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We show that the difference in the effective medium properties of perfectly or finitely conducting short-
period gratings is because for finitely conducting gratings it is possible to completely homogenize the elec-
tromagnetic field vector components, contrary to perfectly conducting gratings. As a consequence, for alu-
minum in the microwave domain, two possible effective media can be found, depending on whether the
feature dimensions are much larger or shorter than the depth of field penetration inside the metal. © 2007

Optical Society of America
OCIS codes: 050.2065, 050.6624.

The problem of homogenization of a given optogeo-
metrical structure finds its foundations in the homog-
enization of the microscopic Maxwell equations to
hide all the atomic nature of microcurrents and po-
larizations in a few macroscopic parameters. Starting
with the fundamental work of Maxwell-Garnet [1],
this domain presents many problems yet goes un-
solved (see, for example [2,3], and references cited
therein). Many attempts were made to obtain simple
rules for homogenizing grating structures with a sub-
wavelength period [4-7]. It has been shown that for
nonmagnetic media the effective dielectric permittiv-
ity becomes anisotropic due to the geometrical aniso-
tropy of the diffraction grating. However, numerical
and theoretical works have shown that the values of
this effective permittivity differ for finitely and per-
fectly conducting materials [5,6]. Due to these differ-
ences, the authors of [8] were obliged to consider that
the effective properties of the homogenized system
are characterized by both dielectric permittivity e
and magnetic permeability u being anisotropic, even
for a nonmagnetic system.

The aim of this Letter is to propose an explanation
for this old mystery. If the thickness of the metallic
features becomes much smaller than the wavelength
of light, but still larger than the penetration (skin)
depth of light, one obtains the perfectly conducting
homogenization limit. However, this limit is not an
absolute but an intermediate one, because when the
feature dimensions are further reduced to become
smaller than the skin depth, this limit is gradually
transferred into the limit for a finitely conducting
material.

Let us consider a lamellar metallic grating (the in-
set of Fig. 1) made of aluminum with relative permit-
tivity &5 and illuminated in TM polarization under
normal incidence. The groove is filled with air (g;
=1). The period is d, the groove width is d;, the
lamella width is dy, and the filling factor is fo=ds/d.
We consider two cases, one in the microwave (MW)
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domain (wavelength of the order of 2 cm), where alu-
minum can be considered as almost perfectly con-
ducting, with ,=-10°+i107, the second case in the
visible, where the conductivity is much smaller, with
£9=-56.1+121 at wavelength A=0.6328 um. The fill-
ing ratio is equal to 0.5. When the groove period is
small enough, no diffracted order can be supported
by the grating. Its reflectivity is shown in Fig. 1 as a
function of the grating period-to-wavelength ratio for
three different cases, perfectly conducting (p.c.) or
aluminum grating in the visible and in the MW re-
gion, for the case of a dielectric substrate (eg=¢;).
The lamellae height is equal to the quarter-
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Fig. 1. Reflectivity as a function of the period for three dif-
ferent lamellae materials, p.c., aluminum in the MW, and
in the visible. Substrate, cladding, and grooves are air, and
the grating height is A=\/4. Normal incidence is in TM po-
larization. Labeled points are analyzed in Fig. 2. Empty
circle represents the reflectivity level of a homogeneous
layer of the same thickness with anisotropic permittivity
(8,=2,8,=8,=) and anisotropic permittivity (u,=1,z,
=u,=1/2). The full circle represents the homogeneous layer
with anisotropic permittivity and isotropic permeability
(==, =1). The inset represents schematically the dif-
fraction grating.
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wavelength, A=\/4. The calculations for finitely con-
ducting material are made using the rigorous
coupled-wave (RCW) method [9,10]. Perfect conduc-
tivity is modeled by using the rigorous modal method
[11,12].

