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We consider thin lamellar and cylinder gratings, composed of silicon carbide and air, and investigate the
conditions under which they can totally absorb an incident plane wave, for both p and s polarizations. We also
consider thin-film equivalent in the quasistatic limit to the gratings, deriving the effective dielectric tensor for
cylinder gratings. We show that the accuracy of the quasistatic models is a strong function of polarization,
wavelength, and grating thickness due to the resonant nature of the optical constants of silicon carbide but that
these models can be quantitatively accurate and give a good qualitative guide to the parameter values under
which thin gratings can deliver high optical absorptance.
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I. INTRODUCTION

The topic of interest here is the absorption of light by
grating layers, which may be thin compared with the free-
space wavelength, and whether it is possible to obtain total
absorptance of light by such layers. We are also interested in
grating structures in the quasistatic limit, which may then be
equivalent to uniaxial thin films, and whether such films can
exhibit similar total absorptance.

There is a growing interest currently in the topic of highly
absorbing gratings and grids. Such structures were studied in
the 1970s and 1980s in the context of providing tests of
newly-developed diffraction grating formulations �1�, and it
was soon shown �2� that total absorption of light in one
polarization by a shallow metallic diffraction grating was
possible. This was extended to unpolarized light using a
doubly-periodic or crossed grating with normal incidence, in
work described at the Madrid ICO Conference, and was fi-
nally published and further extended to non-normal inci-
dence in a recent paper �3�. Le Perchec et al. recently dem-
onstrated total absorption of light by lamellar gratings in
silver and stressed that, as in �2�, this could be achieved with
quite shallow cavities �5–15 nm deep� �4�. Bonod et al. �5�
also considered lamellar gratings in silver, this time with
grooves filled with silicon, and showed that, if it was re-
quired to have total absorption simultaneously in orthogonal
polarizations of light, groove depths around 120 nm were
required. Bonod and Popov �6� considered gratings with
silica cavities in gold or aluminum and achieved total ab-
sorption with depths in the range 200–300 nm for the polar-
ization of light for which surface plasmons are not excited.

Total absorption is interesting in that it indicates that an
incident electromagnetic wave is being totally converted into
another form of energy. The form this energy takes is not part
of electromagnetics, which deals with the properties of the
electromagnetic system as summarized in a complex refrac-
tive index, or more generally in tensors of dielectric permit-
tivity and magnetic permeability. In the case of metallic grat-
ings that conversion is regarded as occurring into surface
plasmons, which may then propagate and lose their energy
by ohmic dissipation among other processes. One can then

regard the grating as being a converter of the incident plane
wave into surface plasmons with 100% efficiency or a po-
tentially providing a means to amplify a propagating surface
plasmon carrying information in a plasmonic circuit. Another
use of the enhanced absorption by grating or grid structures
is in photothermal energy conversion �7�.

We will not concentrate here on metallic gratings but
rather on gratings made by surface modulation of silicon
carbide. This interesting material has a restrahlen band for
wavelengths near 10 �m, where its lattice supports phonons.
Its dielectric constant and complex refractive index in the
wavelength region of interest are shown in Fig. 1, based on
the following oscillator fit from Palik �8�:

�SiC = ���1 +
��T

2/�L
2 − 1�

1 − �T
2/�2 − i��T/�

� , �1�

where the wavelength � is given in microns, ��=6.7, �L
=10.3285 �m, �T=12.6168 �m, and �=6.00147�10−3.
The interesting characteristics evident in Fig. 1 are the region
between 10.4 and 12.4 �m where silicon carbide behaves
like a good metal �with the imaginary part of the refractive
index dominating the real part�, and the resonance of both
the real and imaginary parts of the refractive index centered
on �T �9�. These characteristics have been exploited in recent
studies of perforated membranes �6� and resonant micro-
structured fibers �10�, as well as in a paper by Laroche et al.
�11� of high absorption by cylinder gratings in silicon car-
bide, particularly germane to the topic of interest here.

