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Abstract: We report on the design of cavity-resonator integrated grating couplers for second-
harmonic generation. The key point is that the base pattern of our grating coupler (GC) is made
of two ridges with different widths (bi-atom). Thus, we reach extremely high Q-factors (above
105) with structures whose fabrication is not challenging, since the bi-atom base pattern is close
to that of the surrounded distributed Bragg reflectors (DBR). Yet, the parameters of the structure
have to be chosen cautiously to reduce the transition losses between each section (GC, DBR). We
numerically demonstrate conversion efficiencies η of several tenths per Watt, even doubled when
we include a phase-matching grating within the structuration. Such efficiencies are comparable
to those obtained with waveguides and nano-resonators.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Non-linear optics is a very active field of research in which the exploitation of nanotechnologies
has played a prevalent role for about fifteen years. The objective is to overcome the difficulties
related to very low non-linear susceptibilities.

In a previous publication, we have demonstrated the potential for second harmonic generation
(SHG) of a structure called a CRIGF, a cavity-resonator integrated filter [1]. CRIGF are composed
from a grating coupler (GC), surrounded by two distributed Bragg reflectors (DBRs), the distance
between them being tunable thanks to a phase section (PS) (see Fig. 1 (a)). On the one hand,
the CRIGF appears as an alternative solution, in a context of miniaturisation of the components,
to ribbon and slab waveguides, in which high conversion rates are reached thanks to ingenious
designs aim to fulfil the phase matching condition between the pump and signal waves [2–9].
On the other hand, the CRIGFs present macroscopic scale modal volumes, whereas the high
conversion rates in nano-resonators rely on the excitation of modes with wavelength scale
modal volumes and long lifetime for which the interaction time with the non-linear material
is increased [10–14]. Thanks to this difference in the scales, we can expect the non-linear
conversion to be much less sensitive to manufacturing defects in CRIGFs than in nano-resonators.
Hence, the CRIGF appear as a promising intermediate solution, in term of scale, between
waveguides and nano-resonators. Moreover, the mode of a CRIGF is efficiently excited with a
few-wavelengths-diameter free space incident beam, which is easily achieved with conventional
optics. As compared to the classical guided-mode resonance gratings, which require highly
collimated beams, the CRIGFs thus allow greater enhancement of the pump field density [1].

For our first attempt at SHG in a CRIGF [1], we demonstrated numerically a conversion ratio
η = 8.2 × 10−6 W−1 and experimentally 1.9 × 10−6 W−1. The SHG conversion ratio is defined as
η = P2ω/[Pω]

2, where Pω is the power of the pump beam at frequency ω, and P2ω is the total

#468683 https://doi.org/10.1364/OE.468683
Journal © 2022 Received 23 Jun 2022; revised 21 Sep 2022; accepted 22 Sep 2022; published 5 Oct 2022

https://orcid.org/0000-0003-2705-8811
https://orcid.org/0000-0001-7788-5909
https://doi.org/10.1364/OA_License_v2#VOR-OA


Research Article Vol. 30, No. 21 / 10 Oct 2022 / Optics Express 38790

Fig. 1. Description of the structure: CRIGF (a) with grating coupler (GC, NGC periods),
surrounded with a phase section (PS, width ∆ taken between the centers of the adjacent
grooves) and distributed Bragg reflectors (DBR, NDBR periods each side) with period dDBR
and holes width cDBR; “bi-atom” pattern with constant hole width cGC and increasing
perturbation δ = 0 (b), δ ≠ 0 (c) and δ = δmax.

power emitted at the signal frequency 2ω. This result has been obtained without optimization of
the parameters aimed at enhancing the SHG: the component was only designed to exhibit a sharp
resonance peak in its reflectivity spectrum at the pump frequency.

Two methods to enhance the SHG are possible. Firstly, the component has to be resonant for
both the pump and the signal frequencies, and designed to ensure a good overlap between the
modes within the non-linear material, together with a phase matching between the two modes so
that the waves generated by the non-linear process interfere constructively. In the case of CRIGF,
this means one guided mode at ω and another at 2ω with the same effective index. This can be
obtained either using an adequate orientation of the anisotropic Lithium Niobate crystal, or a
more complex layer stack.

The second method is to enhance the quality factor Q of the resonance at the signal frequency,
and thus the pump field inside the component. The Q-factor is defined as the ratio of the resonance
wavelength λ to the spectral full width at half maximum ∆λ of the emitted power: Q = λ/∆λ.
The resonances in a CRIGF are Fabry-Perot resonances of guided modes, that leak through the
GC region. Hence, the Q-factor of a CRIGF resonance is related to both the quality factor of the
Fabry-Perot resonator and to the quality factor of the GC.

