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The physical properties of the surface modes, which can exist on photonic crystals with limited extension in
one direction, are investigated. We show that the dispersion relations of the modes present a continuous
transition when crossing the edge of the band gap. Using the homogenization limit, we show that the periodic
structure perpendicular to the crystal boundaries plays only a limited role in the phenomenon, namely that of
confining the field close to the surface. It is also shown that the underlying physics of these surface modes can
be understood using a very simple model where the guiding effect is due to a high index dielectric layer.

DOI: 10.1103/PhysRevB.72.155101 PACS number�s�: 42.70.Qs

I. INTRODUCTION

Substantial efforts have been done over the past decades
to understand and then exploit the properties of photonic
crystals. Their unique properties were highlighted in 1987 by
two independent articles. The first, authored by John, was
devoted to the use of a periodic dielectric structure to local-
ize the light, that is the photonic counterpart of the Anderson
localization of the electrons1 while the second, by Yablono-
vitch, argued that such a periodic structure could be used to
inhibit and more generally to control the spontaneous
emission.2 Then the subsequent pioneering works were
mainly devoted to the quest for a structure exhibiting a full
photonic bandgap, i.e., a frequency range in which the propa-
gation of the electromagnetic waves is strictly forbidden, and
to the study of the physical properties of these structures.

Nowadays the number of structures, physical phenomena
and potential applications that have been proposed is so im-
portant that it has become impossible to review the field in
an introduction and readers are therefore referred to a recent
edited book on the subject.3 The possible existence of surface
modes on a finite size photonic crystal was discovered by
Meade et al. only four years after the founding papers on the
topic.4 They also noted the practical importance of such
modes on structures such as semiconductor lasers and the
vital importance of the surface termination on their features.
Several theoretical papers have been devoted to their
study.5–8 Their existence has been confirmed using a differ-
ent approach �without supercell approximation� and the cou-
pling between the surface modes on each side of a slab of 2D
photonic crystal �a finite number of rods� has been
observed.5 It has also been shown that the position of the cut
plane through the rods has a drastic influence on both the
dispersion relations and the field confinement.7 Recently, the
local density of photonic states associated has been studied
and their application for the enhancement of nonlinear ef-
fects envisaged.8

Few experimental papers can be found that demonstrate
the existence and the effects of the surface modes. A prism

coupler experiment has evidenced their presence on one-
dimensional photonic crystal,9 and a recent, elegant, experi-
mental and theoretical work has shown their importance on
the outcoupling of the light from a waveguide in 2D photo-
nic crystals made of macroporous silicon.10 It is possible
thanks to the surface modes to achieve highly directional
emission from photonic crystal waveguides of small width.
This is, of course, the all-dielectric effect equivalent to the
high directional emission of a subwavelength hole in a me-
tallic film.11

Therefore, it appears from earlier studies that the surface
modes on photonic crystals have both fundamental and prac-
tical important aspects. However, to the best of our knowl-
edge, no paper has been devoted to the understanding of the
physical nature of these modes. In this paper, we attempt to
clarify the basic physics involved by these modes and we
have found that for numerous aspects, the denomination sur-
face mode could be misleading. Indeed, the mode supported
by the structure is rather a guided mode in the dielectric
layers than a real surface mode, such as, for example, a sur-
face plasmon wave at the boundary between a metal and a
dielectric. We would like to stress that our aim is not to be
controversial, but only be precise to the exact nature of the
modes. The denomination surface was of course the natural
choice because when the parameters are suitably chosen, cer-
tain modes can be localized in thin layers at the vicinity of
the surface.

We point out that the surface modes on photonic crystals
can be seen as a photonic version of the Shockley surface
states,12 however, one must take care to the limits of such
kind of analogy. A simple evidence of that is given by the
strong dependence of the surface mode behavior on the po-
larization.