We will study here the occurrence of high absorption in
lamellar and cylinder gratings which are thin compared with
the free-space wavelength of light. The gratings will be of
transmission type, with elements of silicon carbide separated
by free space. We will show that indeed it is possible to
achieve total absorption of light with such structures, which
in the spirit of work by Ebbesen and co-workers �12� might
be termed “extraordinary optical nontransmission.” We will
also consider in detail the correspondence between the dif-
fracting structures and their quasistatic equivalents, which
are uniaxial thin films. We will investigate the extent to
which the physics of the quasistatically equivalent structures
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can provide a guide and an explanation of the properties of
the diffraction gratings. We note that the occurrence of the
resonant optical constants in the grating as shown in Fig. 1
renders this subject particularly interesting and delicate, as
the ratio of the wavelength of light within the silicon carbide
regions to their characteristic dimensions varies strongly
within a narrow range of free-space wavelengths around �L
and �T.

We commence in Sec. II with the quasistatic equivalence
between lamellar transmission gratings and uniaxial thin
films. We then study the absorption properties of the latter
based on the case of transmission gratings in silicon carbide.
This material is particularly interesting for testing quasistatic
models, in that a film of given thickness may be optically
thin �phase changes on propagation across the film smaller
than �� for most wavelengths but optically thick around the
resonant wavelength region. As we will show, in the opti-
cally thick case, the quasistatic model tends to provide less
accurate results than in the thin case. We further show that,
depending on the polarization of the incident light and its
angle of incidence, it is indeed possible to achieve total ab-
sorption of incident light with equivalent films which are
quite thin compared with the incident wavelength. However,
the films are not optically thin when such absorption can be
achieved, with the product of complex index times free-
space wave number times thickness being close to �. We
also discuss cylinder gratings, obtaining the equivalent biax-
ial thin film in the quasistatic limit. We compare the light
absorption properties of the cylinder gratings in silicon car-
bide with those of their quasistatically equivalent thin films.

II. LAMELLAR TRANSMISSION GRATINGS
AND THEIR QUASISTATIC EQUIVALENTS

The quasistatic approximation is widely used in optics
when dealing with scattering properties of systems which
have spatial periodicity much finer than the wavelength of
light �typically, it is regarded as being valid with a scale
factor of 10 or larger�. It consists of solving the correspond-
ing electrostatic problem to find an effective dielectric con-
stant �or its square root, an effective refractive index� and
then using that dielectric constant in the equations of elec-
tromagnetism to treat the interaction of waves with the struc-
ture. It has been associated with a large mathematical litera-

ture in recent years, dealing with the establishment of the
validity of quasistatic approximation by regarding it as two-
scale problem, with the fine scale being the rapidly varying
optical structure, and the coarser scale that of the wavelength
�see the book by Milton �13� for an overview of theory of
this subject and its many practical applications�.

In the particular case of lamellar gratings, the limit was
studied by Yeh and co-workers �14,15� and by McPhedran et
al. �16�. It is shown that a lamellar grating with periodicity
axis along Ox and period d, composed of slabs of thickness h
with generators along Oz, dielectric constants �1 ,�2, and
mark-space ratios f1=c1 /d , f2=c2 /d is equivalent to a
uniaxial film of thickness h. The ordinary dielectric constant
pertains to electric fields oriented along Oz or Oy and is
given by the linear mixing formula, while the extraordinary
dielectric constant pertains to the optical axis Ox and is given
by the reciprocal law

�o = f1�1 + f2�2, �x = 1/�f1/�1 + f2/�2� . �2�

In the case we consider here, the first medium may be taken
to be air ��1=1�, while the second medium is silicon carbide
so that �particularly near �T� ��2��1. When this is the case,
the ordinary and extraordinary dielectric constants are quite
different:

�o � f2�2, �x �
1

f1
−

f2

f1
2�2

, �3�

provided f1 and f2 are not too close to one or zero. The first
of these will have large modulus and will correspond to a
metallic material, while the second will correspond to a
slightly lossy dielectric. Note that these approximations do
not apply near �L, where ��2� is not large. One interesting
wavelength is 10.5576 �m, where �SiC=−1+0.1290i, using
fit �1�. This value is one reason that silicon carbide is an
interesting material for plasmonic and metamaterial studies
since from Palik �8� the corresponding figure for silver in the
ultraviolet is �Ag=−1+0.5854i; with a figure of merit based
on the ratio of the moduli of the real and imaginary parts,
silicon carbide is some four and a half times superior to
silver.

