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Abstract: In this paper, dielectric Cavity-Resonant Integrated-Grating Filters (CRIGFs) are
numerically optimized to achieve extremely high-quality factors, by optimizing the cavity
in/out-coupling rate and by introducing apodizing mode-matching sections to reduce scattering
losses. Q-factors ranging between 0.1 and 50 million are obtained and two different domains
are distinguished, as a function of the perturbation parameter which controls the cavity in/out-
coupling rate. When the cavity coupling Q-factor is lower than the Q-factor of the uncoupled
Fabry-Perot cavity, corresponding to the over-coupling regime, the reflectivity response exhibits a
high resonance maximum. On the contrary, in the under-coupling regime the resonant reflectivity
maximum is much weaker since the scattering losses of the uncoupled cavity dominate. Between
these two domains, the so-called critical coupling condition leads to very strong field enhancement
inside the device, reaching up to 104 times the incident field amplitude. This theoretical work
paves the way towards the practical implementation of CRIGFs with much higher Q-factors than
currently demonstrated, potentially reaching performance on a par with other resonators such
as photonic crystal cavities or whispering gallery mode resonators. These results can serve to
optimize the design of narrow-band planar grating filters, particularly for application in non-linear
optics.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The use of zero-order dielectric gratings for spectral filtering started in 1978 with the work of
Knop [1] on a large-band filter for color imaging. Several years later, narrow-band filtering
was demonstrated [2], based on the Fano-type anomaly [3,4], the latter being caused by the
excitation of waveguide modes in corrugated waveguides. The main advantage came from the fact
that, irrespective of the grating parameters, when its groove profile is symmetric, the reflection
maximum is theoretically guaranteed to reach 100% [5]. Consequently, any (large or small)
spectral width of the anomaly can be obtained with a proper choice of the grating modulation
strength. Theoretically, under plane-wave incident illumination, the angular tolerance imposed
on the incident beam is determined mainly by the grating equation; the smaller the spectral width,
the smaller the divergence of the beam required [6]. If this requirement were to be neglected, the
theoretical 100% reflection maximum reduces and the spectral width increases. For example, a
Q-factor of 106 requires width of the incident beam to be in excess of 5000 resonant wavelengths
[7], requiring large and homogeneous beams and gratings.

It was necessary to wait until the new millennium in order to overcome this trade-off by
placing the corrugated waveguide inside a resonator [8,9]. Indeed, in that case, the size of
the cavity determines the working wavelength and significantly increases the angular tolerance.
When planar Distributed Bragg Reflectors (DBR) form the external cavity, the device is known
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under the name of cavity-resonator integrated grating filter (CRIGF). Applications have been
demonstrated including narrow-band filtering of focused beams [10,11] using Si3N4/SiO2 or
GeO2/SiO2 materials, wavelength-stabilized external-cavity diode lasers [12,13] down to the
mid-infrared using GaAs/AlGaAs materials, or second harmonic generation (SHG) [14–16] using
lithium-on-insulator (LNOI) substrates. Nevertheless, to-date, the experimentally demonstrated
CRIGFs exhibit Q-factors reaching, at the most, a few thousands [17], and CRIGF optimization
remains limited to basic design considerations independent of the final applicative purpose.

In this paper, we propose new practical designs that alleviate these limitations and enable
creation of CRIGFs with an extremely narrow-band spectral response (Q> 107) as calculated by
the Fourier modal method (FMM) [18,19]. The main optimization principle consists of adjusting
the grating coupling efficiency such that the waveguide cavity excitation meets the critical
coupling condition, as defined for other resonators [20]. For high Q-factors, the predominant
loss mechanism is due to transition scatter (originating from the difference in effective index
between the central grating coupler (GC) and the surrounding cavity-building Distributed Bragg
Reflectors (DBRs) – see Fig. 1). Therefore, an additional strategy is introduced to reduce these
losses by insertion of apodizing regions at these junctions. Both improvements are successfully
underpinned by the choice of bi-atom grating structures [21] with a shallow-depth profile
modulation throughout the device. Finally, our analysis in terms of critical coupling allows
us to develop design strategies adapted to promote narrow-band high reflectivity for filtering
applications or high internal field for non-linear applications.
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Fig. 1. Schematic presentation of the different CRIGF configurations.