The DBRs are usually chosen long enough to ensure negligible transmission losses, and we
know that the quality factor of the Fabry-Perot resonator can be tuned linearly with the length of
the cavity. A more interesting path is to enhance the Q-factor of the GC, e.g. decrease the losses
through the GC, as several parameters can be used to adjust its response. Indeed, the strength
of the in and out coupling in a guided mode resonant grating depends quadratically on three
quantities: (1) the grating depth, (2) the overlap integral between the eigenmode and the free
space waves, and (3) the modulus of the Fourier coefficient of the grating permittivity function
associated with the in/out coupling diffraction order (first one in most cases) [15]. Reducing the
GC depth will lead to a small DBRs depth, thus inefficient DBRs, as both GC and DBRs are
usually etched in one single fabrication step. A more promising idea is to tune down the overlap
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integral by moving the GC sideways using non-symmetric PS sections and thus breaking the
symmetry of the CRIGF. This is described in our recent paper [16], and can lead to conversion
ratio greater than 4.3 × 10−3 W−1.

Finally, the first Fourier coefficient of the GC permittivity function can be made extremely
small thanks to a suitable base pattern. A naive approach is to consider a GC with an extremely
low (or extremely high) filling factor, but it is experimentally extremely challenging as it requires
the fabrication of few-nanometers-wide grooves (or bumps) with high aspect ratio. A more
promising approach is the so-called “bi-atom” base pattern, composed of two bumps (for gratings
periodic along one direction) with different widths [17,18].

In the present work, we explore the ways to design a CRIGF with a bi-atom base pattern for the
GC, and quantify the SHG conversion ratio that can be expected considering the possibilities of
the present manufacturing process. The second section introduces the notations and the overall
designs rules. The third and fourth sections present two different ways of optimizing the bi-atom
CRIGFs to enhance the SHG. In the fifth section, further improvements are made using grating
phase-matching.

2. Notations and overall design rules

As in [16], the stack depicted in Fig. 1 (a) is composed of a 300 nm-thick layer of LiNbO3 (index
nW ), deposited on a SiO2 substrate (index nS). A pattern of depth h is engraved on a Si3N4 layer
(index nG). The cover is air (index nC).

The pump wavelength is set at λ0 = 1.55 µm. The values of the index at the pump frequency
ω are: nS = 1.444, nW = 2.1316, nG = 1.9963 and nC = 1.0. At the signal frequency 2ω they are
nS = 1.4538, nW = 2.1793, nG = 2.0259 and nC = 1.0. The pattern is composed of a grating
coupler (GC) with NGC = 21 periods, surrounded by Distributed Bragg Reflectors (DBR), with
NDBR periods. For each structure, NDBR is chosen the ensure that the losses through the DBR at
the edges of the structure are negligible. The remaining parameters of the structure are chosen
following the rules described below, aimed at maximizing the pump field in the structure.

The pattern depth h is the result of a trade-off. On the one hand, when h decreases, the radiation
losses caused by the GC also decrease and the Q-factor increases. Yet, as we plan to fabricate the
component with e-beam lithography followed by RIE etching, the depth of the DBR must be the
same as that of the GC. And on the other hand, the reflectivity of the DBR follows the variations
of h, and small h means long DBR. Hence, we chose h = 50 nm for which NDBR = 400 periods
for the DBR are generally sufficient to obtain less than 0.1 % transmission losses through the
DBR.

To choose the periods and the holes width of the DBR and GC, we have to go deeper into
the understanding of the CRIGF. The CRIGF is first of all a Fabry-Perot cavity [19,20]. The
resonances are Fabry-Perot resonances of the modes that are inside the gap of the DBR. Thus,
their effective index ñ and resonance wavelength λ̃ satisfy

2π
λ̃

ñ =
π

dDBR
, (1)

where dDBR is the period of the DBR and

2π
λ̃

ñLeff = pπ, (2)

where Leff is the effective length of the cavity, including the penetration depth of the field inside
the DBR, and p is a natural integer.

Second, the GC is here to couple in/out this mode. The in/out coupling will be resonant if
the wavelength and effective index of the Fabry-Perot cavity mode matches those of a mode of
the GC, more precisely if (ñ, λ̃) is close to a point of the dispersion relation of the GC. As we
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intend to have a resonant in/out coupling of the Fabry-Perot mode in normal incidence through
the first diffraction order of the GC, this means that (ñ, λ̃) must correspond to one of the edge
of the second order band gap of the GC, preferably the symmetric mode edge. In this case, the
required condition is

2π
λ̃

ñ =
2π
dGC

(3)

where dGC is the period of the GC and λ̃ is close to the wavelength of the symmetric-mode
band edge of the GC. We could choose the anti-symmetric-mode band edge, not coupled with
free-space waves for an infinite GC, and leading to a very high Q mode for the finite GC included
in the CRIGF. We could also choose a coupling in/out under oblique incidence [21]. These two
developments may be interesting but are out of the scope of this paper.