In this paper, a structure already studied in Ref. 7 will be
considered. The aim is not to prove the existence of surface
modes, which has already been done, but rather to under-
stand their main features.
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II. DEVICE UNDER STUDY AND BLOCH MODES
DISPERSION RELATION

The structure studied is a two-dimensional photonic struc-
ture made of infinite square holes drilled into a dielectric
substrate. The permittivity of the dielectric is 17.9 corre-
sponding to the permittivity of a semiconductor in the near
infrared wavelength domain. The structure is assumed to lie
in vacuum. Figure 1 depicts the geometrical parameters of
the photonic crystal. It has a square lattice, the periods of the
structure are dx=dy =d, and the length of the edges of the
square holes is 0.8185 d. The modeled structure is invariant
along the z axis, infinite and periodic along the x axis, and
finite along the y axis. The exact location of the truncation of
the structure has been identified as a key parameter of the
behavior of the surface modes.7 When the cut position is nil,
the whole thickness of the structure is 18 periods and the
termination is at one half of the dielectric layer which sepa-
rates two vacuum holes on both sides. When the cut position
varies, only one side of the crystal is changed and the cut
position is given by the fraction of the period added to or
removed from the 18 periods.

The two-dimensional geometry of the problem �i.e., the
structure and the electromagnetic fields are invariant along
the z axis� implies that the problem can be divided into two
fundamental cases of polarization. In the TE �TM� polariza-
tion case, the electric �magnetic� field is along the z axis.
Figure 2 presents the dispersion relation of the Bloch modes
in the infinite photonic crystal �along all the space direc-
tions�. kx is the normalized component of the wave vector
defined by kx=d�k ·ex� / �2��. The solid lines on the graphs
represent the light line with the equation �=ck. The band
structure has been obtained using the classic plane wave
method.13,14 In this method the Bloch modes are expressed
using a plane wave basis and for the calculations presented in
this paper the truncation of the plane wave basis has been
checked to ensure a good accuracy of the results �2025 plane
waves were used�. The representation used shows the bands
projected onto the x axis of the Bloch wave vector. This

representation is useful in our context because when the
crystal is truncated, the x component of this Bloch wave
vector is conserved. The band structure possesses photonic
bandgaps in both polarizations, but significantly larger in the
case of TM polarization.

III. GUIDED MODES DISPERSION RELATION
AND FIELD BEHAVIOR

The following numerical results have been computed with
the rigorous coupled wave method for finite size structures.
This method has been introduced for the modeling of diffrac-
tion gratings15 and has been recently improved by two break-
throughs in the electromagnetic theory of gratings. The first
one is the introduction by several authors of scattering matrix
�S matrix� algorithm which has raised the problems related to
evanescent growing and decaying waves in the numerical
codes.16 The second one is a more convergent calculation of
Fourier components of a product of functions from the Fou-
rier components of each of them.17,18

Although we will not describe in detail the method, we
will briefly sketch its basic principles. As it is well known,
the z component of the electric �TE� or magnetic �TM� field
can be written below and above the structure �in homoge-
neous substrate and superstrate� as plane waves expansions,
each of these plane waves corresponding to an order of the
grating that can be propagative or evanescent. When the
structure is enlightened by a plane wave, the diffracted field
�total field minus the incident one� can be written as a dis-
crete and infinite sum of plane waves. Moreover the dif-
fracted field must satisfy the outgoing wave condition that is
the equivalent to the usual Sommerfeld condition for grat-
ings problems.19

The structure is then split in layers whose permittivity is
invariant along the y axis. In each layer, it can be shown that
the field can be described by a modal expansion

FIG. 1. Schematic representation and parameters of the studied
photonic crystal structure. The permittivity of the dielectric is 17.9
and the square holes and surroundings are assumed to be vacuum.

FIG. 2. Dispersion relation of Bloch modes in the infinite struc-
ture. Left: TE polarization. Right: TM polarization.
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u�x,y� = �
n=−�

+�

�n�x��un exp�i�ny� + dn exp�− i�ny��exp�ikxx�
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with kx=��� /c�sin��inc�, � is the optical index of the super-
strate �medium where the incident plane wave propagates�
and �inc is the angle of incidence of the incident plane wave.
The modes �n�x� and their propagation constants �n are ob-
tained thanks to an eigenvalue problem. In the rigorous
coupled wave method this eigenvalue problem is written in
the Fourier space, i.e., the modes are written as a plane wave
sum. Then, to obtain a boundary value problem one must
impose the continuity of the tangential components of the
fields at the boundaries of each layer in addition to the out-
going wave condition satisfied by the diffracted field.