2. CRIGF design

The CRIGF devices are presented schematically in Fig. 1. The typical device consists of a
high-index waveguiding layer on a substrate covered with a lamellar grating. The latter serves as
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a grating coupler between the waveguide mode and the incident Gaussian beam, impinging on
the device at normal incidence. The GC is placed in a resonator cavity made of two Distributed
Bragg Reflectors (DBR)s. The length of the junctions between the GC and the DBRs are chosen
to tune the resonant wavelength to the chosen design value, 1.55 µm in our case. The pattern is
considered infinite in y-direction. While the real structures have limited width, we have already
shown in [19] that this has no impact on the CRIGF scattering properties, provided that the width
is larger than twice its length. This study was made for smaller Q-factor (around 700), and should
be extended for structures with greater Q-factors, but this is out the scope of this paper.

The values of the Q-factor for CRIGF devices known in the literature hardly exceed 20 000,
although much higher values (up to 2×106) have been predicted by using the excitation of
the antisymmetric (so called dark) modes of the device [16]. Further increase can be made
by decreasing the grating efficiency of the GC, for example, by decreasing its groove depth.
However, the depth of the DBR region must stay sufficiently high to ensure high reflectivity at a
reasonable length. Using different groove depths for the different gratings of the device could
be considered, but this approach requires challenging multi-etching fabrication processes with
nanometric realignment. Additionally, such a choice also increases the difference between the
modal field profiles between the GC and DBR regions and thus increases the losses due to the
transitional scatter (Str) at these junctions. As shown further, these losses can become critical for
large values of the Q-factor.

Keeping the groove depth of the GC region fixed leaves several options to reduce the modal
excitation efficiency: 1) using a filling factor of the grooves considerably different from 0.5,
although this implies that either the groove troughs or bumps have to be very narrow (tending to
zero as the device Q-factor increases), creating technological difficulties; 2) exciting the “dark”
mode, as we proposed in [16]; or 3) as explored in the present study, constructing a so-called
bi-atom grating, consisting of double-feature grooves of overall period 2dDBR (dDBR being the
period in the DBR regions) with different width a1 and a2 of the consecutive bumps and trough
width cGC/2 (see Fig. 2). While the filling factor can stay close to 0.5, the difference δ= (a1 –
a2)/4 serves as a small perturbation influencing the coupling in & out of the FP cavity. This
approach allows to minimize the difference between the GC and DBR patterns, reducing the
scatter losses at the junctions due to impedance mismatch.

Fig. 2. Detailed view of the double-feature (bi-atom) structure of the GC, with perturbation
parameter δ, and dimensionless parameter η.
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Alternatively to the parameter δ, in order to be consistent with the literature on resonators, we
will use in section 3 the dimensionless parameter:

η =
δ

δmax
(1)

with δmax= (dGC-cGC)/4 for which a2= 0 and a1 is maximum (see Fig. 2). When η= 0 (δ= 0 nm),
the profile corresponds to a DBR with a fill factor cGC/(2dDBR), and there is no coupling between
the cavity and the free-space incoming beam. When η= 1 (δ= δmax), the profile corresponds to
a standard GC with a fill factor cGC/dGC= cGC/(2dDBR), and the in/out-coupling is maximum.

Hereafter, we consider a design wavelength of 1.55 µm. The vertical stack of the considered
CRIGF (see Fig. 1(a)) is a 300-nm-thick waveguiding layer of lithium niobate (nL = 2.1362 at
1.55 µm) on a glass substrate (ns= 1.4440 at 1.55 µm), covered with a fully-etched 50 nm thick
lamellar grating made of Si3N4 (nG = 1.9963 at 1.55 µm). These values were chosen as 300 nm is
the thinnest commercially available lithium niobate on insulator layer, and the grating thickness
was adjusted to present a good compromise between the DBR mirror parameters (reflectivity and
bandwidth) and GC coupling strength.

