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The study of total light absorption due to excitation of localized surface plasmons on deep metallic crossed gratings
having a sinusoidal profile with a two-dimensional periodicity shows a very strong increase in the electric field
intensity, reaching 800 times the incident intensity. The region with high intensity is strongly localized at the groove
top and is characterized by a volume much smaller than the diffraction limit, both in transverse direction along the
grating plane, and in longitudinal direction when going away from the grating surface. The field enhancement and
its localization are much more pronounced than in shallow gratings. © 2013 Optical Society of America
OCIS codes: (050.6624) Subwavelength structures; (240.6680) Surface plasmons; (050.1950) Diffraction gratings.
http://dx.doi.org/10.1364/OL.38.004876

Excitation of plasmon-type surface waves (PSW) on
metallic gratings has been discovered experimentally
by Wood more than 110 years ago [1]. The anomalous
diffraction was not immediately related to surface waves,
although Wood and Rayleigh made hints toward the
resonant nature of this phenomenon [2]. Fano was the
first to give an explanation linked with surface waves
[3], although at that time they were not known as linked
to the plasma of free electrons in metals.
The study of diffraction anomalies in gratings led to

numerous applications mainly because of two phenom-
ena. First, the excitation of PSW can lead to total absorp-
tion of incident light [4] that plays an important role in
photovoltaics. Second, this absorption is accompanied
by strong enhancement of the electromagnetic field,
localized close to the grating surface. The field enhance-
ment that accompanies the resonant PSW excitation is of
high interest to improve a broad range of applications
that directly rely on the light-matter interaction at the
nanoscale. This involves fluorescence spectroscopy
[5,6], label-free biosensing [7], solid-state lighting [8], sur-
face-enhanced Raman scattering [9–11], and nonlinear
optical effects [12,13]. A specific effect of coherent ther-
mal radiation has been demonstrated due to PSW [14].
Following the experimental work of Ebbesen et al.

[15], the problem of PSW in lamellar metallic gratings
and hole arrays has been the subject of extensive theo-
retical, numerical, and experimental work. It has been
demonstrated that deep corrugations can support new
kinds of plasmon modes created by the coupling between
the groove cavity resonances and the plasmon surface
wave [16–19]. Specific studies have also been shown that
surface plasmons in deep and narrow Gaussian grooves
exhibit very flat dispersion curves [20]. A totally different
situation is observed when considering deep and narrow
Gaussian ridges [21].
As for any grating profile, if the grating period permits

coupling with the outgoing radiated wave (the condition
is the same as for the possibility to excite a PSW with an
incident wave using the grating periodicity), the radiation

losses of the PSW increase with the increase of the
groove depth. Above some critical groove depths, the
PSW can no longer propagate along the surface, and cav-
ity modes inside the grooves appear. At a given value of
the groove depth (approximately half-wavelength), the
cavity mode can be almost completely “hidden” inside
the groove, and the boundary conditions are satisfied
to insure a new surface plasmon mode [17,22–26] that
is characterized by field enhancement localized on the
top of the grooves. The analysis of the maps of the
electromagnetic field of previously known grating pro-
files shows that the field enhancement is localized in
strips along the top of the metallic bumps. However,
the effective volume with an enhanced electric field is
large in this case. In order to reduce the region with
enhanced field, we propose the use of a crossed grating
having two-dimensional (2D) periodicity.

In this Letter, we show that deep metallic crossed
gratings having a sinusoidal profile with a 2D periodicity
enable concentrating the electric field in a volume of
subwavelength dimensions along the three directions
of space. This region is strongly localized at the groove
top and is characterized by a high local intensity. As for
shallow grooves, the excitation of this new mode is ac-
companied by light absorption (Fig. 1). One of the main
differences between the PSW on shallow and deep gra-
tings is that whereas for shallow gratings, the field
enhancement appears all over the grating profile, in
the case of deep grooves, it is localized on the top of the
grooves because of the existence of a cavity resonance
inside the grooves that separates the field at the top from
the field at the bottom.

For our purposes we have chosen gold as grating
material, because aluminum is rapidly covered with alu-
minum oxide several tens of nanometers thick, which
will separate the metal surface from the cladding, and
the region of field enhancement would be inside the
oxide. The grating profile has a sinusoidal form in each
direction along the surface, having the same period d and
the same groove depth:
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f �x; y� � h
4
�sin�Kx� � sin�Ky��; (1)

where K � 2π∕d, and h is the total groove depth. Thus,
along each of the x and y axis the groove depth is only
half of the total, whereas the groove depth is equal to h
along the cell diagonals. The simulations are made using
a rigorous differential theory of gratings based on a curvi-
linear transformation of the coordinate system, known as
C-method, proposed first by Chandezon et al. [27] and
improved later by using the factorization rule proposed
by Li and Chandezon [28]. Details of the method are avail-
able online in a recent review on grating theories [29].
Figure 1 represents the reflectivity of the grating hav-