For highly (or perfectly) conducting lamella mate-
rial, a saturation level is reached quite rapidly for pe-
riods smaller than d <\/10, while in the visible it is
necessary to reduce the period to less than A/50 to
obtain saturation, and the limit values are quite dif-
ferent. The limit value in the visible maintains
stable, whatever small the features are (although it
is clear from a physical point of view that dimensions
smaller than several angstroms cannot be treated us-
ing macroscopic permittivity values). More amazing
is the behavior of the highly, but finitely, conducting
grating. At first, one observes a saturation value
equal to the value of perfectly conducting material.
However, with the further reduction of the period,
the reflectivity changes gradually to approximately
approach the finitely conducting limits. The physical
origin of this difference can be understood when ana-
lyzing in Fig. 2 the horizontal distribution of the z
component of the magnetic field in the middle of the
groove height for the aluminum grating in the micro-
wave domain at three different characteristic points
labeled 1, 2, and 3 in Fig. 1. In the first point, with
d/\=0.01, there is no homogenization of H, across
the grooves. This is also valid for perfectly conducting
lamellae, as whatever their width, the electromag-
netic field vanished inside them. This fact explains
why, for relatively larger grooves, the highly conduct-
ing grating behaves as if the conductivity is infinite.
However, for finite conductivity, the field always pen-
etrates inside some thin layer at a depth known as a
skin depth. As the groove period is reduced further,
the lamellae width becomes comparable with the
skin depth ¢, (of the order of 1 um, i.e., N/t,~107%),
and the field inside them cannot be neglected, as can
be observed in Fig. 2 for the point labeled 2 in Fig. 1
with d/A=0.001. Thus, it is necessary to reduce fur-
ther the groove period to obtain a homogenization of
the field, as shown for point 3 with d/A=10"%. As a
consequence, when the conductivity is very high, one
can observe two saturation values when the period is
reduced. First, when the groove dimensions are much
smaller (~1/20) than the wavelength, but much
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Fig. 2. X dependence of the z component of the magnetic

field for three different groove periods, labeled in Fig. 1,
calculated at the middle height of the lamellae (y=-h/2).
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larger than the skin depth, there is an intermediate
saturation value, characterized by an electromag-
netic field, which is constant inside the grooves but
vanishes inside the lamellae, a saturation value that
corresponds to the homogenized limit for perfectly
conducting materials. This structure is equivalent to
an effective medium having both anisotropic electric
permittivity and the magnetic permeability [8].
When the features become comparable in dimension
with the skin depth, a second saturation level can be
reached, corresponding to a perfectly homogenized
field, and equivalent to a homogeneous layer with
electrical anisotropy, but isotropic magnetically, as
discussed in the next paragraph. In the case of alu-
minum in the visible, the skin depth is of the order of
N/50 (i.e., 13 nm), so that for d~\A/20 the half-
lamellae width is larger than the skin depth, and the
first saturation cannot be observed in Fig. 1.

The effective permittivity and permeability can be
determined according to different models [4-8],
which give the same results for the effective permit-
tivity but differ for the permeability in the case of
perfect conductivity. The boundary conditions for the
electric and magnetic fields on the vertical lamellae
walls impose the continuity of the tangential compo-
nents of electric and magnetic field vectors. In par-
ticular, the continuity of E, results in an effective
permittivity in y direction given by the mean arith-
metic value of permittivity &,=f1e,+f5e9, tending in
modulus toward « when |ey]—. In a similar man-
ner, the continuity of the normal component of elec-
tric induction D, =¢E, requires that in the x direction
the mean permittivity &, is equal to the harmonic
mean value:

B €189 €1
Ey= o — (1)

fie2 +f281\82|ﬂoof1

The continuity of H, for finitely conducting materials
results in the effective magnetic permeability in the z
direction that is given by the mean arithmetic value
o=(fie1+fome). For a magnetically homogeneous
structure (u;=pus), this gives simply that the mean
permeability is equal to

Mo = 1. (2)