As the real part of the guided mode effective index is approximately equal to 1.7725, we fix
the groove period dGC to 1.55/1.7725 ≈ 0.87446 µm to achieve a 1.55 µm resonance. The two
grooves inside each period (Fig. 2) have the same width cGC/2= 0.225 µm, and the bump widths
a1 and a2 depend on δ. At a fixed groove depth, the strength of the excitation of the guided mode
is proportional the square of the perturbation δ [5]. This strength can be expressed either as
the imaginary part n′′

eff of the effective index of the mode, or as the imaginary part λp ′′ of the
wavelength pole λp of the system:

λ
p = λp ′ + iλp ′′. (2)

The Q-factor of the infinite grating is then simply given by the ratio between the real and
imaginary parts of the pole:

Qinf =
λp ′

2λp ′′
∼

1
δ2 . (3)

The factor 2 in the denominator stems from the fact that the Q-factor is related to the field
mode intensity, while the pole and zero originate from the modal amplitude excitation. Table 1
gives the values of the pole imaginary part and the corresponding Q-factor calculated with FMM
for a set of δ values. These results are consistent with Eq. (3).

As already mentioned, in the case of an infinite grating illuminated by a plane wave, the grating
equation implies that spectral width and angular tolerances are tightly coupled. A higher Q-factor
(and thus a spectrally narrower resonance) implies tighter angular tolerances and larger excitation
beams. In particular, GMRFs with Q∼106 typically exhibit sub-0.1° angular acceptance angle
and need to be probed with millimetre-waist Gaussian beams.

Table 1. Properties of the infinite-size GC as a function of δ.

δ (nm) 20 10 5 2.5 1.25 0.625 0.3125

λp′′ (x10−6) 70.2 17.7 4.42 1.1 0.276 0.069 0.0173

Qinf (x106) 0.011 0.044 0.175 0.704 2.81 11.2 44.8

When placed in a Bragg-grating mirror cavity, the dispersion curve is flattened [22] (see
Appendix), so that a device having 21 grooves for the GC (i.e. a GC length of 18 µm), can be
used with focused incident beam having a waist w= 9 µm, while maintaining a resonant reflection
maximum greater than 80%. The flattening of the dispersion curve is easily explained by the fact
that the resonant wavelength is determined by the external (Bragg) resonator and does not depend
on the incident angle. The latter only determines the efficiency of the mode excitation by the GC.
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The period of the DBR dDBR is half the GC period dGC, and determined by the equation:

dBG = λ/(2n′
eff). (4)

where n′
eff is the real part of the mode propagation constant. To maximize the DBR reflectivity its

filling factor is usually taken to be equal to 50% (cDBR= 0.5dDBR). However, with h= 50 nm, the
DBR reflectivity spectral region only extends over 20 nm, and effective index mismatch between
the GC and DBR moves the GC resonance wavelength out of the DBR reflectivity stopband.
In order to compensate for this mismatch and bring back the GC wavelength within the stop
band we set cDBR= 160 nm, equal to 0.456 times dDBR. The spectral position of the reflection
maximum can then be fine-tuned by varying the distance between the GC and DBR regions,
which we denote by ∆ (see Fig. 1(a)).