The Eqs. (1) and (3) set the relation between the periods of the DBR and GC

dGC = 2dDBR, (4)

and ensure that the propagation constant (2π/λ̃)ñ of the mode excited at the band edge of the
GC is equal to those of the modes inside the band gap of the DBRs. Hence the optimization
procedure aims at matching the wavelengths of the GC mode and that of the Fabry-Perot mode
(within a range set by the DBRs band gap).

The GC considered here is a bi-atom base pattern grating, depicted in Fig. 1 (c), composed of
two holes with same width cGC, and two bumps, one large with width dGC/2− cGC + 2δ, and one
small with width dGC/2 − cGC − 2δ. As a reference, the pattern for δ = 0 (bumps with equal
widths) is represented in Fig. 1 (b). The range of variation of cGC is [0; dGC/2 − 2δ], and the
range for δ is [0; δmax = dGC/4 − cGC/2], the upper boundary corresponding to the vanishing of
the small bump, as shown in Fig. 1 (d).

The Q-factor of the GC scales like 1/|ϵ1 |2, where ϵ1 is the first Fourier coefficient of the grating
pattern. The latter is given by

|ϵ1 |
2 =

[︁
(2/π)(n2

G − n2
C) sin (2πδ/dGC) sin (πcGC/dGC)

]︁2 . (5)

As expected, ϵ1 is null for δ = 0, and increases with δ for values of δ smaller than dGC/4. It also
increases with cGC in its range of variation. We can thus achieve extremely high Q-factors for
the GC for δ close to 0, that is for GC patterns resembling the side DBRs of the CRIGF. These
patterns are thus not particularly challenging to fabricate.

The width of the gap of the GC depends on the modulus of the second Fourier coefficient of
the pattern [15], given by

|ϵ2 | =
|︁|︁(1/π)(n2

G − n2
C) cos (4πδ/dGC) sin (2πcGC/dGC)

|︁|︁ . (6)

It is maximum for δ = 0, and cGC = dGC/4. For lossless materials, ϵ2 is real and a change in its
sign means an exchange of the respective position of the symmetric and anti-symmetric modes
on the upper or lower edges of the band gap. The bi-atom pattern as described here leads to a
symmetric mode at a greater wavelength than the anti-symmetric mode for values of δ smaller
than dGC/8. The opposite can be obtained with the complementary pattern obtained by swapping
the air grooves and the high-index bumps.

At this point, the reader can understand that the bi-atom pattern GC with δ close to 0 and
cGC = dGC/4 has a spectral band gap very close to that of a DBR with period dDBR = dGC/2 and
a 1/2 filling factor (for which the DBR band gap width is maximum). Hence, such parameters
lead to a GC mode wavelength too close to one edge of the DBR band gap, resulting in inefficient
Bragg reflections.

As a consequence, as a first step of our optimization scheme, the infinite GC and DBR are
modelled, and their dispersion relation are calculated with respect to their parameters. We
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optimize both GC and DBR parameters to bring the symmetric-mode wavelength of the GC
at the design wavelength λ0 = 1.55 µm and inside the DBR band gap. There is an infinity of
possibilities to realize this adjustment, and we will explore two ways in the two next sections.

The second step is to determine the PS length ∆, defined as the distance between the centers
of the GC last groove and DBR first groove (see Fig. 1 (a)). To do so, the whole CRIGF is
modelled, and ∆ is chosen so that the field amplitude is maximum for the wavelength λ0. More
precisely, we calculate the field amplitude at the bottom of the LiNbO3 guiding layer at the center
of the structure along x. It would be more accurate, to optimize the SHG signal, to maximize the
integral of the square modulus of the electric field inside the LiNbO3 layer, but at the cost of
much longer calculations that the gain in precision does not justify. The third step is to calculate
the SHG emitted power in the substrate and the superstrate.

Throughout the paper, the calculations are made with a home-made numerical code based on
the Fourier Modal Method. The finite size of the CRIGF along x is taken into account by applying
the so called “super-cell” technique [22], and both the structure and the incident Gaussian beam
are invariant along y (2D structure and 2D beam). The electric field is along y (s polarization).
The SHG calculations are done with the same code, under the undepleted pump approximation
[23,24]. We have validated our Fourier Modal Method code by comparison with another of our
home-made numerical code based on the Finite Element Method.

