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A numerical analysis is presented of two types of minigaps: o- and k-gap that are formed in 
the reflectivity dips when two oppositely propagating plasmon surface waves (PEW’s) are excited 
simultaneously. Their connection with complex trajectories of poles and zeros is revealed: an 
w-gap is formed when splitting of poles is observed and a k-gap only exists when a splitting of 
zeros occurs. 

It is well-known that when a PSW propagates along a metallic grating, the 
corrugation modifies its propagation constant. This influence is especially 
pronounced in the so-called “mini-gap” region, where the grating couples two 
oppositely propagating surface waves [l]. This causes an energy transfer and a 
sharp increase of the imaginary part of the PSW propagating constant op is 
observed even in the case of lossless media. Thus a forbidden gap in the 
dispersion curve appears (w-gap). 

Very recently it. has been discovered [2] that at some conditions a k-gap, 
rather than w-gap, can be formed. Tran et al. [3] have shown that the 
formation of w- or k-gaps is independent on the excitation conditions but is 
determined mainly by the correlation between the strength of the direct 
coupling of the two PSW’s, their coupling to the radiation diffraction order(s) 
and the other types of losses. 

The aim of this paper is to give a physical interpretation of both types of 
mini-gaps. For this sake their connection with the complex trajectories of poles 
(solutions of dispersion relation) and zeros of the reflectivity is revealed. 

2. Phenomenological approach 

This section contains a brief review of the phenomenological approach to 
the anomalies of diffraction gratings [4]. This is necessary in order to under- 
stand the physical backwood of the results presented in the next section. 
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The existence of a surface wave on a flat boundary can be expressed 
mathematically with a pole aP( X) of the scattering matrix, i.e. a solution of the 
homogeneous problem. As it can easily be shown, the corrugation of the 
surface with an amplitude h leads not only to a modification but to a 
multiplication of the pole aP(A, h). In particular, if the wavelength to period 
ratio X/d is properly chosen, then some of these newly formed poles (namely 
CX~) can appear in the light cone defined by ) a 1 < 1, where (Y = k/k, k,, is the 
wavevector component in the grating plane, k = 2n/A being the wavenumber. 
Then the surface wave can be excited with a plane wave incident at an angle 
8 = arcsina through the mth diffraction order, provided the phase conditions 
are satisfied: 

a: = Re(cuOp) = Re((up + mX/d). 

In that case all the elements of the scattering matrix have pole c$, i.e. they 
are proportional to (a[ - at;)-‘. For this reason anomalies can be observed in 
the diffraction efficiencies. 

On the other hand on flat surface (groovedepth h = 0) there are no 
anomalies. Thus for h = 0 the pole in the denominator (a - CX~) of the matrix 
elements must be exactly compensated by a zero CX~ = C$ of their numerator. 
As h Z 0, the pole and the zero are split and the amplitude ai of, for example, 
the zeroth reflected order can be expressed in the following general form 

where ce, CX: and CY$ are slowly varying functions of h and X. Some important 
remarks on eq. (1) are worth noting: 

(1) It must be pointed out that the existence of the zero $, in the 
numerator of eq. (1) is quite important. It describes the fact that resonance 
anomalies (e.g. PSW excitation) are characterized usually by a dip, rather than 
by a sharp peak of diffraction efficiency (as it should be if only a pole exists). 

(2) Let us denote the real part of the pole by C# and its imaginary part by 
@“. For highly conducting metals usually [4]: 

Re( &j) = (uf, (2) 

thus the position of the ~~rnurn of reflectivity is a very good criterion for 
determination of (~8’. 
If condition (2) is fulfilled, together with: 

1 Im( a:) 1 -=s a$‘, 

then eq. (1) can be written in a simplified form: 

(3) 

(1’) 
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In that case the halfwidth A of the dip, 

A = 2a& 

is just proportional to the decay constant 2kag”. 
(4) 

(3) If conditions (2) and (3) are not fulfilled, then a straight connection 
cannot be drawn between the position and halfwidth of diffraction efficiency 
minimum at one hand, and the propagation and decay constants of the excited 
wave at the other hand. 

A typical example can be found further in section 3.1 (figs. lc and 2): there 
are no peculiarities in the spectral behaviour of the pole, while the gap in the 
trajectories of the zeros leads to the appearence of a k-gap in the w-k 

dependence of the reflectivity. What one could measure would be the position 
of the zero, rather than the value of plasmon propagation constant. 

In such case it is possible to find the exact values of a:’ and a$’ by 
numerical fitting of the reflectivity curve with eq. (l), where cO, ag and ag are 
unknown parameters. 

When there is interaction of anomalies, second pole and zero have to be 
included in eq. (1) and the connection of the reflectivity curve with the 
position of both poles and both zeros is more complicated. 

