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1. INTRODUCTION
Microstructured optical fibers (MOFs)—fibers with mul-
tiple inclusions arranged about a core—have many re-
markable properties such as large and adjustable disper-
sion and nonlinearity1–4 and single-mode operation over a
wide range of wavelengths.5 They are also of theoretical
interest because they incorporate a larger refractive index
contrast than do conventional fibers and require a full
electromagnetic treatment rather than the scalar or
weak-guidance approximation.6,7 Because the light con-
finement is due to many inclusions in a silica matrix
rather than to a single doped region, the number of de-
grees of freedom, such as inclusion placement and
diameter-to-spacing ratio, is larger than in conventional
fibers.

To develop the potential of MOFs, accurate modeling
tools are necessary. A range of methods has been devel-
oped, some of which use approximate scalar5 or vector8–10

treatments. A common strategy is to apply, in the trans-
verse plane, periodic boundary conditions, enforced for ex-
0740-3224/2002/102322-09$15.00 ©
ample, by use of plane-wave expansions.11,12 However,
such supercell treatments effectively replace the neces-
sarily finite MOF structure with an infinite one and thus
cannot address the issue of the loss associated with
propagation in a transversely finite confining structure.
Plane-wave methods also do not accommodate general
characteristics of the geometry of the inclusions.
Whereas they are highly general, they are consequently
not highly efficient.

One method that somewhat accommodates the shape of
the expected modal field expands it in terms of Hermite–
Gaussian functions.3,13 However, these functions have
intrinsic widths, which ideally match the width of the so-
lution. Hence the method requires some a priori knowl-
edge of the solution, which may not be available.

Beam propagation methods use a numerical algorithm
to simulate the propagation of a coherent beam along a
fiber,14,15 from which the modes and their properties must
be extracted a posteriori. Both scalar and vector versions
of the algorithm are available, and fibers of any geometry
2002 Optical Society of America
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can be dealt with. One can calculate modal losses by ob-
serving the attenuation on propagation, but the propaga-
tion distance required increases as the loss decreases; this
may be important in light of recent experiments1 that
demonstrated very low-loss (3.2-dB km21) MOFs.

Here we extend multipole formulations for multicore
conventional fibers16,17 to treat MOFs. A key aspect of
the method described here is that it makes use of the cir-
cularity of the inclusions. It is therefore of high accuracy,
converging sufficiently rapidly to be able to treat precisely
systems that contain quite large numbers of inclusions.
The formulation respects accurately the symmetry prop-
erties of modes in MOFs that have regularly arranged
inclusions,18,19 and indeed has been adapted to take into
account those symmetry properties to increase computa-
tional efficiency. Furthermore, it yields both the real and
the imaginary parts of the mode propagation constant;
the latter gives the confinement loss associated with the
finite extent of the MOF’s set of confining inclusions. It
can deal with the two types of MOF of current interest:
those with a solid core, surrounded with air holes, and
those with an air core (a cylindrical hole of somewhat
larger radius), again surrounded by air holes, which tend
to be more numerous than solid-core MOFs. Finally, the
multipole method has frequency v as an input parameter,
with propagation constant b following from the calcula-
tion. It is thus well suited for calculations involving ma-
terial dispersion. We stress that, though we consider
only circular inclusions, the multipole method is not nec-
essarily limited to these. Its extention to noncircular in-
clusions would follow along lines suggested by Felbacq
et al.20 We note that Yamashita et al. use a similar
method for conventional multicore fibers.21 However,
they use a point-matching technique at the inclusion
boundaries, whereas we enforce boundary conditions by
projection of the field components onto an orthonormal
basis.

Here we give the basic formulation of the method as
well as some results. Kuhlmey et al. are preparing a
companion paper,22 in which they discuss the efficient
implementation of the method as well as a number of re-
sults that are difficult to obtain by other methods and
that thus demonstrate the unique features of the multi-
pole method.

2. MULTIPOLE FORMULATION
Our formulation is similar to that of Lo et al.,16 who con-
sidered the modes of high-index cylindrical inclusions in a
low-index background. Therefore these structures have
properly bound modes, irrespective of the geometry. In
contrast, here the inclusions have a low index, and these
therefore do not support bound modes. Rather, the
modes arise from the geometry of the inclusions and, for a
finite cladding, they are not bound but leaky. This differ-
ence has important consequences for the method, and we
therefore describe it in some detail here. We concentrate
on solid-core MOFs, with the modifications for air-core
MOFs discussed in passing.