From the SHG emitted power we calculate the conversion efficiency factor η = P2ω/[Pω]
2.

In order to be able to compare our calculations with the real case of a 3D Gaussian beam, η is
estimated by taking into account a correction factor, as explained in [16].

3. CRIGF with an optimized bi-atom GC and 0.5-filling-factor DBRs

At a first sight, its seems natural to work with an optimized DBR, e.g. a DBR with a filling factor
ffDBR = 0.5, and a wavelength in the middle of its band gap.

Hence, in this part, ffDBR = cDBR/dDBR = 1/2, giving a guided mode with effective index
ñ = 1.759, and we choose a period dDBR = 440.6 nm to center the gap of the DBR at λ0 = 1.55 µm.
The imaginary part of the propagation constant of the mode in the DBR at λ0 is 0.058 µm−1, for
which NDBR = 400 is sufficient to ensure a quasi-total reflection.

In order to change the Q-factor of the GC, we vary the value of δ from 2.5 nm to 20 nm. For
cGC = dGC/4, the guided mode in the GC has the same effective index as in the DBR, leading to
a GC gap centered at 1.55 µm. For the bi-atom pattern describe in Fig. 1 (c), as the symmetric
mode is at greater wavelengths, we must increase the hole width cCG to bring it down to λ0.
The calculations are done modelling the infinite GC. We plot in Fig. 2 the evolution of the
wavelength for symmetric (blue line) anti-symmetric (orange line) modes with respect to cGC/dGC
for δ = 20 nm. The grey area represents the DBR band gap and the green line represents the
design wavelength λ0 = 1.55 µm. As expected for this structure, we observe that the symmetric
mode is at a larger wavelength than the anti-symmetric one, and that the GC band gap moves to
lower wavelengths as cGC increases. It is close to the DBR band gap for cGC/dGC = 1/4.

From this plot, we choose the value of cGC that puts the symmetric mode at λ0, in the middle
of the DBR gap, cGC/dGC ≃ 0.36 (dashed line in Fig. 2). We proceed in the same manner for the
other values of δ. The corresponding values of cGC are given in Table 1.

The entire CRIGF is then modelled to determine the size of the PS maximizing the field
amplitude. We choose two consecutive values of ∆ among the dDBR-periodic values of ∆ for
which the Fabry-Perot resonances occur at λ0, leading to two sets of structures, labelled "a" and
"b" (see Table 1). The PS in the set "b" is around λ0/(2ñ) greater than the PS in set "a".

We plot in Fig. 3 the field amplitude (normalized with respect to the square root of the incident
power) versus the Q-factor of the CRIGF resonance (calculated from the spectral dependence
of field amplitude) for each structure (blue for set "a", and orange for set "b"). The labels
correspond to the structures listed in Table 1. Considering each set of results, given on the one
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Fig. 2. Wavelength of the symmetric (blue line) and anti-symmetric (orange line) modes
with respect to cGC/dGC for the GC with δ = 20 nm, dGC = 881.1 nm. The DBR band gap
is represented in grey, and the design wavelength λ0 in green.

Table 1. Parameters of the CRIGF with an
optimized bi-atom GC and DBR filling factora

Structure δ cGC ∆

GC2.5a 2.5 320.5 335.3

GC5a 5 320.4 337.8

GC10a 10 320.0 342.9

GC15a 15 319.2 347.9

GC20a 20 318.0 352.9

GC2.5b 2.5 320.5 770.5

GC5b 5 320.4 773.0

GC10b 10 320.0 778.1

GC15b 15 319.2 783.1

GC20b 20 318.0 788.0

affDBR = 0.5, all dimensions in nanometers. Com-
mon parameters: dDBR = 440.6 nm, cDBR = 220.3 nm,
NDBR = 400, dGC = 881.2 nm, NGC = 21.



Research Article Vol. 30, No. 21 / 10 Oct 2022 / Optics Express 38795

hand for the smaller values of ∆, and on the other hand for the greater values, we can see that the
Q-factor increases when δ decreases, as expected. The Q-factors for the set "b" are larger than
for set "a", thanks to longer Fabry-Perot cavities. We can also observe that the field amplitude
reaches a maximum when the Q factor increases (for δ = 10 nm for the set "a" and δ = 5 nm
for the set "b"), and then decreases for greater Q factors. This phenomenon has already been
observed for other kind of resonators [25,26], and most recently for CRIGF [27]. The maximum
of the field amplitude is related to a balance, known as critical coupling, between (useful) in/out
coupling losses through the GC, and (unwanted) scattering losses coming from the mismatch
between the modes in the successive regions (GC, PS and DBR). As already suggested in [16],
the scattering losses can be reduced, and the maximum of the field amplitude increased, by
introducing an additional groove within the phase section PS. We will perform this improvement
on the structures studied in the following paragraph.
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Fig. 3. Mode amplitude, normalized with respect to the square root of the incident power
(V.µm−1.W−1/2), versus the Q-factor for the CRIGF of Table 1 (blue for set a, and orange
for set b).