It should be noted that the derivation of the quasistatic
equivalent effective dielectric constants given in Eqs. �2� and
�3� does not rely on assumptions about the relationship be-
tween the grating thickness h and the free-space wavelength
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FIG. 1. �Color online� Plot of the real �red, positive or negative� and imaginary �green, positive only� parts of the dielectric constant �a�
and refractive index �b� of silicon carbide as a function of wavelength based on the fit given in Eq. �1�.
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� of the incident light. It might be imagined that the deriva-
tion of such results might become invalid for thin structures
due to strong surface effects. However, the quasistatic limit-
ing arguments in �14–16� are rigorous and do not neglect
surface effects.

The derivation of such effective constants may be divided
into two parts. The first of these for a structure like the
lamellar grating consists of establishing the properties of the
modes which can travel in a space consisting of alternating
dielectric constants �1 and �2 with respective mark-space ra-
tios f1 and f2. In the quasistatic limit, among the infinite set
of modes there is only one which can vary spatially on the
same scale as �, and this mode propagates in accord with the
effective dielectric constants as given in Eqs. �2� and �3�. The
second part of the derivation relates to the scattering prob-
lem, where the finite thickness h is introduced. It must then
be verified that the results of the scattering problem are in
accord with those expected from a film of thickness h, with
dielectric constants as in Eqs. �2� and �3�. Such a complete
analysis is given in �16�.

We have given in Eqs. �1� and �2� the formulas by which
the ordinary and extraordinary refractive indices of the
uniaxial thin film quasistatically equivalent to a lamellar
grating in silicon carbide may be calculated for a given
wavelength. Given these, in order to establish the energy
absorbed for a plane wave with a particular angle of inci-
dence and polarization, we need to be able to calculate the
energy reflected and transmitted by the uniaxial thin film,
whose optical axis in this case lies in the plane of the film.
The necessary formulas are given in Sec. IV of the paper by
Lekner �17�.

We start with the case of normal incidence on a grating
with the geometry described above. Typical results are
shown in Fig. 2, with c1=0.5. For p polarization, the electric
field vector of the incident plane wave is in the plane of
incidence, and the wave interacts with the layer in a way
governed by the ordinary refractive index. For s polarization,
the electric field vector is perpendicular to the plane of inci-
dence, and the interaction is governed by the extraordinary
index.

For p polarization, there is a ridge of absorption located at
wavelengths just in excess of �L, with the absorption rising
at first quite rapidly with increasing film thickness to values
around 50% and then more gently. For s polarization, there is
a spike of absorption for quite thin films for wavelengths
close to �T, followed by a drop down to a minimum near a
thickness of 0.25 �m. Thereafter, the absorptance rises to a
maximum for thicknesses near 1.0 �m, after which the ab-
sorptance ridge splits into two parts, with one moving off
toward longer wavelengths. For thicker films than that shown
in Fig. 2, more ridges develop and move off from the main
spine toward longer wavelengths.

In keeping with the results of Laroche et al. �11�, the
highest absorptance values occur for angles of incidence of
45°, and for p polarization, as shown in Fig. 3. By compari-
son with Fig. 2, the behavior is similar, but the level of
absorptance attained is higher, and is reached over a wider
range of wavelengths. For the wavelength �10.57 �m� of the
curve shown on the right, the absorptance reaches 0.999 786
for a thickness of 0.8 �m. Total absorptance is thus possible
for a uniaxial film whose thickness is 13 times smaller than
the free-space wavelength. However, note that this film is not
optically thin since the product of free-space wave number,
thickness, and extraordinary complex index which defines
optical phase and amplitude changes across the film is 1.60
+0.89i, here, close to the value giving a � phase change for
a return passage.

For s polarization �see Fig. 4�, the absorptance is much as
in Fig. 2, reaching a maximum value round 50% on the
long-wavelength side of �T. As for normal incidence, side
arms develop and run to longer wavelengths off the main
absorptance ridge with increasing film thickness.