The guided modes in such structures are usually obtained
by searching for the poles of the determinant of the scatter-
ing matrix.20 In the problem under study we are interested in
the surface modes on one side of the finite size crystal. Of
course, each side of it can a priori support modes. If the
structure is completely symmetric, the modes on each inter-
face are identical with the modes propagating on the opposite
side. Due to the tunnel effects through the crystal volume,
these modes are mutually coupled, each couple forming two
different modes. However, when the crystal is sufficiently
thick, the coupling is weak enough and the modes propagat-
ing along each surface could be considered as mutually in-
dependent inside the bandgap region �this point has been
carefully checked�. From a numerical point of view, this
leads to a singularity of the scattering matrix, which contains
a double pole �for each of the two surfaces�. One way to
distinguish them is to look for the poles in the amplitude
coefficient of the reflected wave with wave incident only on
the one side of the photonic crystal. Similar to that, we in-
troduce an asymmetry in the influence of each interface.
Thus in all the presented results, the surface modes have
been considered on one side only and the existing mode on
the other side has been removed.

In order to understand the role of the position of the in-
terface within a period, we have numerically studied how the
surface mode evolves when the cut position changes. Figure
3 shows the normalized frequency of the mode when the cut
position varies over a range equivalent to two entire periods.
Thus, the structure has a total thickness varying from 17 to
19 periods. To obtain this figure, the x-component of the
wave vector �i.e., of the propagation constant of the mode�
has been kept constant and its normalized value kx is 0.25
�shown in Fig. 2 by the vertical dashed line�. First, we con-
sidered the case of TE polarization. The horizontal dashed
lines indicate the positions of the light line �upper line� and
of the lower and upper edges of the bandgap �lower lines�.
From this graph, it can easily be seen that the surface modes
dispersion relation is quasi-periodic with respect to the thick-
ness as expected for a periodic structure. It confirms that the
important parameter is indeed the crystal termination. It is
worth noticing that there is a continuous behavior of the
mode when its frequency crosses the band edges. The pres-
ence of a bandgap therefore plays a role in the localization of

the field at the vicinity of the interfaces �as will be discussed
below� but does not determine its existence. Another impor-
tant feature of the behavior observed is that a cutoff of the
modes on the upper part of the graph corresponds to the light
cone limit �i.e., the limit between propagative and evanescent
waves�.

Figure 4 shows a similar numerical study but here the
normalized frequency has been kept constant and equal to
0.2 �see the horizontal dashed line in Fig. 2�. Once again, the
figure shows the normalized propagation constant when the
cut position varies over a two-periods range and one ob-
serves again a cutoff which corresponds to the light cone
limit and a continuous transition when the band edge is
crossed.

For greater insight into the nature of the surface modes,
we have plotted the electric field for several points indicated
in Figs. 3 and 4. In Fig. 5 the modulus of the electric field is
shown using a logarithmic scale for d /�=0.2 and kx=0.268

FIG. 3. Normalized frequency of the modes when the cut posi-
tion varies, for kx=0.25. TE polarization.

FIG. 4. Normalized propagation constant of the modes when the
cut position varies, for d /�=0.2. TE polarization.
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corresponding to the point labeled 1 in Fig. 4. This point
belongs to the bandgap and an exponentially decaying field
can be expected in the photonic crystal. In this figure, we can
observe only small variations of the field with respect to the
x coordinate and the average exponential decay of the field
with the y coordinate. Both features of the field are even
more obvious in Fig. 6 where the modulus of the electric
field with respect to the y-coordinate has been plotted for two
different values of x �in between two square holes and across
the middle of a hole�. The field is of course necessarily de-
caying outside the crystal as the point has been chosen below
the light cone. A closer look at the field reveals strong oscil-
lations and only the field averaged on a period can be con-
sidered as exponentially decaying �see Fig. 6�. When chang-
ing the cut position in order to reach a frequency closer to
the edge of the bandgap, we expect to obtain a less important
decay than for the previous example. It can be observed in
Fig. 7, which has been obtained with d /�=0.2 and kx
=0.314 �corresponding to the point labeled 2 in Fig. 4�. In
both cases, a weaker guiding effect close to the exit surface
is observed as can be expected.