Finally, we plot in Fig. 4 the SHG conversion ratio η with respect to the fourth power of the
normalized field amplitude. As expected, the greater the field amplitude, the greater the SHG
conversion ratio. Moreover, the values show a linear dependence of log (η) with respect to the
logarithm of the fourth power of the field amplitude, with a slope close to unity, confirming the
fact that the SHG is mainly governed by the field amplitude and that the overlap integral between
the field mode squared within the non-linear material stay almost constant for all the structures of
Table 1.

The greater conversion ratio for these structures is η = 3.5 × 10−3 W−1 (for structure GC5b),
which is of the same order of magnitude than with the non symmetric CRIGFs (4.3 × 10−3 W−1)
proposed in [16].

Note that by increasing cGC, we increased the factor growth of |ϵ1 |2 with respect to δ (see
Eq. (5)), and thus decrease the Q-factor of the GC. Greater Q-factors can be obtained with smaller
cGC values, but requires the adjustment of the filling factor of the DBR to center the wavelength
of the symmetric edge of the GC in the middle of the DBR gap. This is done in the following
section.
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Fig. 4. SHG conversion ratio, with respect to the fourth power of the normalized field
amplitude ([V.µm−1.W−1/2]4) for the CRIGF of Table 1 (blue for set a, orange for set b).

4. CRIGF with an optimized bi-atom GC and DBR

In this section, we explore a second way to bring the symmetric-mode wavelength of the GC
inside the DBR band gap, trying to keep a GC with a large Q-factor. Hence, we choose a GC such
that cGC/dGC = 0.257, which will lead to smaller |ϵ1 |2 and thus greater Q-factor of the GC than for
structures of section 2. This GC thus have a filling factor in groove of ffGC = 2cGC/dGC = 0.514.
The effective index of the fundamental TE guided mode is ñ = 1.771. The period of the DBR and
GC adapted for this mode are dDBR = 437.2 nm, and dGC = 874.4 nm, leading to cGC = 225 nm.

To choose the hole width of the DBR, we analyse its impact on the band gap of the DBR. We
plot in Fig. 5 (a) the band gap of the DBR (gray area) and its central wavelength (black line)
with respect to ffDBR. We observe that it is shifted towards lower wavelengths as ffDBR increases,
and that its width decreases as ffDBR moves away from 0.5. From this plot, we deduce that ffDBR
must be smaller than 0.5 to keep the design wavelength λ0 = 1.55 µm (green line in Fig. 5 (a))
within the DBR band gap. We also plot, in Fig. 5 (b), the imaginary part of the propagation
constant of the mode γ with respect to ffDBR, in black for the wavelength at the center of the band
gap (different for each value of ffDBR) and in green at the design wavelength λ0 = 1.55 µm. For
the wavelength at the center of the band gap, Im(γ) increases with the band gap width. And
for a given value of ffDBR, Im(γ) is maximum at the center of the band gap. From this plot,
we choose ffDBR = 0.366 (black dashed line in Fig. 5), corresponding to cDBR = 160 nm, for
which the imaginary part of the propagation constant of the mode is almost maximum. It is
equal to 0.046 µm−1, 20 % smaller than for the mode in the middle of the band gap for which
Im(γ)= 0.058 µm−1 (see Fig. 5 (b), black curve). Nevertheless, a DBR with NDBR = 400 will be
sufficient to ensure a quasi-total reflection of the mode by the DBR.

Next, the whole CRIGF is numerically modelled to determine the length ∆ of the PS needed to
center the resonance at 1.55 µm. The parameters for structures DBR1.25, DBR2.5, DBR5 and
DBR10 with δ from 1.25 nm to 10 nm are gathered in Table 2.

We plot in Fig. 6 the value of the field amplitude (normalized with respect to the square root
of the incident power) versus the Q-factor of the CRIGF resonance for theses structures (blue
dots). We observe much greater Q-factors and field amplitudes than for the structures of section
2. This is in part due to the greater Q-factor of the GC, and also to the greater effective length of
the cavity for the structures of section 3, as the DBR is less reflective. We still observe the same
decrease of the field amplitude after an optimal Q-factor, due to the mode mismatch between the
successive GC, PS and DBR regions. Yet, the mismatch may be smaller for the structures of
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Fig. 5. Evolution with the filling factor of the DBR ffDBR of (a) the DBR band-gap (grey
area) and its central wavelength (black) and (b) the imaginary part of the propagation constant
at the central wavelength of the band gap (black) and at the design wavelength (green).