The geometry that we treat is given in Fig. 1; it repre-
sents a transverse xy cut of the fiber, which is infinitely
extended along the z axis. It shows a silica matrix of
(real) refractive index ne , perforated with a finite number
Nc of inclusions indexed by i and of diameter di , whose
centers are specified by ci . The refractive index of the
inclusions is ni . In the numerical examples ni 5 1, and
all inclusions have the same diameter d, except for air-
guided MOFs for which the central hole is larger than the
others. The air holes are always hexagonally packed and
regularly spaced with separation L.

Outside this hole region the MOF is enclosed in a
jacket (radius r . R0), whose index n0 may be complex.
One choice for this is to take a jacket with refractive index
1, simulating a MOF in air or vacuum. Doing so would
enable us to investigate modes confined between the mi-
crostructured part of the fiber and the air region as well
as effects that are due to the finite nature of the silica re-
gion surrounding fibers. More generally, our method can
deal with any type of cladding surrounding the structure.

A. Choice of Propagating Fields
We characterize in the complex representation the elec-
tric and magnetic fields E andH in the MOF by specify-
ing the components Ez and Hz along the fiber axis, with
transverse fields following from Maxwell’s equations.6 In
fact, it is convenient to work with scaled magnetic fields:
K 5 ZH, where Z denotes the impedance of free space.
Each mode is characterized by its propagation constant b
and by the transverse dependence of the fields:

E~r, u, z, t ! 5 E~r, u!exp@i~bz 2 vt !#, (1)

K~r, u, z, t ! 5 K~r, u!exp@i~bz 2 vt !#, (2)

where v denotes the angular frequency, which is related
to the free-space wave number by v 5 kc. Note that b is
complex for leaky modes; the imaginary part of b accounts
for attenuation along the z axis. Here we use the modes’
effective index, which is related to b by neff 5 b/k.

Each of the fields (V 5 Ez or V 5 Kz) satisfies the
Helmholtz equation

@¹2 1 ~k'
e !2#V 5 0 (3)

in the matrix, where k'
e 5 (k2ne

2 2 b2)1/2, and

Fig. 1. Geometry of the MOFs considered, together with the
contributions to the fields just outside a generic hole i. Regions
of convergence of multipole expansions are indicated by dashed
curves. Note that QP is rj in Eq. (8), and SP is rl and OP is r.
Solid curves indicate physical boundaries; dashed curves indicate
regions of convergence.
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@¹2 1 ~k'
i !2#V 5 0 (4)

in the holes, where k'
i 5 (k2ni

2 2 b2)1/2. Care is re-
quired when one is computing complex square roots: For
forward-propagating modes that attenuate as they propa-
gate in the 1z direction, we require that R(b) . 0 and
J(b) . 0. Assuming for now that n0

2k2 is real, and be-
cause k'

J 5 (k2n0
2 2 b2)1/2, then R(b)J(b) 1 R(k'

J)
3 J(k'

J) 5 0, so R(k'
J)J(k'

J) , 0. Thus k'
J lies in either

the second or the fourth quadrant of the complex plane.
In fact, we must choose the fourth quadrant6,7 to ensure
that the outgoing waves have the correct behavior of tak-
ing energy away from the fiber. We treat the case in
which n0 has a small imaginary part by continuity.

B. Formulation of the Field Identities
In the vicinity of the lth cylindrical inclusion (see Fig. 1)
we represent the fields in the matrix in local coordinates
rl 5 (rl , u l) 5 r 2 cl and express the fields in Fourier–
Bessel series, a natural basis for harmonic functions in
cylindrical coordinates. Jm(z) and Hm

(1)(z) are the usual
Bessel function of order m and the Hankel function of the
first kind of order m, respectively; thus we have for the
electric field

Ez 5 (
m

@Am
ElJm~k'

e rl! 1 Bm
ElHm

~1 !~k'
e rl!#exp~imu l!,

(5)

and similarly for Kz , but with coefficients Am
Kl and Bm

Kl.
In Eq. (5) the Jm terms represent the regular incident
part REl of field Ez for cylinder l because it is finite every-
where, whereas the Hm

(1) terms represent the outgoing
wave part OEl of the field, which is associated with a
source at the center of the cylinder. We thus have Ez
5 REl 1 OEl.

Local expansion (5) is valid only in an annulus extend-
ing from the surface of the cylinder to the nearest cylinder
or source [region (a) in Fig. 1]. The same expression may
be used around the jacket boundary, which we designate
with a superscript 0 [region (d) in Fig. 1].