3. Numerical results 

In our further calculations we have used a computer code based on the 
rigorous differential formalism of Chandezon et al. [5], generalized to work for 
complex values of (Y. This method prooves to be very efficient [6] for 
practically all kinds of grating. 
Two types of aluminum gratings are investigated: (a) with a symmetrical 
sinusoidal profile containing only k 1st Fourier component, and (b) with a 
non-sinusoidal (asymmetrical and symmetrical) profile containing f 1st and 
f 2nd Fourier components. 

The period d = 0.63 pm is one and the same for the two gratings and is 
chosen to provide for the existence of the two poles and two zeros of the 
scattering matrix, i.e. a simultaneous excitation of the two PSw’s propagating 
in opposite directions for red wavelengths. The aluminum refractive index 
n = 1.378 + i7.616 is taken to be independent of X in the investigated spectral 
region (615-660 nm). Its slight dispersion should change the presented results 
insignificantly. 

3. I. Sinusoidal profile 

Figs. la-ld present the results of numerical spectral tracing of two poles 
and two zeros for sinusoidal grating with profile function f(x) defined by: 

f(x) = (h/2) sin(2rx/d), (5) 
at different values of grating amplitude h,: 
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Away from the coupling region (h 1: 635 nm) the imaginary parts of the 
pole and the zero are practically independent on the wavelength and are 
determined by the groovedepth value: Im( ag) is growing slowIy with h, due to 
the increase of absorption (and diffraction, if any) losses [7]; Im(a~) decreases 
with the same rate. i.e. Im(af;) -t Im(cyi) 2: const(h,). At a given groovedepth 
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I hl=0.04 

b 
I I 1 -0.01 

-0.045 0 0.045 

Re( a) 
Fig. 1. (a-d) Trajectories of the poles (dashed lines) and zeros (solid lines) as a function of 
wavelength X [nm] (shown with crosses) for different groovedepth values h, [pm]. Aluminum 
grating with sinusoidal profile and period 0.63 cm. Dotted lines represent real and imaginary 

n-axis. 
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Fig. 1. Continued. 

the trajectory of o:(h) can cross the real cy-axis resulting in the zeroth value of 
reflectivity minimum (e.g. fig. lc). 

When h is varied, the trajectory of the pole can approach Re( a) = 0, and a 
simultaneous excitation of the oppositely propagating PSW’s occurs. As the 
profile function f(x) contains only jc 1st Fourier component, the direct 
coupling between the two plasmons is impossible. The grating is shallow 
(h,/d -=z 0.13) thus the indirect coupling (through the second-order processes) 
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is rather weak and does not affect the trajectory of the poles. Moreover, 
instead of splitting, attraction of the poles is observed: when the diffraction 
order in air is cut-off the losses decrease and Im(ag) decreases, too. 
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Fig. 2. X-a dependence of the reflectivity for aluminum sinusoidal grating with period 0.63 pm 

and groovedepth 0.06 pm. (a) A 3D view with viewpoint situated at the lower side in order to 

visualize the trajectory of the reflectivity dip. (b) Contour plot of the reflectivity values (%). 
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The zeros have the same behavior, provided they are far enough from real 
a-axis. Otherwise a strong interaction (repelling) of their trajectories is ob- 
served (fig. lc with hi = 0.06 pm). Such interaction of zeros, rather than poles, 
can be understood taking into account that all zeros of the zeroth reflected 
order are poles of the improper scattering matrix lying on one and the same 
improper Riemann sheet [8]. 

The evolution of general reflectivity surface in X-a (or o-k) space corre- 
sponding to the pole-zero trajectories in fig. lc is presented in fig. 2. Only the 
part of the surface for (Y 2 0 is given, as it is symmetrical with respect to (Y = 0. 
As there are no zeros around (Y = 0, an a-gap (i.e. k-gap) can be observed. On 
the other hand for the whole investigated spectral interval the zero is lying 
very close to the real axis and that is why there is no w-gap in the considered 
case. Here the trajectory of the reflectivity minimum in w-k plane does not 
directly correspond to the trajectory of the pole, as condition (2) is no more 
satisfied. 

3.2. Non-sinusoidal grating 

The second example deals with a grating profile defined by 

f(x) = (h,/2) sin(2rx/d) + (h,/2) sin(4rx/d). (6) 

The second term with amplitude h, provides in a definite wavelength region a 
direct coupling between oppositely propagating PSW’s. Spectral tracing of 
trajectories of poles and zeros in the complex a-plane is presented in figs. 
3a-3d for fixed h, = 0.02 pm and different values of hi. Due to the strong 
direct coupling a strong repelling of pole trajectories is observed when 
h/d = Re(aP). As the amplitude of the second term in eq. (6) is one and the 
same and the coupling strength is determined predominantly by this term, the 
splitting of the trajectories (max[Im(a,P)]) is almost independent of hi. The 
trajectories of the poles “pull up” the zeros - in fact the strong direct coupling 
leads to the splitting of zeros, as well, because they are improper poles [8]. 
There are cuts in the trajectories of the zeros that take place at X = 630.5 nm - 
then the trajectories are crossing the cut in the complex a-plane corresponding 
to the passing-off of radiation order in the upper medium [4,8]. 