III. LAMELLAR TRANSMISSION
GRATING ABSORPTANCE

Let us consider the nonquasistatic situation in which the
diffractive system is a lamellar grating instead of an aniso-
tropic homogeneous layer. SiC rectangular rods with width
c2 and thickness h are separated by an air gap with width c1,

(b)(a)

FIG. 2. �Color online� Plot of the absorption of normal incident light as a function of wavelength and thickness with s polarization �a�
and p polarization �b� for thin films quasistatically equivalent to lamellar gratings in silicon carbide with f1=0.5.
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with period d=c1+c2. When the period is quite small, the
structure is equivalent to the layer discussed in the previous
section. This is visualized in Fig. 5, which presents the real
and imaginary parts of the electric and magnetic field vector
components, calculated at the middle of the groove height
across the structure with d /�=10−4, and all the other param-
eters as in Fig. 3. The components tangential to the groove
walls, namely, Ey and Hz in p �TM� polarization are constant
and continuous across the groove walls. The same is not true
for the normal component of the electric displacement �Ex,
which should be continuous across the lamellar grating inter-
faces, but which exhibits rapid oscillations close to the
groove walls as a result of the Gibbs phenomenon due to the
discontinuity of Ex. The calculations were made using the
rigorous coupled-wave �RCW� theory �18�, improved by us-
ing the correct factorization rules �19�.

When the period is increased, we exit the quasistatic limit,
as observed in Fig. 6, where all the parameters are kept as in
Fig. 3, including the ratio c1 /d=0.5. The absorptions stays

high while d /� remains less than 1/100 and then starts to
drop rapidly. The limit seems smaller than the often used
value of 1/10 expected from the previous studies, but one has
to keep in mind that the effective refractive index �x dis-
cussed in the previous section is very high so that the wave-
length inside the grating is much shorter than in air. In order
to obtain total absorption for dimensions that are comparable
with the wavelength, it is necessary to tune the dimensions of
the structure. Figure 7 presents the absorption as a function
of the grating thickness h when d=1.8 �m, c1=0.97 �m,
with the wavelength �=10.56 �m and the angle of inci-
dence 45° in p polarization. As was the case in Fig. 3, above
a certain grating thickness, it is possible to obtain an almost
total absorption �99.75%� although the thickness required is
almost twice that in Fig. 3. We attribute this less rapid in-
crease in absorptance with thickness to the field concentra-
tion in the groove region for the grating, where the magni-
tude of the dielectric constant is smaller in magnitude,
compared with the situation in the homogenized film, with

(b)(a)
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FIG. 3. �Color online� Plot of the absorption of light with light incident at an angle of 45° as a function of wavelength and thickness for
p polarization for thin films quasistatically equivalent to lamellar gratings in silicon carbide, with f1=0.5. The graph at right is for a
wavelength of 10.57 �m.
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FIG. 4. �Color online� Plot of the absorption of light with light incident at an angle of 45° as a function of wavelength and thickness for
s polarization for thin films quasistatically equivalent to lamellar gratings in silicon carbide with f1=0.5. The graph at right is for a
wavelength of 12.81 �m.
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its spatially independent effective dielectric constant. The an-
gular dependence of the absorption when h=1.29 �m has a
wide region of high absorption, as observed in Fig. 8.

Field maps of �Ex and Ey within one period are given in
Figs. 9 and 10 for the larger-period grating starting from
1.25 �m below the groove, which is indicated as a black
rectangle. First, in this case the field is not homogenized due
to the higher d /� ratio. Second, it is not localized in the SiC
rods but is equally distributed inside them and in the air gap.
This can be explained by the fact that the contrast between
the optical indexes is not high, they differ only by the signs
of their real parts, as discussed in the paragraph following
�Eq. �3��. Note also that it is not required for effectively zero
transmittance that electric field components be zero below
the grating. What is required is that fields be composed es-
sentially of evanescent waves, which decay with distance
below the grating. Such behavior is evident in Figs. 9 and 10.