Another description of the fields is orginally due to
Wijngaard.23 He reasoned that a field in a region can be
written as a superposition of outgoing waves from all
source bodies in the region. If the waves originate out-
side the region, their expansion is expressed in terms of
J-type waves, which are source free. Of course this
physical argument can be supplemented by rigorous
mathematical arguments,16,23,24 as discussed in Appendix
A. For MOFs the Wijngaard expansion takes the form

Ez 5 (
l51

Nc

(
m

Bm
ElHm

~1 !~k'
e urlu!exp@im arg~r 2 cl!#

1 (
m

Am
E0Jm~k'

e r !exp~imu!. (6)

Each term of the m series is an outgoing wave field with a
source at cylinder l, whereas the final term, indexed by 0,
is the regular field originating at the jacket boundary.

Equating Eqs. (5) and (6), thus enforcing consistency,
yields, in the vicinity of cylinder l,
(
m

Am
ElJm~k'

e rl!exp~imu l!

5 (
j51
jÞl

N

(
m

Bm
EjHm

~1 !~k'
e rj!exp~imu j!

1 (
m

Am
E0Jm~k'

e r !exp~imu!, (7)

because the Hm
(1)(k'

e rl) terms are common to both expan-
sions. Evaluating this expression is not straightforward
because different terms refer to different origins. We
therefore use Graf ’s addition theorem,25 which lets us
transform the origin of the cylindrical waves. A full dis-
cussion is given in Appendix B, where we show that it
may be viewed as a change of basis transformation. For
example, the contribution to the local regular field in the
vicinity of cylinder l that is due to cylinder j [curve (b),
Fig. 1] is

(
n

An
EljJn~k'

e rl!exp@in arg~rl!#

5 (
m

Bm
EjHm

~1 !~k'
e rj!exp@im arg~rj!#, (8)

where

An
Elj 5 (

m
Hnm

lj Bm
Ej, (9)

Hnm
lj 5 Hn2m

~1 ! ~k'
e clj!exp@2i~n 2 m !arg~clj!#,

(10)

where clj 5 cj 2 cl , as shown in Appendix B.1. At this
point we introduce the notation AElj 5 @An

Elj#, which lets
us generate vectors of mathematical objects. Similar no-
tation is used for matrices, i.e.,Hlj 5 @Hnm

lj #. In matrix
form, then, we represent basis change (9) as

AElj 5 HljBEj. (11)

Similarly, the contribution to the regular incident field
at cylinder l that is due to the jacket [curve (e), Fig. 1] is

(
n

An
El0Jn~k'

e rl!exp@in arg~rl!#

5 (
m

Am
E0Jm~k'

e r !exp~imu!, (12)

where the change of basis (derived in Appendix B.2) is

AEl0 5 J l0AE0, (13)

with

J l0 5 @J nm
l0 # 5 $~21 !~n2m !Jn2m~k'

e cl!

3 exp@i~m 2 n !arg~cl!#%. (14)

Accumulating these contributions for all cylinders and
the jacket, we have, in annulus (a) about cylinder l (see
Fig. 1)
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AEl 5 (
j51
jÞl

Nc

AElj 1 AEl0 5 (
j51
jÞl

Nc

HljBEj 1 J l0AE0,

(15)

a result that holds for both the Ez and the Kz fields.
In a similar way, the outgoing field in the vicinity of the

jacket boundary that is due to cylinder j [curve (c)] is

(
n

Bn
E0jHn

~1 !~k'
e r !exp~inu!

5 (
m

Bm
EjHm

~1 !~k'
e rj!exp@im arg~rj!#, (16)

with the change of basis represented by

BE0j 5 J 0jBEj, (17)

where

J 0j 5 @J nm
0j # 5 $Jn2m~k'

e cj!exp@2i~n 2 m !arg~cj!#%,

(18)

as shown in Appendix B.3.
Adding the contributions for all cylinder sources, we re-

express the first term on the right-hand side of Wijngaard
expansion (6) in a form that is valid just inside the jacket
[region (d)]:

(
l51

Nc

OEl 5 (
n

Bn
E0Hn

~1 !~k'
e r !exp~inu! 5 OE0, (19)

where

BE0 5 (
l51

Nc

BE0l 5 (
l51

Nc

J 0lBEl, (20)

a result that also holds for both Ez and Kz .

C. Boundary Conditions and Field Coupling
Whereas the field identities of Subsection 2.A apply indi-
vidually to each field component, cross coupling between
them occurs at boundaries. In what follows, it is most
convenient to formulate the boundary conditions in terms
of cylindrical reflection coefficients as derived in Appendix
C. For circular inclusions, for the reflected fields outside
each cylinder we have

Bn
El 5 Rn

EElAn
El 1 Rn

EKlAn
Kl,

Bn
Kl 5 Rn

KElAn
El 1 Rn

KKlAn
Kl, (21)

where the expression for the reflection coefficients are
given in Eqs. (C11) of Appendix C. The reflection matri-
ces are derived for each inclusion treated in isolation and
are thus known in closed form for circular inclusions, in
which case they are diagonal. For noncircular inclusions
they could be replaced by either analytic expressions for
other special cases or numerical estimates from a differ-
ential or integral equation treatment.20,26 In these cases
they generally also have off-diagonal elements.