Table 2. Parameters of the CRIGF
with an optimized bi-atom GC and

DBRa

Structure δ ∆

DBR1.25 1.25 806.4

DBR2.5 2.5 807.7

DBR5 5 810.0

DBR10 10 815.6

aAll dimensions in nanometers. Common
parameters: dDBR = 437.2 nm, cDBR =
160 nm, NDBR = 400, dGC = 874.4 nm,
cGC = 225 nm, NGC = 21.

section 3 than for the structures of section 2, since the effective index of the modes in the GC and
DBR is slightly nearer to that of the PS (nG = 1.9963) for the structures of section 3 (ñ= 1.771)
than for structures of section 2 (ñ= 1.759).

Table 3. Parameters of the CRIGF with an
optimized bi-atom GC and DBR with impedance

matcha

Structure δ ∆a ∆b

DBR1.25-IM 1.25 397.0 410.0

DBR2.5-IM 2.5 398.3 410.0

DBR5-IM 5 402.6 408.0

DBR10-IM 10 402.6 414.1

aAll dimensions in nanometers. Common parameters: c =
100 nm, dDBR = 437.2 nm, cDBR = 160 nm, NDBR = 400,
dGC = 874.4 nm, cGC = 225 nm, NGC = 21.

As already done in [16], we reduce this mismatch thanks to an additional groove with width c
inside the two PS regions between the GC and the DBR (see Fig. 7).
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Fig. 7. Impedance matched CRIGFs (IM): an extra groove is added within the phase
section PS. For each particular CRIGF, the width c and the distances ∆a & ∆b result from a
numerical optimization.

The parameters c, ∆a and ∆b, used to tune the length of the phase shift region, are chosen
to maximize the field amplitude, and are given in Table 3 (structures labelled DBR1.25-IM to
DBR10-IM, where IM stands for impedance match).

The evolution of the field amplitude with respect to the Q-factor is reported in Fig. 6 (orange
dots). We observe that even higher Q-factors and field amplitudes are obtained. The decrease of
the field amplitude occurs for greater Q-factors than for the structures without reduced mode
mismatch, leading to a huge mode enhancement for the DBR2.5-IM structure.

Finally, we calculate the SHG power emitted in the substrate and superstrate. Table 4 reports
the conversion factor η for the eight structures of Table 2 and Table 3, sorted with decreasing η. As
expected, the higher the field amplitude, the higher the conversion factor. Even greater conversion
factors than for the structures of the previous section are demonstrated : η = 0.647 W−1,
0.370 W−1 and 0.255 W−1 respectively for structures DBR2.5-IM, DBR1.25-IM and DBR5-IM.
These values are also greater than that obtained with the asymmetric structure and an additional
groove within the PS region reported in [16] (0.149 W−1, for structure ASYM-IM).

We emphasize that these results are obtained without phase-matching between the mode at the
pump and the mode at the signal frequency. In the next section, we explore, still using the same
layer stack, the improvement that can be obtained thanks to an additional structure designed to
ensure grating-assisted phase-matching.
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Table 4. Conversion
efficiency of the CRIGF with

an optimized bi-atom GC and
DBR with and without

impedance matcha

Structure η
[︁
W−1]︁

DBR2.5-IM 0.647

DBR1.25-IM 0.370

DBR5-IM 0.255

DBR5 0.0489

DBR2.5 0.0354

DBR10-IM 0.0270

DBR10 0.0151

DBR1.25 0.00874

a(parameters in Table 2 and 3)

5. CRIGF with a bi-atom GC and grating phase-matching

It is well known that SHG is enhanced when the source/pump and the second harmonic wave
are phase-matched. In bulk media and waveguides, the phase-matching condition requires
that the effective index ñ(ω) at the pump frequency is equal to the effective index ñ(2ω) at the
signal frequency. In bulk anisotropic material, one usually tune the angle of propagation to
achieve phase-matching. In multimode waveguides with many layers, phase-matching can be
achieved using a careful optimization of the multilayer stack. For few-layers monomode stack, it
is possible to realize phase-matching thanks to a well-chosen grating, usually phase-matching
counter-propagating pump and signal modes. The grating-assisted phase-matching can be done
either at the signal or pump frequency, as explained below and as described in Fig. 8. For both,
the starting point is the forward propagating eigenmode excited at the pump frequency (red disc
in Fig. 8).

Fig. 8. Scheme of grating phase-matching at the pump frequency ω (in red) and at the
signal frequency 2ω (in blue). The disc stand for the eigen-modes, while the crosses stand
for non-resonant electromagnetic fields.