IV. QUASISTATIC LIMIT OF THE CYLINDER
GRATING

We now consider the interaction of an incident plane
wave with a grating of circular cylinders of radius a. We

study first the interaction in the quasistatic limit when the
wavelength � exceeds the period d of the cylinder grating
sufficiently so that the electrostatic properties of an equiva-
lent film of thickness 2a are of use. This interaction was
considered for normal incident radiation by Asatryan et al.
�20�, who derived two of the three principal components of
the effective dielectric tensor of the equivalent layer. In order
to complete their treatment, we give a brief derivation of the
method used and extend it to provide the missing third ele-
ment, which shows the equivalent film to be biaxial.

Let the dielectric constant of the cylinders be �c, the me-
dium surrounding them have unit dielectric constant, and
their area fraction be f =�a2 /d2. Then the component of the
effective dielectric constant along the cylinders axes is inde-
pendent of cylinder shape and is given by the linear mixing
formula or the first of the Voigt bounds �13�

�z = 1 − f + f�c. �4�

Let us now consider the grating of cylinders, with an ap-
plied field of magnitude E0, aligned along the Ox axis so that

FIG. 5. �Color online� Magnitude of electromagnetic field com-
ponents along a horizontal line in the middle of the grooves for the
grating structure described in Fig. 3, in the quasistatic limit with
d /�=10−4.

FIG. 6. Absorption for the grating of Fig. 3 as a function of d /�
at right, with �at left� a blow up of the region of total absorptance.

FIG. 7. Absorption as a function of grating thickness in p po-
larization at 45° incidence. The period, air gap, and wavelength are
indicated in the figure.

FIG. 8. Angular dependence of the absorption for a grating with
the parameters given in Fig. 7 and h=1.29 �m.
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the electrostatic potential function V�x ,y� increases with x.
We require that V be an odd function of x and an even func-
tion of y, and so we write it in multipole form around the
central cylinder as

V�r,	� = 	
n=1

� �A2n−1
s r2n−1 +

B2n−1
s

r2n−1 �cos�2n − 1�	 . �5�

The static multipole coefficients A2n−1
s and B2n−1

s are linked
by the boundary coefficients at the cylinder surface r=a,
which require that V and ��V /�r be continuous there. These
conditions link A2n−1

s and B2n−1
s and relate them also to the

multipole coefficients C2n−1
s for V inside the cylinder:

A2n−1
s +

B2n−1
s

a4n−2 = C2n−1
s , A2n−1

s = −
B2n−1

s

a4n−2 � �c + 1

�c − 1
� . �6�

We follow the procedure of Perrins et al. �21� and note that
the lattice sums for the square array there are replaced by
sums for the line, which are expressible in terms of even
order values of the Riemann zeta function �these of course
are analytically known, e.g., 
�2�=�2 /6�. The multipole co-
efficients B2n−1

s may be obtained by truncation and numerical
solution of the following system of equations:

	
m=1

� 
 �n,m

a4n−2� �c + 1

�c − 1
�

− 2
��2m + 2n − 2�
�2m + 2n − 2�

��2m − 1���2n�d2m+2n−2 �B2m−1
s

= − E0�n,1. �7�

Note that for this alignment of the applied field, there is no
difference between the field applied at infinity �E0� and the
local field �E� experienced in the neighborhood of the central
cylinder.

For the grating of cylinders, there is some ambiguity
about what may be regarded as a unit cell: the x extent
should certainly be d, but the y extent �Y� is not well defined.
We need to apply Green’s theorem to a unit cell with two
faces which are equipotentials, and the other two faces which
are current sheets. This second constraint requires increasing
Y until it is satisfied to adequate precision, and then if A
=dY,

�x = 1 −
2�B1

s

E0A
= 1 + xN , �8�

where x is the grating polarizability for an applied field in
the x direction, and N=1 /A is a number density of cylinders
for use in the Clausius-Mossotti formula. Note from Eqs. �7�
and �8� that the polarizability does not depend on A and is
thus more clearly defined than �x. �Note that a consistency
interpretation for A will emerge below: A=d2.� The polariz-
ability taking into account only dipole contributions follows
from Eq. �7� with n=1, and limiting the unknowns to just B1

s :

x =
2�a2

�c + 1

�c − 1
−

�2a2

3d2

. �9�

Let us now consider a cylinder grating interacting with
long-wavelength radiation with its magnetic field along the
cylinder axis �Oz�, incident at an angle 	0 to the normal axis
Oy. We work first to dipole order and find the dynamic co-
efficients B1 and B−1 of cylindrical outgoing waves of orders
1 and −1, respectively. Following Asatryan et al. �20�, these
are given by