Equations (21) can be written as

FBEl

BKlG 5 FREEl REKl

RKEl RKKlG FAEl

AKlG , (22)
or

B̃l 5 R̃lÃl, (23)

with REE,l 5 diag(Rn
EEl) and similar definitions for the

other reflection matrices. We also need an interior form
at the jacket boundary [point (d) in Fig. 1]:

Ã0 5 R̃0B̃0, (24)

where Ã0, B̃0, and R̃0 are defined as in Eqs. (22) and (23)
and the coefficients of R̃0 are given by Eqs. (C7). In this
form the outgoing field (B̃0) generated by all inclusions
[curve (c)] is reflected by the jacket to generate the regu-
lar field (Ã0), which feeds into the incident field for inclu-
sion l [curve (e) in Fig. 1]. It is straightforward to adapt
R̃0 to cases in which multiple films surround the hole re-
gion.

D. Derivation of the Rayleigh Identity
With the structure of the field coupling derived in Subsec-
tion 2.C we now form field identities that apply to the vec-
tor components Ãl and B̃l. From Eq. (15) we have

Ãl 5 (
j51
jÞl

Nc

H̃ljB̃j 1 J̃l0Ã0, (25)

where H̃lj 5 diag(Hlj, Hlj) and J̃ l0 5 diag(J l0, J l0).
Equation (25) is the representation of the regular incident
field at cylinder l in terms of outgoing components B̃j from
all other cylinders and an incident field contribution Ã0

from the jacket.
Combining Eq. (25) for all cylinders l 5 1 ... Nc and in-

troducing A 5 @Ãl# and B 5 @B̃l#, we derive

A 5 H̃B 1 J̃ B0Ã0, (26)

where H̃ 5 @H̃lj# for l, j 5 1 ... Nc with H̃ll [ 0 and

J̃ B0 5 @~J̃ l0# 5 @~J̃ 10!T, ~J̃ 20!T ,..., ~J̃ Nc0!T#T,
(27)

where T indicates the transpose. Similarly, the vector
outgoing field in the vicinity of the jacket that is due to all
the cylinders is given by

B̃0 5 (
j51

Nc

J̃ 0lB̃ l 5 J̃ 0BB̃ (28)

from Eq. (20). Here

J̃ 0B 5 @J̃ 0l# 5 @J̃ 01, J̃ 02 , ... J̃ 0Nc#. (29)

Combining Eqs. (23), (24), (26), and (28) and eliminat-
ing Ã0 and B̃0, we form a homogeneous system of equa-
tions (Rayleigh identity) in the source coefficients:

@I 2 R~H̃ 1 J̃ B0R̃0J̃ 0B!#B [MB 5 0, (30)

where the right-hand side indicates the absence of exter-
nal sources and

R 5 diag@R̃1, R̃2 , ..., R̃Nc#. (31)

Nontrivial solutions to homogeneous system (30) corre-
spond to nonzero fields propagating in the z direction.
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The solutions represent a nonzero field that exists with-
out any exterior source of energy, in other words, propa-
gating (possibly leaky) fiber modes.

3. NUMERICAL CONSIDERATIONS
A. Mode Location
Homogeneous equation (30), the main result of this paper,
corresponds to a nontrivial field vector B only if the de-
terminant of matrix M is effectively zero. Once the
structure and the wavelength are given, matrix M de-
pends only on b, or, equivalently, on its effective index
neff . The search for modes therefore becomes a matter of
finding zeros of the complex function det(M) of the com-
plex variable neff . To find the modes numerically, one
must truncate field expansions such as Eq. (5), say, to
have m running from 2M to M. In Fig. 2 we show a de-
terminant surface in the neighborhood of a well-defined
minimum, corresponding to a mode with a well-
characterized propagation constant neff 5 1.43858501
1 4.986 3 1027i. This example, and those that follow,
refer to a structure with a single ring of six equally spaced
holes with d 5 5 mm, L 5 6.75 mm, l 5 1.45 mm, R0
5 14.25 mm, ne 5 1.45, n0 5 ne 1 1028i, and M 5 5.
The small imaginary part of n0 has been introduced for
mathematical convenience. Its existence is not essential
in computations, and its exact value does not have a sig-
nificant effect on results.