For a phase-matching at the signal frequency 2ω (corresponding to the signal wavelength λ/2),
we consider: on the one hand the field created at the signal frequency by non-linear conversion
from this eigenmode (blue cross on Fig. 8), and on the other hand the backward propagating
eigenmode at the signal frequency (effective index −ñ(2ω), blue disc on Fig. 8). The spatial
period of the field created at the signal frequency correspond to an effective index of ñ(ω). In
order to couple this field to the counterpropagating eigen-mode, the period dK,2ω of the grating
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should satisfy the relation
ñ(ω) + ñ(2ω) =

λ

2dK,2ω
, (7)

when the first diffraction order of the grating is used. This coupling is represented by the
horizontal blue arrow on Fig. 8. We will call this 2ω-phase-matching. The improvement of
SHG due to this kind of phase-matching for guided mode resonance waveguide has already been
demonstrated in the literature [3].

Alternatively, for a phase-matching at the pump frequency ω (corresponding to the pump
wavelength λ), we consider: on the one hand the forward propagating eigen-mode at the pump
frequency (effective index ñ(ω), red disc on Fig. 8), and on the other hand, the field at the pump
frequency ω that will generate by non-linear conversion a field at 2ω matching the backward
propagating eigenmode at 2ω with effective index −ñ(2ω) (red cross on Fig. 8). The effective
index of this latter field at the pump frequency is also −ñ(2ω). In this case, the period dK,ω of the
phase-matching grating must satisfy the relation

ñ(ω) + ñ(2ω) =
λ

dK,ω
. (8)

This coupling is represented by the horizontal red arrow on Fig. 8. We will call this ω-
phase-matching. The advantage is that the required period is twice as large as that of the
2ω-phase-matching, making the fabrication easier.

We consider the CRIGF of the previous section with GC parameters cGC = 225 nm, dGC =

874.4 nm and DBR parameters cDBR = 160 nm, dGC = 437.2 nm, and two values of δ, 2.5 nm
and 5 nm. The effective index of the fundamental mode at the pump frequency is ñ(ω) ≃ 1.771,
and at the signal frequency ñ(2ω) ≃ 2.023. Equations (7) and (8) are used to obtain a starting
value for the period of the phase-matching grating.

Then further optimization steps are performed on the period and the filling factor of the
phase-matching gratings so that the effective index of the mode within the phase-matching
grating is close to that in the GC and DBR regions at λ0. This leads to dK,2ω = 204.4 nm and
cK,2ω = 39.8 nm for the 2ω-phase-matching, and dK,ω = 408.5 nm and cK,ω = 68.1 nm for the
ω-phase-matching. The phase-matching grating K is added between the GC, after the phase
section PS1, and the DBR, before the phase section PS2 (see Fig. 9). The number of periods of the
phase-matching grating is chosen equal to NK = 300 for the 2ω-phase-matching and NK = 160
for the ω-phase-matching, in order to have comparable lengths of the two structures, despite the
twice larger period for the ω-phase-matching grating. The PS1 and PS2 lengths are determined
to maximize the pump field amplitude in the structure. The parameters of the four structures are
gathered in Table 5.

Fig. 9. Additional grating (K) for grating-assisted phase-matching, with NK grooves with
width cK and period dK (the grooves are not represented).

In order to verify that the desired modes are excited, we plot on Fig. 10 the field at resonance
in the Fourier space, for structures DBR5-Kω (blue line) and DBR5-K2ω (orange line) at ω for
Fig. 10 (a) and 2ω for Fig. 10 (b). At ω, as expected, the field is strong at an effective index close
to that of the fundamental TE mode of the structure (ñ(ω) = 1.771, peak 1), for both structures.
For DBR5-Kω we can see a second peak (peak 2), corresponding to an effective index close
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Table 5. Parameters of the CRIGF with a grating
phase-matchinga

Structure δ NK dK cK ∆1 ∆2

DBR2.5-Kω 2.5 160 408.5 68.1 425.0 508.5

DBR2.5-K2ω 2.5 300 204.4 39.8 137.8 440.0

DBR5-Kω 5 160 408.5 68.1 443.5 489.5

DBR5-K2ω 5 301 204.4 39.8 300.0 407.4

aAll dimensions in nanometers. Common parameters: dDBR =
437.2 nm, cDBR = 160 nm, NDBR = 400, dGC = 874.4 nm, cGC =
225 nm, NGC = 21.
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Fig. 10. Field at the bottom interface of the structure, at resonance, in the Fourier space for
structures DBR5-Kω (blue line) and DBR5-K2ω (orange line) at ω (a) and 2ω (b).

to ñ(2ω) = 2.023, obtained as desired from the fundamental TE mode thanks to the coupling
through the first order of the phase-matching grating.