�H0 + iM1�B−1 + H2B1 = i exp�− i	0� ,

�H0 + iM1�B1 + H2B−1 = i exp�i	0� . �10�

Here, the coefficient M1 arises from boundary conditions on
the cylinder surfaces and is to leading order

FIG. 9. �Color online� Spatial distribution of �Ex in a single
grating period for the structure presented in Fig. 7 with h
=1.29 �m. Values of highest magnitude are found on the black
rectangle, which represents the SiC rod. The map extends from
1.25 �m below the grating to 1.25 �m above it and incidence is
from above.

FIG. 10. �Color online� As in Fig. 9, but now for Ey.
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M1 =
4��c + 1�

f�kd�2��c − 1�
. �11�

The lattice sums H of orders 0 and 2 may be evaluated from
expressions due to Twersky �19�, who also gives the follow-
ing asymptotic expansions:

H0 =
2

kd cos 	0
− 1,

H2 =
2 cos�2	0�
kd cos 	0

+ i� − 4�

3k2d2 +
1

�
�1 – 2 sin2�	0�� . �12�

Equation �10� may be solved to give

B1 + B−1 =
k2d2f cos 	0

2
� �c + 1

�c − 1
� −

f�

3
� �13�

and

B1 − B−1 =
ik2d2f sin 	0

2
� �c + 1

�c − 1
� +

f�

3
� . �14�

In terms of these, the zeroth-order reflection coefficient is

R0 =
2

ikd
�B1 + B−1 − i�B1 − B−1�tan 	0� �15�

or

R0 = − ikd� f cos 	0

� �c + 1

�c − 1
� −

f�

3

+
f sin2 	0/cos 	0

� �c + 1

�c − 1
� +

f�

3
� . �16�

We can interpret result �16� in terms of what Berreman
�22� calls an orthorhombic thin film with the dielectric tensor
in diagonal form:

�ef f = ��x 0 0

0 �y 0

0 0 �z
� . �17�

Here �z is given by Eq. �4�, and we wish to derive expres-
sions for the other two nonzero components of Eq. �17�,
assuming the quantity kd is small. We thus consider a plane-
wave incident at an angle 	0 to the z axis, with both its wave
vector and its electric field vector in the xz plane �p polar-
ization�. Berreman �22� shows that in such a case the propa-
gation problem splits into two uncoupled problems, corre-
sponding to waves in uniaxial crystals. We can use the
treatment in Appendix 4 of McPhedran et al. �16� to derive
the appropriate formula for reflectance of the orthorhombic
film corresponding to Eq. �16�. This is

R =

i sin��0h�� �0

�0�e
2 −

�e
2�0

�0
�

2 cos��0h� − i sin��0h�� �0

�0�e
2 +

�e
2�0

�0
� , �18�

with the corresponding expression for the transmittance be-
ing

T =
1

cos��0h� −
i

2
sin��0h�� �0

�0�e
2 +

�e
2�0

�0
� . �19�

Here �0=k cos�	0�, �e
2=�x, �0

2=�y, and

�0
2 = k2�e

2�1 −
sin2�	0�

�0
2 � . �20�

To establish the correspondence between Eqs. �16� and
�18�, we need to expand the latter assuming �0h is small.
The first-order expansion of Eq. �18� gives us

R =
ikh

2

cos 	0�1 − �e

2� +
sin2 	0

cos 	0
�1 −

1

�0
2�� . �21�

Comparing Eqs. �16� and �21�, we obtain h=d and

�x = �e
2 = 1 +

2f

�c + 1

�c − 1
−

f�

3

, �22�

in accord with the result of Asatryan et al. �17�. �As re-
marked above, this expression is in accord with the use of a
unit cell with area A=d2 for the calculation of �x in Eq. �8�.�
We also derive the missing element of Eq. �17�:

1

�y
=

1

�0
2 = 1 −

2f

�c + 1

�c − 1
+

f�

3

, �23�

or

1

�y��c�
= 1 +

2f

1/�c + 1

1/�c − 1
−

f�

3

= �x�1/�c� . �24�

This last relation recalls the interchange result for effective
properties of composite materials in two dimensions due to
Keller �23�, which has been applied to the polarizability of
chains of cylinders by Radchik et al. �24�.