We know from a group theoretical study of waveguides
by McIsaac18 that the modes of the fibers that we are con-
sidering are either nondegenerate or doubly degenerate.
Inasmuch as det(M) is the product of the eigenvalues of
M, we must look for minima in which one or two of the
eigenvalues have magnitudes that are substantially
smaller than the others. However, a minimum of the de-
terminant may also correspond to more than two eigen-
values being small simultaneously (a false minimum).
To distinguish these from genuine solutions, we consider
the singular values27 of M, which, for our case, correspond
to the magnitudes of the eigenvalues. False minima can
be distinguished by a singular value decomposition at the
putative minimum. Assuming that we have a genuine
minimum, the accuracy of the singular values may be as-
sessed from the stability of neff with increasing truncation

Fig. 2. Logarithm of the magnitude of the determinant of M
versus the real and the imaginary parts of the complex refractive
index for the MOF given in the text.
order. In most cases the real part of neff is found to ten
decimal places, and the imaginary part to five significant
figures, whereas the ratio of the smallest singular values
and the next smallest is approximately 7 orders of mag-
nitude. Another useful diagnostic of false minima is that
they often have real neff , whereas genuine roots have a
nonzero imaginary part. These distinguishing criteria
are further discussed in Ref. 22.

The null vectors that correspond to small singular val-
ues are approximate solutions to field identity (30). For
nondegenerate modes the null vector is unique to within
an arbitrary multiplicative constant. For a twofold de-
generate mode we let the basis states be prescribed by
group theory (see Subsection 3.B), though any linear com-
bination of these is equally justified.

B. Symmetry Properties of Modes
McIsaac18 classified the electromagnetic modes of wave-
guide structures according to the symmetry properties of
the configuration. This approach was previously ex-
ploited by Yamashita et al.21 for modal analysis of conven-
tional multicore fibers. The point group most often en-
countered in MOF studies is C6v because it combines
sixfold symmetry with mirror symmetry. Assuming C6v
symmetry leads immediately to a number of conclusions:
Any mode belongs to one of eight classes, and the classes
are either nondegenerate (classes 1, 2, 7, 8), in which case
they exhibit the full symmetry of the structure, or twofold
degenerate (classes 3–6), in which case they exhibit the
full symmetry in an appropriate linear combination. In-
asmuch as the nondegenerate modes have the full sym-
metry of the structure, their field needs to be calculated
only in a minimum sector of 30°, the edges of which must
coincide with a symmetry axis of the structure, with the
field elsewhere following by symmetry. The difference
between the modal classes are that different boundary
conditions apply to the tangential component of the elec-
tric field at the edges of the minimum sector; these are ei-
ther Neumann (]Ez /]u 5 0) or Dirichlet (Ez 5 0) condi-
tions or combinations of these (see Fig. 3). For the
degenerate mode classes the minimum sector is 90° (Fig.
3).

Table 1 lists the first ten modes for the MOF that we
are considering, exemplifying all McIsaac’s18 eight mode
classes. The losses (in decibels per meter) listed in col-
umn 3 are obtained from the imaginary part of neff by

Fig. 3. Minimum sectors for waveguides with C6v symmetry.
Mode classes p 5 1, 2, 7, 8 are nondegenerate; p 5 3, 4 and
p 5 5, 6 are twofold degenerate. Solid lines indicate Dirichlet
boundary conditions for the electric field; dashed lines indicate
Neumann boundary conditions.
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L 5
20

ln~10!

2p

l
J~neff! 3 106, (32)

with l in micrometers. In Table 1 the losses are large be-
cause more than one ring is necessary to achieve losses
compatible with practical usage, as we discuss further in
Ref. 22.

We show the fields of the first three modes from Table 1
in Figs. 4–6. Figure 4 shows a mode with a vertical
nodal line for Ez and a horizontal antinodal line. It must
therefore belong to class p 5 3 in Fig. 3, one of a degen-
erate pair. Its companion ( p 5 4) is shown in Fig. 5.
The similarity between uEzu in Fig. 4 and uKzu in Fig. 5 is
often evident in degenerate MOF modes but is not exact,

Fig. 4. Normalized fields uEzu and uKzu and energy flow Sz for
the degenerate fundamental mode class p 5 3 for a six-hole
MOF, with data of Fig. 2 and neff 5 1.445395345 1 3.15
3 1028 i.

Fig. 5. Similar to Fig. 4 but for degenerate fundamental mode
class with p 5 4 and neff 5 1.445395345 1 3.15 3 1028 i.