In a CRIGF, as the GC is inside a cavity, its Q-factor, QGC, increases because the mode extends
inside the DBR mirrors over an effective length, while the in/outcoupling radiation losses only
occur inside the GC region:

QGC = Qinf
L

LGC
=
λp ′

2λp ′′
L

LGC
, (5)

where
L = LGC + 2Leff (6)

and Leff is the effective length of the penetration of the mode energy inside the mirrors [23]:

Leff =
tanh(γDBRLDBR)

2γDBR
. (7)

γDBR and LDBR respectively being the rejection strength and physical length of the DBRs. In our
case γDBR is ∼0.0454 µm−1, and Leff is ∼11 µm. The overall Q-factor of the system, QCRIGF, is
determined by the in/outcoupling radiation losses of the GC and the intrinsic Q-factor of the
uncoupled (δ (or η) tending to 0) FP cavity, QFP:

1
QCRIGF

=
1

QGC
+

1
QFP

. (8)

Neglecting all other types of losses, QFP is limited by the leakage through the DBR mirrors,
QDBR, which can be expressed as:

QDBR =
2πneffL
λTDBR

, (9)

where TDBR is the transmission coefficient of the DBR and is given by the relation:

TDBR = 1 − RDBR = 1 − tanh(γDBRLDBR). (10)

Given the rejection strength of the DBR, we consider 400-groove DBRs (with total length
LDBR = 400 dDBR) as these mirrors reflect more than RDBR = tanh(γDBRLDBR)= (1 – 2.10−7)
parts of the mode amplitude [24] and lead to a QDBR of 1.45×109.

However, FMM calculations of QCRIGF systematically show asymptotic intrinsic Q-factors
(achieved for δ (or η)→0) that are much lower than the above-mentioned value of QDBR, even
with QGC tending to infinity. Therefore, an additional loss must be present in the system and that
is not included in this simple analysis.

In the real world, there could be several important losses, for example; material absorption,
surface roughness scatter, mode spatial spreading between the DBR mirrors, and grating
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inhomogeneities. However, all these technologically related losses are eliminated in the
theoretical-numerical model used here. The loss that remains in our calculations is the scatter Str
due to the transition losses at the junctions between different gratings. Taking this into account
and assuming that the losses due to the DBR leakage are much smaller than scattering losses,
QFP can be written in the form:

QFP ≈
2πneffL
λStr

. (11)

where Str is the scattering loss per cavity round trip.
Considering our design K0, the junction length ∆ (Fig. 1(a)) is found to be of the order of

0.82 µm, almost twice the wavelength of the standing wave of the waveguide mode inside the
resonator, and has a real part of the mode propagation constant different from the ones inside the
GC and DBR regions (which are both the same by design). This difference in mode propagation
causes scattering at the interfaces between these zones. As proposed in [14], it is possible to
significantly reduce Str by dividing the junction in two segments with a single groove whose
width is optimized numerically. This configuration is denoted as K1 (Fig. 1(b)).

Another source of scattering comes from the differences in the imaginary parts of the
propagation constant of the mode in the different regions of the device. The imaginary part of
the mode propagation constant in the DBR is equal to γDBR ≈ 0.0454 µm−1, whereas inside the
GC it can be as small as γGC ≈ 10−8µm−1. To limit these losses, we chose to use the apodizing
technique, which is well known to allow modal adaptation between different regions. This
consists of gradual change of geometrical parameters inside the junction region between the
DBRs and the GC. In this configuration, Kapo, the junction is separated into two regions JapoA
and JapoB (see Fig. 1(c)). Region JapoA gradually reduces the value of δ towards that of the DBR
configuration (δ= 0). However, this section does not have the same filling factor as the cavity
DBR, which is equal to 0.465. Region JapoB, set between region JapoA and the DBR, gradually
adapts the filling factor from 0.5 to 0.456.

In practice, Region JapoA, close to the GC, has 9 GC grooves and a length of 8 µm with a
linearly decreasing value of δ down to zero, keeping the same groove width, cGC/2= 225 nm.
Region JapoB has 9 grooves with δ= gra0 and a groove width that gradually varies from 225 to
160 nm. Region JapoA also serves as a part of GC in- and out-coupling, thus the length of the GC
is reduced from 21 to 11 grooves to maintain an optimal coupling with an incident beam of 9 µm
waist. The resulting total length of the device is slightly increased from 324 to 342 µm. Note that
for the two smallest δ values (δ= 0.625 and 0.3125 µm) region JapoA is not used as it does not
improve the Q-factor.