Relation �21� for the reflectance leads to an interesting
conclusion if the angle of incidence 	0=45°:

R�	0 =
�

4
� =

ikh

2�2
�2 − �e

2 − �o
2� �25�

so that the leading terms in Eqs. �22� and �24� combine for
this angle to cancel the factor 2 occurring in the bracketed
term in Eq. �25�. The result is a low reflectance of order area
fraction squared:
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R�	0 =
�

4
� =

− �ikhf2�2

3

1

� �c + 1

�c − 1
�2

−
f2�2

9

. �26�

The choice of 	0=45° is then optimal for producing low
reflectance, which is a necessary precondition for high ab-
sorptance, as we see from the expression for R with a general
angle of incidence:

R�	0� =
− �ikhf

cos�	0� �
cos�2	0�
cos�	0� � �c + 1

�c − 1
� +

f�

3

� �c + 1

�c − 1
�2

−
f2�2

9
� . �27�

Turning now to Ez or s polarization, the situation is sim-
pler since the fields are generated by a single Cartesian com-
ponent of the electric field for all values of 	0 so that the

effective dielectric constant is given by Eq. �4�. Given this,
the quasistatic equivalent layer acts as if it is isotropic, and
we have for the propagation constant �0 in the layer

�0
2 = k2��z − sin2�	0�� . �28�

Then the thin-film expressions replacing Eqs. �18� and �19�
for this polarization are

R = −

i sin��0h�� �0

�0
−

�0

�0
�

2 cos��0h� − i sin��0h�� �0

�0
+

�0

�0
� , �29�

with the corresponding expression for the transmittance be-
ing

(b)(a)

FIG. 11. �Color online� Plot of the absorption of light as a function of wavelength and cylinder radius with normally incident light for s
polarization �a� and p polarization �b� for thin films assumed quasistatically equivalent to cylinder gratings in silicon carbide, with period
d=6.0 �m.
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FIG. 12. �Color online� Plot of the absorption of light as a function of wavelength and cylinder radius with light incident at an angle of
45° for p polarization for thin films assumed quasistatically equivalent to cylinder gratings in silicon carbide with period d=6.0 �m. The
graph at right is for a=0.5 �m and for periods of 5.71, 6.0, 6.15, and 6.667 �m, for which the absorptance curves largely coincide.
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T =
1

cos��0h� −
i

2
sin��0h���0

�0
+

�0

�0
� . �30�

In terms of the cylinder grating scattering properties, these
are now dominated by B0, for which the leading order solu-
tion is

B0 = −
f�kd�2��c − 1�

4
, �31�

with

R0 =
if�kd���c − 1�

2 cos�	0�
, �32�

in keeping with the expansion of Eq. �29� for kh small and
the result �Eq. �4��. This formula predicts a reflectance in-
creasing monotonically with 	0 for kd small.

The numerical results which follow use a procedure in
which Eqs. �4�, �7�, �8�, and �24� are used to evaluate the x,

y, and z components of �ef f �with five multipole coefficients
being used in the solution of the linear system �Eq. �7���
Depending on polarization, the equivalent thin-film reflec-
tance and transmittance values come from Eqs. �18� and �19�
or Eqs. �29� and �30�. These are then used to find the absorp-
tance as a function of wavelength for thin films quasistati-
cally equivalent to gratings of given period with cylinders of
a given radius made of silicon carbide.