Fig. 6. Similar to Fig. 4 but for nondegenerate mode with
p 5 2 and neff 5 1.438585801 1 4.986 3 1027 i.

Table 1. Effective Index, Loss, Mode Class, and
Degeneracy of the First 10 Modes of the MOF

Given in the Text, Calculated for MÄ5

neff
Loss

(dB/m)
Class
( p)

Degeneracy
Real Imaginary

1.445395345 3.15 3 1028 1.2 3,4 2
1.438585801 4.986 3 1027 20 2 1
1.438445842 9.929 3 1027 37 5,6 2
1.438366726 1.374 3 1026 52 1 1
1.430175 2.22 3 1025 840 8 1
1.4299694 1.577 3 1025 590 3,4 2
1.429255296 9.337 3 1026 350 7 1
because Ez and Kz satisfy different boundary conditions.
The nondegenerate mode (Fig. 6) displays the MOF’s full
sixfold symmetry and has nodes of Ez at angles 0° and
30°; it thus belongs to class p 5 2 (Fig. 3).

4. DISCUSSION AND CONCLUSIONS
We have given the basic formulation of our multipole
method, and we have shown that it allows one to calculate
the modal properties of MOFs. The results presented
show the level of detail that can be obtained in calculating
field structures and symmetry properties. It is at
present limited to designs composed of nonintersecting
circular inclusions, but nevertheless it can be employed in
studies ranging over a wide parameter space: hole ra-
dius, spacing, number of rings, packing geometry, air or
solid core, etc. A key feature of the method is that fre-
quency v can be used as an input parameter, whereas the
propagation constant b follows from the calculation.
This is an important advantage when one is dealing with
dispersive media: Because v is fixed, the appropriate re-
fractive indices are known from the outset. Contrast this
with plane-wave methods, for example, in which b is fixed
and v follows from the calculation. The appropriate re-
fractive indices are then not known and are usually in-
cluded by use of an iterative procedure, adding consider-
ably to the computational requirements.

The magnitude of matrix M in identity (30) equals
2(2M 1 1)Nc and is thus moderate if the number of
holes is not too large. In addition, as discussed in Ref.
22, M needs to increase with the size of the holes. We
also detail there the method’s implementation and valida-
tion and also give more numerical results. Therefore we
defer further discussions of the method to Ref. 22.

APPENDIX A: DERIVATION OF THE
WIJNGAARD EXPANSION
To generalize the Wijngaard expansion of the field to
MOF, we define a function U(x, y) as

U~x, y ! 5 H Ez r , R0

0 elsewhere
. (A1)

Thus U is continuous inside the hole region because of the
continuity of the tangential field component, whereas its
normal derivative is discontinuous at the boundaries of
the inclusions. Both U and its normal derivative are dis-
continuous at jacket boundary C (r 5 R0). As a conse-
quence, it can be deduced from Eqs. (3) and (4) that U sat-
isfies, in the sense of distributions,28

¹2U 1 k'
2U 5 s, (A2)

where k' 5 k'
i in inclusion i and where k' 5 k'

e else-
where. Source s is a singular distribution, given by

s 5 (
j51

Nc

SjdCj
2 TdC 2 ¹ • ~nQdC!, (A3)

with Sj defined at boundary Cj of the jth hole as the jump
of the normal derivative of U. Further, Q and T are, re-
spectively, the limits of U and its normal derivative at r
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5 R0 , where the normal n is outwardly oriented. Distri-
bution AdC is defined by28

^AdC , w& 5 E
C

A~M !w~M !dM, (A4)

where M is a point of C, dM is the length of an elementary
segment of C, and w is an infinitely differentiable function
with bounded support.

Equation (A2) can be rewritten as

¹2U 1 ~k'
e !2U 5 @~k'

e !2 2 ~k'!2#U 1 s, (A5)

so in the hole region U follows from the convolution

U 5 Ge!$s 1 @~k'
e !2 2 ~k'!2#U%, (A6)

where Ge is the Green function of the Helmholtz equa-
tion: Ge 5 2iH0

(1)(k'
e r)/4. From Eqs. (A3) and (A6), U

can be reexpressed as

U 5 (
j51

Nc

Ge!Dj 1 Ge!D, (A7)

with

Dj 5 SjdCj
1 @~k'

e !2 2 ~k'
j !2#Uj , (A8)

D 5 2TdC 2 ¹ • ~nQdC!, (A9)

Uj 5 H U in the jth inclusion

0 elsewhere
.