In the coupling region the zeros are pulled away from the real a-axis and an 
almost full annihilation of poles and zeros takes place. Thus there is a region 
in A where no anomaly is observed, i.e. w-gap is formed in the w-k depen- 
dence of reflectivity (fig. 4). 

Remark concerning the grating profile: because the investigated gratings in 
which the well-pronounced dips in the reflectivity are observed are shallow, 
only the first-order processes are of noticeable effect. Thus different profiles 
with one and the same first- and second-order Fourier components are 
expected to generate almost identical reflectivity curves. Moreover, the grating 
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period and the wavelength interval are of one and the same order and higher 
harmonics are not expected to interact with incident light. From that point of 
view the profile function from eq. (6) with h, = 0.06 pm and h, = 0.02 pm is 
equivalent to the grating with an asymmetrical triangular profile with height 
h = 0.07788 pm and apex angle 145.63”. A comparison between the spectral 
dependences of normal incidence reflectivities for these two profiles is given in 
fig. 5; a very good coincidence is observed. In particular, a well-pronounced 
&gap is formed. 
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Fig. 3. Same as figs. la-ld but for grating with a profile given by eq. (6); hz = 0.02 pm. 
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Fig. 3. Continued. 

A natural question arises: which is of greatest importance for the formation 
of w-gap - the asymmetry of the grating profile or the strength of its second 
Fourier component. For this aim a symmetrical grating is considered haying a 
7r/2 phase shift between the first and the second Fourier components: 

f(x) = (h,/2) sin(2lrx/d) + (h,/2) sin(4ax/d+ n/2). (7) 

The resulting profile is shown in the insert of fig. 5b. 
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Fig. 4. Same as fig. 2 but for grating with a profile given by eq. (6); h, = 0.06 pm, h 2 = 0.02 pm. 

Again a well-prono~c~d w-gap can be observed. The main difference 
between the two sets of reflectivity curves presented in figs. 5a and 5b is the 
absence of a lower wavelength minimum at normal incidence for symmetrical 
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Fig. 5. Spectral dependence of the reflectivity, (a) Normal incidence for two gratings having 

mutually identical first two Fourier components: solid line - with profile given by eq. (6) with 

d = 0.63 pm, h, = 0.06 pm and h, = 0.02 pm; dashed line - with asymmetrical triangular profile 

with period 0.63 pm, total groovedepth 0.07788 pm and apex angle 145.63’. (b) Grating with 

profile represented by eq. (7) with d = 0.63 pm, h, = 0.06 pm and h, = 0.02 ym: solid line - 

normal incidence; dashed line - B = 0.57 O. Different profiles are represented in the inserts of the 
figures. 

grating. This phenomenon has already found its explanation in ref. [9] taking 
into account symmetry considerations. When the angle of incidence is not 
equal to zero (dashed curve in fig. 5b) the second dip can also be observed. 
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0 0.0045 0.0090 

w-d 
Fig. 6. Enlarged view of the trajectories of the zeros of reflectivity. Aluminum grating with period 
0.63 gm and profile given by eq. (6) with h, = 0.06 pm. Solid line: h2 = 0, dashed line: 

h, = 0.002 pm, and dotted line: h, = 0.005 pm_ 

Thus the conclusion can be drawn that the formation of an w-gap is due to the 
strong direct coupling rather than to the asymmetry of the grating profile. 

3.3. Transition between two types of gaps 

Increase of h, (responsible for the direct coupling) leads to a stronger and 
stronger splitting of poles. As a result a section of the trajectories of the zeros 
is pulled away from the real a-axis (fig. 6). For small values of h, (i.e. small 
direct coupling) the “vertical” (along the imaginary a-axis) shift of a(; is quite 
small (e.g. h, = 0, h, = 0.002 pm). In that case the X-a dependence of the 
reflectivity resembles very much fig. 2. Thus in the case of a small direct 
coupling strength the k-gap exists. Increase of h, pushes the trajectories of the 
zeros further into the complex a-plane away from the real axis. Together with 
that the splitting along the real cr-axis is diminished. It means that for almost 
all values of angle of incidence lying close to the normal incidence there are 
values of wavelength responsible for almost real CY& Thus above some value of 
h, the k-gap does not exist. On the other hand a spectral interval is formed for 
which the zeros are pushed away from the real axis, i.e. an w-gap is formed 
(e.g. h, = 0.005 pm in fig. 6 and h, = 0.02 pm in figs. 3c and 4). 

4. Conclusion 

On the basis of rigorous numerical tracing of spectral trajectories of poles 
and zeros in the reflectivity of metallic gratings it is shown that: 



E. Popov / Phmon interactions in metallic gratings 529 

(1) an w-gap is formed when splitting of the poles (and zeros) takes place 
due to the existence of strong direct coupling of oppositely propagating 
plasmon surface waves, 

(2) a k-gap is formed when there is no splitting of poles (very weak direct 
coupling), but a splitting and repelling of zeros lying near the real a-axis exist. 
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