peak intensities are located in a narrow region where
the total power density is the lowest (i.e., close to the cutoff
buffer thickness L for the low-power solution). This shows
that in order to obtain solutions with peak power levels that
are attainable by modern high-power commercial lasers the
couple L and d has to be precisely chosen. Even a small
deviation of the buffer film thickness (e.g., 2 nm) may lead to
a change of the peak power of the supported solution by one
order of magnitude (e.g., from 3 to 30 GW/cm2).

Figure 17(a) shows the dependence of the peak power of
the solitonic part of the solution as a function of the metal
thickness d and the parameter x0 for a fixed buffer thickness
L = 16 nm. With an increase of the metal thickness or an
increase of the parameter x0 (decrease in absolute value) the
peak power of the solitonic part increases. Besides the peak
power of the solitonic part, which should be kept low, there is
another important parameter that should be taken into account.
It is interesting to have a strong plasmonic field at the interface
between the metal film and the external medium in order to
facilitate its recording or to make use of it. Figure 17(b) shows
the decimal logarithm of the maximum peak power of the
plasmonic part as a function of the metal thickness d and
parameter x0. The lowest values of the plasmonic part peak
power are obtained for a thick metal film and solitonic peak
located far from the metal interface. On one hand, for large
metal thickness values, bringing the solitonic part closer to
the metal interface results in a drastic increase (few orders of
magnitude) of the peak power in the external layer. On the
other hand, for thin metal films the peak power in the external
layer is relatively high and the changes with the parameter x0

are much slower.

VI. CONCLUSION

We have presented three complementary models based on
Maxwell’s equations to study the properties of the stationary

TM solutions in planar nonlinear structures containing a metal
film, a semi-infinite nonlinear medium of the Kerr type, and
possibly a semi-infinite linear dielectric and a linear dielectric
film. Two of these models are semianalytical and allow for fast
optogeometric parameter space scanning in order to find all the
possible stationary nonlinear solutions. They are the extended
versions of known models to more complex structures. The
field-based model additionally improves the approximation
used previously to deal with the nonlinearity. The other
semianalytical model provides the exact treatment of the
nonlinear term involving both the transverse and longitudinal
components of the electric field and can be used even for high
nonlinear index modifications.

A more numerical approach based on a finite-element
method confirmed the results obtained from the two semi-
analytical approaches. Our results also agree with previous
results for particular cases of simpler structures.

A systematic study of two-, three-, and four-layer config-
urations was performed that led to several conclusions. First,
three main types of nonlinear solutions are found in these struc-
tures: symmetric-type nonlinear plasmons, antisymmetric-
type nonlinear plasmons, and plasmon solitons that exhibit a
maximum, local or not, of the transverse-electromagnetic-field
components in the nonlinear layer. Second, the simplest
structures supporting plasmon solitons with a pronounced
soliton peak are found to be composed of three layers (semi-
infinite nonlinear Kerr medium, metal film, and semi-infinite
dielectric). Low-power solutions are found in three-layer
structures only in the case of small-refractive-index contrast
between the nonlinear and the external dielectrics. Third, we
show that to overcome this limitation, four-layer structures
(semi-infinite nonlinear Kerr medium, dielectric film, metal
film, and semi-infinite dielectric) must be considered. These
structures support low-peak-power plasmon solitons even for
high-index contrast between the two outer dielectrics. A
comparison between three- and four-layer structures revealed
that the parameter regions for which low-power solutions are
obtained are much broader in the latter case. This shows that
the constraints for the parameters of the structure that supports
low-power solutions are relaxed in the case of four-layer
configurations, which is desirable from a technological point
of view. Since physically realistic parameters were used, our
results indicate that the experimental observation of plasmon
solitons should be possible.
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APPENDIX A: FIELD-BASED MODEL

1. Approximated closed expressions for power

In the expression for the power density in the FBM
[Eq. (22)] the dependence of the permittivity on the coor-
dinate x is due to both a layered structure (linear) and the
field-induced changes in the nonlinear layer. If we use the
assumption that εnl � εl then the expression for the total
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approximated power density P can be rewritten as a sum of
four separate integrals

P =
4∑

k=1

Pk, (A1)

where

Pk = β

2cε0εl,k

∫
layer k

|Hk|2dx. (A2)

Using Eq. (13) we find the approximate power density in the
nonlinear layer

P1 = β

2cε0εl,1k0

H 2
0

q1 − q1,nl
, (A3a)

where q1,nl = q̃1,nlε1, and the exact expressions for the power
densities in the linear layers

P2 = β

2cε0ε2

[
A2

+
2k0q2

(e2k0q2L − 1)

+ 2A+A−L − A2
−

2k0q2
(e−2k0q2L − 1)