ing a period d � 500 nm as a function of incident polar
angle θ (measured from the grating normal inside the
plane of incidence) and the groove depth h. The azimu-
thal angle φ (between the plane of incidence and the
x axis) is kept null, the wavelength is equal to 632.8 nm
and the incident electric field is perpendicular to the
plane of incidence (we continue to call this TE polariza-
tion) or lies inside it (polarization TM). The wavelength,
period, and the angle(s) of incident are chosen to
preserve a single (0th) reflected order in the cladding,
assumed as air.
A small region of strong absorption for shallow

grooves is presented for TM polarization, and it is char-
acterized by a strong angular dependence, due to the

grating equation, because the surface plasmons on shal-
low gratings are not localized in real space (and thus it is
strongly localized in the inverse space). This can be ob-
served in Fig. 2, with field amplitude varying less than
30% (from 8 to 10.8 at y � d∕4). The decrease of the field
amplitude along the vertical direction is determined by
the rate of decrease of the PSW field when going away
from the metal surface, and will be discussed further on.

The second interesting region in Fig. 1(a) appears
close to h � 0.35 μm, and it is much more extended an-
gularly than the anomaly for h � 0.08 μm. As observed in

(a) 

(b) 

Fig. 1. Reflectivity of a crossed sinusoidal grating as a function
of polar incident angle and the groove depth for the two funda-
mental incident polarizations.

Fig. 2. Map of the modulus of the diffracted electric field in-
side one grating cell along the profile in x-direction at y � d∕4.
Incident electric field is normalized to 1, h � 0.08 μm, θ � 12°.

(a) 

(b) 

Fig. 3. Map of the modulus of the diffracted electric field for
deep grooves with h � 0.3575 μm and θ � 8.25°. λ � 0.6328 and
TM polarization. (a) x-z cut and (b) y-z cut.
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Fig. 3, the electric field is strongly localized at the groove
top. In the lateral direction, the electric field amplitude
decreases ten-fold from its maximum value within a
length of 1∕5 of the wavelength of light. In the vertical
direction the decrease is even more rapid.
As the intensity is the square of the amplitude, the

region with strong field enhancement of the intensity
is even smaller. The ten-fold decrease in intensity from
its maximum at the groove top occurs at a distance of
�85 nm in direction parallel to the grating plane and
within 55 nm in the vertical direction.
If we go back to Fig. 1(b), a region of strong light

absorption is obtained in TE polarization for very deep
grooves. This effect is accompanied by relatively lower
field enhancement, but found inside the grooves (Fig. 4),
which appears more like a cavity resonance. This type of
field map was obtained in [26] for deep metallic sinusoi-
dal one-dimensional grating in TE polarization with the
plane of incidence perpendicular to the grooves.
The stronger localization of the field on deep gratings

means that its Fourier spectrum has to contain strong
higher harmonics, when compared to the shallow
grooves. Figure 5 shows that the Fourier spectrum of
the z-component of the electric field in the resonant case
for deep gratings is much richer than for shallow
grooves. The same is valid for the other electric field
components, not shown here, because the z-component
is predominant. Let us remember that the only diffraction
order that propagates in the cladding is order (0,0); all
other orders are evanescent. In the case of shallow
grooves, the PSW is represented mainly by a single dif-
fraction order �−1; 0� that propagates in −x direction,
whereas for deep grooves there is no predominant
diffraction order, which confirms the localized character
of this PSW mode.
High-order diffraction modes decrease faster in the

cladding than the lower orders. For instance, the second
diffraction orders �0;�2�, (��2; 0�, and ��1;�1�
decrease approximately twice as fast as the first ones.
Hence, the stronger high-diffraction orders in the deep
grooves lead to stronger localization and faster decrease
along the vertical direction, as compared to shallow
grooves (Fig. 6).
To conclude, we demonstrate the existence of a new

kind of diffraction anomaly in deep bi-dimensional

metallic gratings of sinusoidal profile. The excitation
of this new mode is revealed by incident light absorption
and concentration of the electric field on top of the
grooves in a volume of sub-wavelength dimensions along
the three directions of space with a high local intensity.
These features are explained by stronger high-diffraction
orders as compared to shallow sinusoidal gratings.

The research leading to these results has received
funding from the European Research Council under
the European Union’s Seventh Framework Programme
(FP7/2007-2013)/ERC Grant agreement 278242.

Fig. 4. Map of the modulus of the diffracted electric field for
deep grooves with h � 0.83 μm and θ � 12.2°. λ � 0.6328 μm
and TE polarization, diagonal-z cut.

(a) 

(b) 

Fig. 5. Fourier decomposition of the vertical component of the
electric field vector for deep (a) and shallow (b) grooves.

Fig. 6. Decrease of the electric field amplitude with the
distance from the groove top for shallow and deep grooves.
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