(A10)

Each term Vj 5 Ge!Dj of the sum on the right-hand side
of Eq. (A7) is generated by sources placed inside or at the
boundary of the jth inclusion and satisfies a radiation
condition outside this hole. It can be identified at any
point outside this inclusion as the field scattered by this
conclusion. Of course, because it satisfies the homoge-
neous Helmholtz equation outside the jth inclusion, in
the sense of distributions it can be represented in the en-
tire matrix region as a Fourier–Bessel series:

Vj 5 (
m

Bm
EjHm

~1 !~k'
e rj!exp~imu j!. (A11)

The term Ge!D on the right-hand side of Eq. (A7) is gen-
erated by sources on the jacket boundary, and it thus has
no singularity inside this boundary. It can be identified
as the incident field generated by the jacket and illumi-
nating the matrix-inclusion region. It can also be repre-
sented in a Fourier–Bessel expansion:

V inc 5 (
m

Am
E0Jm~k'

e r !exp~imu!. (A12)

From Eqs. (A7), (A11), and (A12) it can now be shown
that, in the entire matrix region, field Ez can be repre-
sented by Wijngaard expansion (6). The same argument
can be used for the z component of magnetic field Hz .

APPENDIX B: CHANGE OF BASIS
Three changes of basis transformation are required: (i)
conversion of outgoing fields sourced on one cylinder to
regular fields in the basis of another cylinder, (ii) conver-
sion of the regular field sourced on the jacket boundary to
a regular field in the basis of each cylinder, and (iii) con-
version of outgoing fields sourced at the cylinders to an
outgoing field close to the jacket boundary. These are
considered separately below.

1. Cylinder-to-Cylinder Conversion
Here we consider an outgoing cylindrical harmonic wave
sourced from cylinder j and derive its regular representa-
tion in the coordinate system of cylinder l. From Graf ’s
theorem25 we derive

Hm
~1 !~k'

e rj!exp@im arg~rj!#

5 (
n52`

`

Jn~k'rl!exp@in arg~rl!#Hn2m
~1 ! ~k'

e clj!

3 exp@2i~n 2 m !arg~clj!#, (B1)

so the total field that is due to cylinder j is expressed as

(
m52`

`

Bm
j Hm

~1 !~k'
e rj!exp@im arg~rj!#

5 (
n52`

`

An
ljJn~k'

e rl!exp@in arg~rl!#, (B2)

where An
lj, defined in Eqs. (9) and (10), denotes the con-

tribution to the nth multipole coefficient at cylinder l that
is due to cylinder j.

2. Jacket-to-Cylinder Conversion
From Graf ’s theorem25 we now have

Jm~k'
e r !exp~imu! 5 (

n52`

`

Jn~k'
e rl!exp@in arg~rl!#

3~21 !n2mJn2m~k'
e cl!

3 exp@2i~n2m !arg~cl!#, (B3)

and, from this, the change in the basis transform is

(
m52`

`

Am
0 Jm~k'

e r !exp~imu!

5 (
n52`

`

Al0Jn~k'
e rl!exp@in arg~rl!#, (B4)

where An
l0 denotes the multipole coefficient in the basis

of cylinder l that is due to the regular field radiating from
the jacket. Equation (13) is the matrix form of Eq. (B4).

3. Cylinder-to-Jacket Conversion
The relevant transformation from Graf ’s theorem25 is
now

Hm
~1 !~k'

e rl!exp@im arg~rl!#

5 (
n52`

`

Hn
~1 !~k'

e r !exp~inu!Jn2m~k'
e cl!

3 exp@2i~n 2 m !arg~cl!#. (B5)
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The contribution from cylinder l to the outgoing field near
the jacket boundary is

(
m52`

`

Bm
l Hm

~1 !~k'
e rl!exp@im arg~rl!#

5 (
n52`

`

Bn
0lHn

~1 !~k'
e r !exp~inu!, (B6)

which can be written in matrix notation as Eq. (17).

APPENDIX C: BOUNDARY
CONDITIONS—REFLECTION MATRICES
We consider a cylinder centered at the origin of refractive
index n2 and radius a embedded in a medium of refrac-
tive index n1 . To derive the reflection matrices of this
cylinder we express the Ez and Hz fields in terms of
Fourier–Bessel series in the local cylindrical coordinates
(r, u) inside and outside the cylinder [cf. Eq. (5)]:

Ez
7~r, u! 5 (

m52`

`

@Am
E7Jm~k'

7r ! 1 Bm
E7Hm

~1 !