]
, (A3b)

P3 = β

2cε0ε3

[
B2

+
2k0q3

(e2k0q3d − 1)

+ 2B+B−d − B2
−

2k0q3
(e−2k0q3d − 1)

]
, (A3c)

P4 = β

2cε0ε4

C2

2k0q4
, (A3d)

where H0, A+, A−, B+, B−, and C are found during
the procedure of solving the nonlinear dispersion relation
[Eqs. (14)] and are given by

H0 =
√

2

a1

q1

cosh(k0q1x0)
, (A4a)

A± = H0

2

(
1 ± q̃1,nl|x=0

q̃2

)
, (A4b)

B± = H0

2

[(
1 ± q̃1,nl|x=0

q̃3

)
cosh(k0q2L)

+
(

q̃1,nl|x=0

q̃2
± q̃2

q̃3

)
sinh(k0q2L)

]
, (A4c)

C = B+ek0q3d + B−e−k0q3d . (A4d)

2. Expressions for the electric-field components

Having found the profiles of the magnetic-field component
Hy [solution to Eq. (11) given by Eq. (13)], we can use
Eqs. (5b) and (5c) to calculate the electric-field components Ex

and Ez. In the case of the nonlinear medium, if the permittivity
depends on the TM wave electric-field components Eqs. (5b)
and (5c) form a set of two coupled nonlinear equations

Ex = β

ε0εx(Ex,Ez)c
Hy, (A5a)

Ez = 1

ε0εz(Ex,Ez)ω

dHy

dx
. (A5b)

However, in the frame of the FBM, a simplified Kerr
dependence for the permittivity is assumed through Eq. (10),
where the permittivity depends only on the main electric-field
component Ex . In this case the problem reduces to

Ex = β

ε0εx(Ex)c
Hy, (A6a)

Ez = 1

ε0εz(Ex)ω

dHy

dx
. (A6b)

The first equation is no longer coupled to the second one and
contains only one unknown quantity Ex , so it can be readily
solved. Inserting Eq. (10) into Eq. (A6a) and performing some
simple algebra gives

E3
x + εl,1

α1
Ex − βHy

ε0cα1
= 0. (A7)

This equation has in general three roots: one real and a pair
of complex-conjugate solutions. In our approach the Ex field is
assumed to be real, so we choose the real root of this equation
to be the field profile. The solution is in the form [64]

Ex =
(

w

2
+

√
v3

27
+ w2

4

)1/3

+
(

w

2
−

√
v3

27
+ w2

4

)1/3

,

(A8)

with w = βHy/ε0cα1 and v = εl,1/α1. Having found the Ex

field shape, the Ez dependence is calculated directly using
Eq. (A6b). In previous approaches [1,8] the electric field was
calculated using simplified formulas containing only the linear
part of the refractive index

Ex = β

ε0εl,xc
Hy, (A9a)

Ez = 1

ε0εl,zω

dHy

dx
. (A9b)

APPENDIX B: EXACT MODEL

In the frame of the EM, the two electric-field components in
the linear layers of the structure are expressed as a combination
of increasing and decreasing exponents. In the buffer linear
dielectric (0 � x < L, layer 2)

Ex,2 = Axe
k0q2x + Bxe

−k0q2x, (B1a)

Ez,2 = Aze
k0q2x + Bze

−k0q2x ; (B1b)

in the metal (L � x < L + d, layer 3)

Ex,3 = Cxe
k0q3(x−L) + Dxe

−k0q3(x−L), (B2a)

Ez,3 = Cze
k0q3(x−L) + Dze

−k0q3(x−L); (B2b)

and in the external linear dielectric (x � L + d, layer 4)

Ex,4 = Fxe
−k0q4[x−(L+d)], (B3a)

Ez,4 = Fze
−k0q4[x−(L+d)]. (B3b)

Several relations between field amplitudes in the linear
layers are needed. Using Eq. (25b) separately in each of the
linear and uniform layers, relations between the amplitudes
of the x and z components of the fields are found. Inserting
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Eqs. (B1a) and (B1b) into Eq. (25b), one obtains the relation
for the field amplitudes in layer 2:

β(Aze
k0q2x + Bze

−k0q2x) = q2(Axe
k0q2x − Bxe

−k0q2x). (B4)

Because this equation has to be fulfilled for each value of
x ∈]0,L[ we separately solve the equations for the terms
proportional to ek0q2x and e−k0q2x . As a result one obtains

Ax = β

q2
Az, Bx = − β

q2
Bz. (B5)

Applying a similar procedure to the expressions of the fields
in other linear layers leads to

Cx = β

q3
Cz,

(B6)

Dx = − β

q3
Dz;

Fx = − β

q4
Fz. (B7)
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