3. Q-factor and coupling regimes

Our goal is to study the transition between a situation where the coupling is dominated by the
GC and a case where it is dominated by the cavity scattering. Therefore, we studied the three
designs shown in Fig. 1 with varying values of δ.

Figure 3 shows in solid black line the in/out coupling Q-factor, QGC, as calculated by Eq. (5),
as a function of η (as defined by Eq. (1) in section 2) and δ on the top axis. Each solid color
line corresponds to the intrinsic Q-factor of the uncoupled cavity (red for configuration K0, blue
for K1 and magenta for Kapo) while each solid color line with symbols represents the CRIGF
Q-factor calculated with FMM (red for configuration K0, blue for K1 and magenta for Kapo).

As expected, irrespective of the junction design, the behavior of QCRIGF asymptotically matches
QGC for high coupling (high η values) cases. QGC follows a δ−2 dependence as highlighted by
Eq. (3) and (5). Having considered a CRIGF with DBRs exhibiting a 0.0454/µm rejection strength
and with a GC whose length LGC was taken to be 18 µm for optimal excitation by a 9-µm-waist
Gaussian beam, the plotted QGC values are enhanced by a factor (LGC+2Leff)/LGC= 40/18 with
respect to the values provided in Table 1.
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Fig. 3. Q-factor (in million) as a function of η: black line QGC (Eq. (4)), red circles and red
line, QCRIGF and QFP for the case K0 without supplementary groove; blue triangles and
blue line, QCRIGF and QFP for the case K1 with a supplementary groove in the junction of
GC and DBR; magenta inverted triangles and magenta line, QCRIGF and QFP for the Kapo
case. The top scale gives the values of δ in nm.

When decreasing the grating strength (η), the deviation of QCRIGF from QGC gradually
increases, QCRIGF reaching a saturation limit for small η which corresponds to the intrinsic
Q-factor, QFP is determined according to Eq. (8). Furthermore, this intrinsic Q-factor is seen
to be influenced by the DBR-to-GC junction design as the saturation value increases when the
junction is changed from K0 to K1 and from K1 to Kapo. This observation highlights the fact
that the junction design can be a performance-limiting factor in the CRIGF response, that the
proposed approach to reduce the scattering losses is indeed effective, and that the maximum
achievable Q-factors can be raised to values in excess of 106.

By analogy with ring resonators [25], the large η (respectively small η) region in Fig. 3
is ascribed as the over-coupling (respectively under-coupling) region. Indeed, large profile
perturbations lead to values of QGC much smaller than QFP and thereby the QCRIGF is limited
by QGC. With smaller profile perturbation parameter η, QGC grows and, consequently, QCRIGF
also increases. QFP is not affected by that change and stays almost constant and independent
of η. Approaching the so-called critical coupling [20,25] defined by QGC =QFP, QCRIGF grows
less rapidly and becomes equal to QGC/2 at the critical point. In the case of K0 this happens for
η= 0.047, for K1, at approximatively η= 0.024, and with apodization Kapo, for η= 0.014. To the
left of the latter critical point, QCRIGF becomes limited by QFP (QFP<<QGC), and the operation
enters the under-coupling regime.

Yariv [20] has pointed out that critical coupling must lead to an enormous enhancement of the
modal field inside the resonator, no matter the excitation process. Indeed, Fig. 4(a) shows the
values of the electric field maximum Emax (calculated at the center of the lower interface of core
layer of the CRIGF (point (0,0) in Fig. 1(a), and normalized with respect to the incident field),
for the three different CRIGF configurations. As expected from Yariv’s work, the maxima of
Emax appear quite close to the positions of the critical coupling.
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Fig. 4. Dependence of (a) the amplitude of the electric field in the middle of the structure
(x= z= 0 in Fig. 1(a)) and of (b) the reflectivity maximum as a function of the perturbation
parameter for the three types of junctions. δ is given in nm.