3~k'
7r !#exp~imu! (C1)

for r , a (2) and r . a (1), with similar expressions for
Kz . Here k'

6 5 (k02
n6

2 2b2)1/2 are the transverse wave
numbers inside (outside) the cylinder. We introduce the
vectors AE6 5 @Am

E6# and BE6 5 @Bm
E6#, as well as their K

counterparts, and the condensed notation introduced in
Eqs. (22) and (23) for Ã6 and B̃6. The interpretation of
the J and H terms was made in Section 2. At the cylin-
der boundary, reflection and transmission occur and the
waves mix with one another, which, because of the linear-
ity of the Maxwell equations, can be expressed as a ma-
trix relation among the various coefficients, as

Ã2 5 T̃2Ã1 1 R̃2B̃2,

B̃1 5 R̃1Ã1 1 T̃1B̃2. (C2)

Here R2 and R1 are referred to as interior and exterior
reflection matrices of the cylinder, whereas T1 and T2 are
transmission matrices, which do not matter in the analy-
sis below. Note that the first of Eqs. (C2) leads to Eq.
(24), whereas the second leads to Eq. (23).

The R6 matrices can be derived from the continuity of
the tangential field components at the cylinder boundary.
To make this derivation we need the expressions for the u
components of the fields, which can be expressed as func-
tions of the z components as6

Eu~r, u! 5
i

k'
2 S b

r

]Ez

]u
2 k

]Kz

]r D , (C3)

Ku~r, u! 5
i

k'
2 S b

r

]Kz

]u
1 kn2

]Ez

]r D , (C4)

where n is the refractive index. The partial derivatives
that appear follow straightforwardly from Eq. (C1).

We can now write the continuity conditions for the z
components by equating Eq. (C1) on the boundary. Be-
cause the resultant equation is valid for all u, terms with
different m decouple, and we find for each m that

Am
E2Jm

2 1 Bm
E2Hm

2 5 Am
E1Jm

1 1 Bm
E1Hm

1 ,

(C5)

with the same result for Kz . Here we have introduced
the condensed notation Jm

6 5 Jm(k'
6a), etc.

In the same way we can equate the interior and exte-
rior expressions for Eu and Ku . We then obtain two
equalities of Fourier series in exp (imu), in which, again,
terms with different m decouple. These equations, which
are not written out here, in combination with Eq. (C5)
and its Kz counterpart are sufficient to produce the R ma-
trices.

We first concentrate on interior reflection matrix R̃2;
we obtain its coefficients by setting the exterior incoming
field to zero: Ã1 5 0. It is now straightforward to solve,
for a given m, the linear set of equation given to express
Am

E2 and Am
K2 in terms of Bm

E2 and Bm
K2 by eliminating

Bm
E1 and Bm

K1. We obtain

Am
E2 5 Rm

EE2Bm
E2 1 Rm

EK2Bm
K2,

Am
K2 5 Rm

KE2Bm
E2 1 Rm

KK2Bm
K2, (C6)

with

Rm
EE2 5

1

dm
@~aJ2H1

1
2 aH1J2

2
!~n 2

2 aH2H1
1

2 n1
2 aH1H2

2
!

2 m2Jm
2Hm

2Hm
12t 2#,

Rm
EK2 5

1

dm
F2mt

pka

k'
1

k'
2

Hm
12G ,

Rm
KE2 5 2n2

2 Rm
EK2,

Rm
KK2 5

1

dm
@~aH2H1

1
2 aH1H2

2
!~n2

2 aJ2H1
1

2 n1
2 aH1J2

2
!

1 m2Jm
2Hm

2Hm
12t 2#, (C7)

where

aJ6H6
6

5
k'

6

k
Jm8

6Hm
6 , (C8)

with other a coefficients defined analogously. Further,

dm 5 ~aH1J2
2

2 aJ2H1
1

!~n2
2 aJ2H1

1

2 n1
2 aH1J2

2
! 1 ~mJm

2Hm1t2 (C9)

t 5
b

ak'
2k'

1
~n1

2 2 n2
2 !. (C10)

To obtain exterior reflection matrix R̃1 we set B̃2 5 0
and eliminate the Am

2 coefficients. This yields

Rm
EE2 5

1

dm
@~aJ2H1

1
2 aH1J2

2
!~n2

2 aJ2J1
1

2 n1
2 aJ1J2

2
!

2 m2Jm
1Hm

1Hm
22t 2#,
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Rm
EK1 5

1

dm
F2mt

pka

k'
2

k'
1

Jm
22G ,

Rm
KE1 5 2n1

2 Rm
EK1,

Rm
KK2 5 2

1

dm
@~aJ2J1

1
2 aJ1J2

2

!~n2
2 aJ2H1

1

2 n1
2 aH1J2

2
! 2 m2Jm

1Hm
1Hm

22t 2#. (C11)
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