The position of point labeled 3 in Fig. 4 has been chosen
to be outside of the bandgap region. The field modulus is
plotted with respect to the y coordinate in Fig. 8 �top�. The
field is no longer really localized in the vicinity of the upper
boundary of the crystal. This is even more obvious in Fig. 8
�bottom�, which corresponds to the point 4 in Fig. 3. These
modes are still guided modes as the fields are evanescent in
vacuum �the point 4 is below the light line�.

For the sake of completeness, Fig. 9 shows the normal-
ized frequency when the cut position varies for the TM case
of polarization. The results are similar to those in the case of
TE polarization except that, given the width of the bandgap,
the propagation constant reaches the light line before outgo-
ing from the bandgap region.

IV. HOMOGENIZATION

With the aim to understand more precisely the physical
processes involved, we have studied the homogenization

limit of the structure. More precisely, all the dimensions
along x are assumed to be shrunk and to tend towards zero
with a constant filling factor. The theoretical limit has been
known for years and is given by a homogeneous anisotropic
layer whose permittivity tensor is given by21

	 = �	x 0 0

0 	y 0

0 0 	z
� , �2�

where

	y = 	z =
1

d
�

0

d

	�x�dx �3�

and

FIG. 5. Modulus of the electric field in the photonic crystal for
kx=0.268 and d /�=0.2 �point 1 in Fig. 4�. TE polarization.

FIG. 6. Top: modulus of the electric field in the photonic crystal
for kx=0.314 and d /�=0.2 and for two different values of the x
coordinate. Bottom: zoom on the details of the oscillations of the
electric field modulus, the vertical lines represent the position of the
layers. TE polarization.
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Note that the homogenized permittivity can be interpreted as
an effective potential for the Helmoltz equation.

For the TE polarization case, the equivalent layer is iso-
tropic with a permittivity 	z. Thus, the homogenized struc-
ture is made of alternated homogeneous thin films whose
permittivities are 17.9 and 	z=4.07, with thickness equal to
0.1815 d and 0.8185 d, respectively. In Fig. 10, the evolution
of the normalized propagation constant of the mode has been
plotted starting from the value obtained for the point labeled
2 in Fig. 4 and making the period tend towards zero. The
value corresponding to the homogenized structure �dx=0� is
also represented using Eq. �4�. The relative variation of the
normalized propagation constant of the mode is only ap-
proximately 10%. Subsequently, we expect to trace the main
features of the surface modes on the homogenized structure.
The direct comparison of the field modulus in both structures
confirms the similarity of the modes �see Fig. 11�. Thus, it
has been shown in TE polarization that the lateral structure
of the photonic crystal is not a determining factor in the
existence and in the behavior of the surface modes on two-
dimensional photonic crystals.

For the case of TM polarization, a stack of anisotropic
homogenized layers must be considered where the relevant
tensor components are 	x=1.21 and 	y =4.07 with a thick-
ness of 0.8185 d and isotropic layers with a permittivity
equal to 17.9 and a thickness equal to 0.1815 d. The square
points in Fig. 9 show the dispersion relation for the homog-
enized structure and the curve obtained is surprisingly close
to that obtained for the two-dimensional photonic crystal
�solid line�.

Note that even if the quantitative results are dependent on
the chosen crystal, the conclusions based on qualitative as-
pects are not. Layer by layer homogenization has been
proven to be efficient for different types of structures.22 In
the domain of grating theory, it has been shown that the

homogenization procedure can give reliable results as long
as only one diffracted order exists, requiring a period equal
to the half of the wavelength.

To understand the underlying physics of the surface
modes on photonic crystals, the simplest model explaining
the main observed features must be found. The homogeniza-
tion presented above is the first step in that direction. An-
other way to approach the problem is to deduce an effective
permittivity from the observation of the average exponential
decay in the photonic crystal

	eff = 	 c

�

2

�kx
2 + ky

2� , �5�

where the value of kx is known and ky is deduced from the
exponential decay of the field in the structure. Note that ky
can also be obtained more conveniently using the eigenval-
ues of the transfer matrix associated with one period. It

FIG. 7. Modulus of the electric field in the photonic crystal for
kx=0.314 and d /�=0.2 �point 2 in Fig. 4�. TE polarization.

FIG. 8. Top: modulus of the electric field in the photonic crystal
for kx=0.388 and d /�=0.2 �point 3 in Fig. 4�. Bottom: modulus of
the electric field in the photonic crystal for kx=0.25 and d /�
=0.167 �point 4 in Fig. 3�. TE polarization.
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should be recalled that the transfer matrix algorithm is un-
fortunately numerically unstable and more complex but
stable algorithms must be used such as scattering matrix
ones.23

In the studied cases, with the parameters of the crystal we
use and for both polarizations, the obtained permittivity is
always positive below the light line. Thus the idea of surface
plasmonlike modes can immediately be ruled out even for
TM polarization.

Given the positive permittivity we have obtained, obvi-
ously, no true surface modes can be found and necessarily
dielectric layers must be included in the model to enable the
support of guided modes. In order to illustrate this approach,
we will focus on the structure corresponding to the point 1 in
Fig. 4. The selected model thus consists in a substrate with a
permittivity equal to 	eff=1.598 covered with a dielectric
layer. The parameters of this layer have been tuned in order
to obtain the mode for the same values of d /� and kx. The

permittivity of the guiding layer is equal to 9.3 and its thick-
ness equal to 1.05 d. The comparison of the modulus of the
electric field in the structures shows the relevance of the
model �Fig. 12�. The oscillations of the field in the crystal are
of course absent in the homogeneous effective media, but the
average exponential decay is identical. The effective media
having been chosen in order to produce the same exponential
attenuation, this result was not unexpected. More significant
is the fact that the oscillations of the field in the first layer are
also quasi-identical in both structures.

V. DISCUSSION AND CONCLUSION

The different results presented in this paper show that the
main features of the surface modes supported by a photonic
crystal can be explained by a simple model, which consists
in a guiding homogeneous layer structure. It appears that the

FIG. 9. Normalized frequency of the modes when the cut posi-
tion varies, for kx=0.35. Square dots: homogenized structure. TM
polarization.

FIG. 10. Homogenization. Variations of the propagation con-
stant of the mode when the lateral dimensions are shrunk. TE
polarization.

FIG. 11. Modulus of the electric field in the homogenized struc-
ture kx=0.314 and d /�=0.2. TE polarization.

FIG. 12. Comparison between the fields in the photonic crystal
structure and in the simple model that consists in one homogeneous
guiding layer. TE polarization.
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so-called surface modes should be considered rather as
guided modes in dielectric layers than as real surface modes
such as surface plasmons. A large part of the evidence is
given by the similarity between the modes supported by both
structures.

Let us now observe the similarities between the surface
modes and guided modes in a high index dielectric layer.
First, the existence of the modes is not really depending on
the presence of a band gap and it has been shown that there
is no cutoff corresponding to the edge of the band gap but
rather a continuous transition from modes localized at the
vicinity of the interface to modes that are delocalized in the
whole structure. This behavior is fully consistent with the
fact that in our model, the permittivity contrast will allow
guiding in the thin dielectric layer only in the bandgap.

Second, the observed modes present a cutoff when the
frequency reaches the light cone. This is again a characteris-

tic of guided modes in a dielectric layer surrounded by lower
optical index dielectric media. Thus, the physics of the sur-
face modes supported by photonic crystals could be under-
stood by using a very simple model of a dielectric guiding
layer, and given their important role in the coupling �out-
coupling� of light to �from� a photonic crystal, we believe
that these attempts at clarifying the underlying physics are
important.
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