However, this is not the case for perfectly conduct-
ing lamellae, where the magnetic field vanishes com-
pletely inside the lamellae, as observed in Fig. 2 for
point 1 of Fig. 1. This means that H, cannot be com-
pletely homogenized, however small the period may
be, i.e., in the case of perfect conductivity, the electro-
magnetic field “sees” the structure whatever its fi-
nesse, so that one can expect homogenization of the
field only inside the groove region. As the values of H,
vanish inside, the effective permeability is decreased
by a factor equal to f; (<1), when compared to Eq. (2):

/_"*z,p.c. = fll-Ll . (3)

The authors of [8] propose a more physical expla-
nation of this reduction by using a modal presenta-
tion of the field inside the grooves having perfectly
conducting walls, with a mode having a constant of



propagation in the y direction equal to £k,
=ko\e1 1 =ko\E i, . [see Egs. (1) and (3)]. When us-
ing Eqs. (1) and (2) instead of Eqs. (1) and (3), the
y-propagation constant of the cavity mode is in-
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creased by a factor of 1/\f;, a difference due to the
penetration of an electromagnetic field inside the
lamellae.

Similar considerations can be applied in TE polar-
ization for the other field components. As a result, the
small-period perfectly conducting grating (or the
highly conducting grating in the intermediate satu-
ration region) is equivalent to a homogeneous layer
having both electric and magnetic anisotropy (g,
=81/f1? |§y|=|52|=oo, :l_'(’x=/1’17 /-_Ly=/-_l“z=//“1fl)' The reflec-
tivity of such layers is presented with a hollow circle
in Fig. 1. Finitely conducting gratings with features
smaller than the skin depth is equivalent to a homo-
geneous layer only with electrical anisotropy, &,
=e189/ (f1e2+f281), &,=%, —f181+f282, M= [y = My = 1.
The reflectivity of such layers is represented by a
black circle in Fig. 1.

Understanding this difference can play an impor-
tant role in the study of metamaterials, where fea-
ture dimensions vary in several orders of magnitude,
and their applications tend to extend from the MW to
the visible. Let us consider the same grating as
above, but with a metallic substrate, made of the
same material as the lamellae. Figure 3 presents the
dependence of the real part of the propagation con-
stant &, in the x direction of the spoof plasmons (for
perfectfy conductlng lamellar grating) or of the real
and imaginary parts of the canonical plasmon sur-
face wave (for aluminum grating in the MW domain)
as a function of the period-to-wavelength d/\ ratio.
The groove depth is A=\/6. As can be observed, the
behavior is similar to Fig. 1. The saturation value for
a perfectly conducting grating is reached for rela-
tively larger periods (~A/10), and the value can be
determined for the surface wave guided by the
equivalent layer having electrical and magnetic an-
isotropy [8]. The same is observed for the aluminum
grating but for groove periods larger than A/500.
Further reduction of the dimensions causes the rela-
tively stronger penetration of the field inside the
lamellae (as shown in Fig. 2), and thus an increase of
the losses. With the further decrease of the period,
another limit is reached with the complete homogeni-
zation of the field, corresponding to the plane layer
with only electrical anisotropy. There is an interest-
ing difference between Figs. 1 and 3 in the character-
istics value of the groove period corresponding to the
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Fig. 3. Variation of the normalized plasmon surface wave
propagation constant k,/k, as a function of the period-to-
wavelength ratio d/\ fp r a lamellar grating with metallic
substrate, and groove depth A=\/6. Dashed line, perfect
conduct1v1ty, dotted curve, real part of k,/k for alumlnum
grating in the MW (82——105+L107) sohd curve, its imagi-
nary part.

transfer from the intermediate saturation wvalue
(equal to the perfectly conducting limit) and the satu-
ration value characteristic to the complete homogeni-
zation case. In Fig. 1, the middle of the transition in-
terval occurs at about d/A=1073, while in Fig. 3 it is
close to 1074, a difference probably due to the differ-
ent penetration of the electromagnetic field inside the
lamellae in the two cases of an incident wave and
plasmon propagation.
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