Figure 11 gives results for normally incident light. By
comparison with the results for thin films derived from
lamellar gratings in Fig. 2, the s polarization absorptance
rises monotonically with increasing radius to its peak before
falling away gradually and developing ridges going off to-
ward longer wavelengths. For p polarization, the absorptance
rises to higher values for the cylinder grating model and then
gradually diminishes with increasing radius, compared with
the lamellar grating model, which increases monotonically
with thin-film thickness. For an angle of incidence of 45°
degrees �Figs. 12 and 13�, once again p polarization offers
higher absorptance than s polarization, but the peak value is

(b)(a)

FIG. 14. �Color online� Plot of the absorption of light with light normally incident for s polarization �a� and p polarization �b� for cylinder
gratings in silicon carbide with period d=6.0 �m.
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FIG. 13. �Color online� Plot of the absorption of light as a function of wavelength and cylinder radius with light incident at an angle of
45° for s polarization for thin films assumed quasistatically equivalent to cylinder gratings in silicon carbide with period d=6.0 �m. The
graph at right is for a=0.5 �m and periods of 5.71, 6.0, 6.15, and 6.667 �m, for which the absorptance curves largely coincide.
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slightly lower �around 95%�, and it drops away slowly with
increasing radius, rather becoming independent of thickness
�as in Fig. 3�. For s polarization, the absorptance behavior for
45° incidence is quite similar to that for normal incidence, as
was also the case for lamellar gratings �see Fig. 4�. It should
be noted in comparisons of these two cases that for of lamel-
lar gratings the values of �ef f are independent of film thick-
ness, while for cylinder gratings of fixed period they depend
strongly on radius through the area fraction.

We finally compare the results in Figs. 11–13 for thin
films quasistatically equivalent to cylinder gratings with
those given by electromagnetic diffraction theory for the ac-
tual structures, calculated using the method described by
McPhedran et al. �25,26�. The results were obtained using
waveguide modes of orders ranging from −10 to 10 in the
silicon carbide cylinders and plane waves of orders ranging
from −6 to 6 in free space. The results in Fig. 14 for normal-
incident s polarized light are similar to those in Fig. 11 for
radii up to around 0.4 �m, after which multimode effects
not captured by the quasistatic model arise, breaking up and
lowering the high absorption ridge. The quasistatic model
works much better for p polarization, but the absorption lev-
els are again lower in Fig. 14 than in Fig. 11. Comparing the
s polarization results in Fig. 15 with the quasistatic results in
Fig. 13, we again see that the latter overestimates absorption
for small radii, with the former requiring values round one
micron for high absorption. Once again, the quasistatic
model is much more successful for p polarization �Figs. 12
and 15 �right��, but there is much more structuring evident in
the absorption ridge of Fig. 15 than in Fig. 12.

V. CONCLUSIONS

We have discussed the correspondence between the opti-
cal properties of gratings and their equivalent thin-film mod-
els, derived using the quasistatic approximation. We have
used as the test material silicon carbide, in a spectral region
where it displays resonant behavior of its optical properties.

This choice enables high optical absorptance values to be
achieved with gratings whose thickness is small compared
with the free-space wavelength, but it makes the accuracy of
the quasistatic model a strong function of that wavelength for
a given thickness. Indeed, a given grating may be optically
thick near the resonance wavelength, with phase change
across the equivalent thin film in excess of � and consider-
able reduction in plane-wave amplitude, and optically thin a
little further from the resonance: generally, the quasistatic
model fails in the region of optically thick structures. We
have shown that the accuracy of the quasistatic model is
strongly influenced by polarization, working much better for
p polarization than for s polarization, and that it is also in-
fluenced by the grating morphology. The equivalent thin film
for the lamellar grating is uniaxial, whereas that derived here
for the cylinder grating is biaxial. The latter case leads to
more complicated wave interactions and quicker loss of ac-
curacy for the quasistatic model with increasing cylinder ra-
dius.

We emphasize that quasistatic models and their associated
effective dielectric constants continue to play an important
role in electromagnetism. For example, they are widely used
in the emerging field of metamaterials, where the design of
systems is often based on them delivering negative values for
effective dielectric constants or magnetic permeabilities. The
examples given here show these models can lose their quan-
titative accuracy in narrow spectral regions, but in general
they are qualitatively accurate, and at the very least, they are
a good guide in estimating the parameter ranges in which
diffractive systems are likely to yield desired properties.
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(b)(a)

FIG. 15. �Color online� Plot of the absorption of light with light incident at an angle of 45° for s polarization �a� and p polarization �b�
for cylinder gratings in silicon carbide, with period d=6.0 �m.
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