The field at 2ω (Fig. 10 (b)) is much more complicated. The peaks 1 and 2 are directly obtained
by non-linear conversion from the peaks 1 and 2 existing at ω. The non-linear conversion of
the ω-field also gives a strong peak centered at 0. Peak 3 corresponds to the second TE mode
(ñ′(2ω) = 1.538). Peak 4 comes from the coupling, through the +1 order of the grating K2ω
or +2 order of Kω , of the negative counterpart of peak 3. Peak 5, somewhat large, has two
contributions: the coupling through the −1 order of the DBR of peak 2, and the coupling through
the +1 order of the DBR of the negative counterpart of peak 1. The coupling of peak 3 through
the +/−1 order of the DBR gives peaks close to 0. Peaks 6 is similar to peak 5 except that
it is obtained thanks to the Kω grating, and peak 7 comes from the coupling of the negative
counterpart of peak 3 through the +1 order of the Kω grating. Last, peak 8 corresponds to the
coupling, through the +1 diffraction order of the Kω grating, of the peak centered at 0. It must
be noted that peaks 5, 6 and 7 correspond to fields coupled-out in the substrate and superstrate.
Hence, we can expect a conversion efficiency slightly greater for structure DBR5-Kω than for
DBR5-K2ω . Similar features are obtained with structures DBR2.5-Kω and DBR2.5-K2ω .



Research Article Vol. 30, No. 21 / 10 Oct 2022 / Optics Express 38802

The conversion efficiency factors obtained for the four grating-assisted phase-matched structures
are gathered in Table 6, where the conversion efficiencies for the two impedance-matched structures
with δ = 2.5 nm and δ = 5 nm are also presented for comparison.

Table 6. Conversion efficiencies for the ω and
2ω-phase-matched, and impedance-matched

structures.

Structure η
[︁
W−1]︁ Structure η

[︁
W−1]︁

DBR2.5-IM 0.647 DBR5-IM 0.255

DBR2.5-Kω 1.556 DBR5-Kω 0.643

DBR2.5-K2ω 1.379 DBR5-K2ω 0.601

We observe that using aω-phase-matching grating gives slightly greater conversion efficiencies
than with a 2ω-phase-matching, as can be expected from the field at resonance in the Fourier
space (Fig. 10 (b)). Higher conversion efficiencies are obtained for smaller δ, due to the highest
Q-factor. Last, the comparison with respect to structures DBR2.5-IM and DBR5-IM shows
greater conversion efficiency for the grating-assisted phase-matching structures. About 70 % of
this improvement is due to the longer cavity in the grating-assisted phase-matching structures.

6. Conclusion

We numerically demonstrated high SHG conversion efficiencies using cavity-resonator integrated
grating couplers with a bi-atom GC base pattern. This particular pattern is close to the pattern of
the surrounding distributed Bragg reflectors and is not particularly challenging to fabricate. We
worked on a simple stack, composed from a dielectric grating on the non-linear material layer,
without aiming at direct phase-matching between a mode at the pump frequency and a mode at
the signal frequency. We explained the main design rules, necessary to match the effective index
of the modes within the GC section and DBR section, while keeping an efficient DBR and a high
Q-factor GC. We showed one order of magnitude improvement of the SHG conversion efficiency
η with respect to our previous publication relying on asymmetric structures [16]. Cutting the PS
into two parts decreases the scattering losses at the transitions between the GC, the PS and the
DBR, and leads to η greater than 0.1 W−1 (impedance-matched structures). Finally, we explored
the benefit of introducing a grating phase-matching, either at the pump or signal frequency, which
doubles the conversion efficiency of the impedance-matched structure. This work demonstrates
how CRIGFs can achieve conversion factors of the same order of magnitude as waveguides or
nano-resonators.
Funding. Direction Générale de l’Armement (ANR-19-ASTR-0019).

Acknowledgments. This work was supported by French Defense Innovation Agency (AID) under grant ASTRID
RESON ANR-19-ASTR-0019.

Disclosures. Authors declare no conflict of interest.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may
be obtained from the authors upon reasonable request.

References
1. F. Renaud, A. Monmayrant, S. Calvez, O. Gauthier-Lafaye, A.-L. Fehrembach, and E. Popov, “Second-harmonic-

generation enhancement in cavity resonator integrated grating filters,” Opt. Lett. 44(21), 5198–5201 (2019).
2. A. Cowan and J. Young, “Mode matching for second-harmonic generation in photonic crystal waveguides,” