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Differential theory for diffraction gratings: a new formulation
for TM polarization with rapid convergence
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A new formulation of the differential method in TM polarization, based on correct representation of truncated
Fourier series of products of discontinuous functions, is proposed. Although the derived equations are more
complicated than in the classical formulation, the convergence rate with respect to the truncation parameter
(with the number of diffraction orders taken into account) is much faster for arbitrary grating profiles,
approaching the convergence rate in TE polarization. Numerical examples are presented for dielectric and
metallic sinusoidal gratings with a 100% modulation ratio.  2000 Optical Society of America
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Since the beginning of the 1970’s, the differential the-
ory of gratings1 has been found to suffer from numeri-
cal instabilities in TM polarization when dealing with
deep gratings and highly ref lecting materials. These
instabilities are cumulative and of two types. The
first type, contamination by growing exponential terms
during numerical integration, was recently solved by
use of the S-matrix propagation algorithm.2 In this
Letter a solution for the second type of error, caused by
the bad convergence rate of the Fourier series of dis-
continuous field components, is proposed.

Let us consider a grating lying in the x z plane with
grooves parallel to the z axis and y axis perpendicu-
lar to the mean plane of the grating. The cladding is
air. In TM polarization, the continuous-in-y electro-
magnetic field component is the z component Hz of the
magnetic field, and the x and y components (Ex and Ey )
of the electric field are generally discontinuous. The
differential method integrates the following equations
in TM polarization:

d
dy

�Hz�x, y��n � 2i�k2�x, y�Ex�x, y��n ,

d
dy

�Ex�x, y��n � 2i�Hz�x, y��n 1 ian�Ey �x, y��n , (1)

with Ey �x, y� � 2ik22�x, y�≠Hz�≠x. In Eqs. (1), � �n
denotes the Fourier components of the functions in
brackets with respect to x, k2�x, y� � k0

2n2�x, y�,
n�x, y� is the refractive index, k0 is the wave number,
am � k0 sin ui 1 mK , K is the grating wave number
(K � 2p�d, where d is the grating period), and ui
is the angle of incidence with respect to the y axis.
For convenience, Hz is substituted with vm0Hz. The
classical formulation of the differential method uses a
direct representation of the Fourier decomposition of a
product of two functions,
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�k2Ex�n �
X
m

�k2�n2m�Ex�m ,

�Ey �n �
X
m

�k22�n2mam�Hz�m . (2)

The summations in Eqs. (2) involve infinite numbers
of terms. However, computer implementation of this
method requires truncation of the Fourier series and
the summation index. Whereas in TE polarization
this truncation does not raise problems, in TM polar-
ization it is necessary to represent the Fourier com-
ponent of a product of discontinuous functions with
shared discontinuity points. As was pointed out by
Li,3 this requirement leads to valid mathematical op-
erations in only two cases: (A) if the two functions
have no common discontinuities, in particular, if one
of them is continuous and the other one is discontinu-
ous, and (B) if, at the points where the two functions
are both discontinuous, their product is continuous,
particularly if their product is continuous everywhere.
For case (B), it was established in the research re-
ported in Ref. 3 that the product can be factorized
by use of an inverse rule. For example, for lamel-
lar gratings, where Ex is discontinuous when crossing
the lamella sides but the product k2Ex is continuous,
the Fourier components after truncation are correctly
given as �k22�21�Ex�, where �k22�21 is a matrix that is
the inverse of the Toeplitz matrix �k22� and, in general,
is not equal to �k2�. The resulting equations for lamel-
lar gratings, obtained in the research reported in Ref. 4
(and analyzed in detail in Ref. 5) are

�k2Ex�n �
X
m

��k22�21�n2m�Ex�m ,

�Ey �n �
X
m

��k2�21�n2mam�Hz�m . (3)
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However, for an arbitrary grating profile, neither Ex
nor k2Ex is continuous when it is crossing the profile,
and thus neither of the two rules (direct or inverse)
applies. This is why neither Eqs. (2) nor Eqs. (3)
give numerical results with acceptable convergence
rates. Figure 1 presents a comparison, made for a
metallic sinusoidal grating, of the convergence rates
with respect to the number of diffraction orders taken
into account in the calculations (equal to 2N 1 1). As
can be observed from the figure, the convergence in
the TE polarization is rapid, leading to results with a
relative error of less than 1% for N � 10, whereas in
TM polarization the error remains greater than 50%
even for N � 30. In fact, it is necessary to increase N
to as much as 150 to reduce this error.

We have been able to obtain a new formulation of the
Fourier transformation of the products in Eq. (1), using
products of classes (A) and (B) only. This formulation
is obtained by decomposition of Ex and Ey into com-
ponents that are locally tangential �ET � and normal
�EN � to the profile by use of the x and y components
of the unit vector tangential to the profile, tx and ty ,
respectively. tx and ty are defined only on the grating
profile, but to calculate their Fourier components it is
necessary to define them for each x. There are several
possible ways of doing this, depending on the profile
function y � f �x�. The simplest way is to use

tx � 1
. q

1 1 � f 0�2 ,

ty � f 0
. q

1 1 � f 0�2 ,

where f 0 is the derivative of f �x�, when the derivative
exists. If the derivative does not exist, one can use
different definitions for tx and ty by introducing, for
example, a curvilinear parameter of the profile.

By use of the fact that ET and k2EN are continuous,
the final result can be obtained (written in matrix
form) after several simple operations:

�k2Ex� � ��k22�21 1 �tx2�D� �Ex� 1 �txty �D�Ey � , (4)

�Ey � � ��k2� 2 �tx2�D�21�a�Hz� 2 �txty �D�Ex�� . (5)

D is a matrix,

D � �k2� 2 �k22�21, (6)

and a is a diagonal matrix with elements equal to am.
It is important to note that �Ey � is obtained not by a
direct Fourier transform but by use of several matrix
operations in Eq. (5).

When ty � 0, i.e., for profiles with infinitely small
modulation, Eqs. (4)–(6) take the same form as Eq. (2),
the classical formulation of the differential method.
For lamellar profiles, tx � 0, and Eqs. (4)–(6) take the
same form as in Eqs. (3) proposed in Ref. 4. However,
very deep sinusoidal profiles, i.e., gratings with �100%
modulation, and cylindrical rod gratings are difficult to
treat from the point of view that the tangential to the
profile vector changes its direction from parallel to the
x axis [for which the classical formulation in Eqs. (2)
holds] to parallel to the y axis [for which Eqs. (3)
converge better than Eqs. (2)] through all intermediate
cases. Equations (4)–(6) are quite general, because
they are valid for slanted or curved profiles, too.
This is shown by the open triangles in Fig. 1. The
convergence in TM polarization by use of Eqs. (4)–
(6) instead of (2) or (3) approaches the convergence
rate in the TE case. The same conclusion is also
valid for a dielectric grating with high contrast of the
refractive index (equal to 1 in the cladding and 2.5 in
the substrate; see Fig. 2).

It is interesting to compare the calculation times of
the new and the classical differential methods, because
of the many Fourier transformations and matrix mul-
tiplications and inversions required at each integration
step. For a metallic sinusoidal grating the number of
integration steps �I � required is approximately l�150,
and the number of slices M that are necessary for de-
composition of the grating height when one is applying
the S-matrix algorithm depends on the truncation pa-
rameter N . For example, for N � 10, it is sufficient to
take M � 4 and I � 240. With this choice of techni-
cal parameters, the computation time on a Pentium II
300-MHz PC for TE polarization is 1.6 s, increasing to
3.9 s for TM polarization for the classical formulation
and 7.6 s for the new formulation, Eqs. (4)–(6). If, for
better precision, N is increased to 20, it is necessary
to increase M to 8 and I to 320. Then, computation
in the TE case takes 11 s, the classical TM formulation

Fig. 1. Logarithm of the relative error in the propagating
diffraction orders as a function of truncation parameter N
(the total number of diffraction orders taken into account is
2N 1 1). Filled squares, results obtained with Eqs. (2);
filled circles, Eqs. (3); open triangles, Eqs. (4)–(6). For
comparison, the filled triangles show the convergence
for TE polarization. The parameters of the sinusoidal
metallic grating used are period d � 1 mm; depth h � 1 mm;
complex refractive index, 1.3 1 i7.6; incidence from air at
a 30± angle; and wavelength, 0.6328 mm. The error is
calculated as the difference between the numerical results
and the results of the integral method.6 The reference
efficiencies are order 22, 0.2120; order 21, 0.1598; and
order 0, 0.2638.
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Fig. 2. Same as in Fig. 1, except that the grating material
is dielectric, with refractive index 2.5. The results for
Eqs. (3) are not presented. The reference efficiencies in
transmission are order 23, 0.1472; order 22, 0.2261; order
21, 0.2830; and order 12, 0.2205.

[Eqs. (2)] requires 25 s, and the new formulation re-
quires 45 s. The same ratio (approximately 1:2:4) is
preserved when N , M , and I vary over a large range.
This result indicates that the new version of the dif-
ferential method does not lead to a drastic increase in
computation time (it is only twice the time for the old
version). On the other hand, the faster convergence
helps one to gain time, because fixing the number of
slices M in the S-matrix algorithm results in a compu-
tation time that is roughly proportional to N3. More-
over, the increase of N requires a larger number of
slices M , owing to the exponential terms, which grow
faster for greater N .

We have removed the limitation that has plagued the
differential theory of gratings over the last quarter of
a century. The approach presented here opens a wide
range of applications not only for TM polarization but
also for conical diffraction, crossed gratings, and three-
dimensional problems in linear and nonlinear optics.
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