Figure 4(b) presents the reflectivity maxima as a function of the perturbation parameter.
Contrary to ring resonators, where the minimum in transmission reaches 0 at the critical coupling,
here we observe quite a different behavior. In the over-coupling zone, the reflectivity is maximal
(i.e. the transmission is minimal), decreases rapidly at critical coupling, and quickly saturates
at much lower value in the under-coupling region. The explanation is quite simple. In the
over-coupled regime, the predominant losses come from the radiation by the GC in the cladding
and the substrate, which, in fact is the grating contribution to the resonant Fano-type anomaly
in reflection. This resonant contribution is responsible for the 100% maximum of R for an
infinite grating with plane wave illumination. On the other hand, the scattering losses in QFP at
the junctions between different regions have non-specular character, and do not contribute to
the resonance in reflection. Moreover, they grow proportionally to the field intensity, which is
maximal at critical coupling. This behavior is fairly general and is found to be similar to the
result described in [26], except that the bound states in [26] are symmetry-protected

Figures 3 and 4(a) confirm the interest of mode matching the different regions. Even the
simplest introduction of an additional groove at the junctions leads to an almost 3-time increase
of the Q-factor for δ= 2.5 nm, and similar increase in the electric field amplitude. Adding an
apodization region helps gaining another 2.1 times increase of the Q-factor. Almost half of
it is due to the increase in the effective resonator length while the remainder comes from the
apodizing effect. At smaller η the increase can reach more than 10 time.

4. Conclusions

The analysis of the response of resonators in terms of coupling regimes has been extended to
Cavity-Resonant Integrated-Grating Filters. In particular, it has been shown that the device
behavior can be continuously adjusted by varying the profile of the (bi-atom) internal grating
coupler from the over-coupling regime dominated by this grating in/outcoupling radiative loss to
the under-coupling regime limited by the intrinsic resonator scattering losses.

A first practical conclusion of this study is that, should the device be used as a narrow-band
reflection filter, the operating regime should be restricted to the over-coupling domain since in
this case, the resonant peak reflectivity (respectively transmission) is maximized (respectively
minimized). Additionally, should the CRIGF serve as local field amplifier, as for non-linear
operation for instance, the best performance will be obtained, as with other resonators, close to the
critical coupling condition. However, CRIGFs do not exhibit an obvious signature when operating
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at critical coupling, contrary to ring resonators. This will lead to an additional experimental
difficulty in the optimization of the device performance. However, the difficulty is compensated
by the rather large tolerances in terms of η values required to achieve critical coupling.

Last but not least, we have established that, using an appropriate mode matching technique,
the achievable Q-factors can in theory reach several millions, values close to the best Q-factors
achieved in other waveguide resonators, namely whispering gallery mode resonators [27–29] and
photonic crystal cavities [30].

Concerning other potential losses, preliminary calculations shows that Q-factors larger than
105 can be achieved with our designs provided that the imaginary part of the optical index of the
layers is lower than 10−5, corresponding to 3.5dB/cm losses, which strengthen the potential of
this approach.

5. Appendix: Spatial Fourier presentation of the modal field

An infinitely long plane waveguide supports guided modes having a Dirac-function spectral and
angular response:

exp(iαpx), (12)

where αp = k0neff is the mode propagation constant. When put in a cavity with a length L, the
angular width is enlarged to 4π/L:

exp(iαpx) → L
sin(α − αp)L

2

(α − αp)L
2

, (13)

In the CRIGF device, as the incident field has a Gaussian form (both in the direct and the inverse
space), the modal field Fourier distribution is a convolution between the sample function (Eq. 13)
and the Gaussian beam. As the waist of the latter is matched to the length of the GC region,
they have similar width in the inverse space. For example, if the waist is 5 µm and the optimal
effective length is about 40 µm, the corresponding width in the inverse space are of the order of
0.3 µm−1, independent of the value of δ.
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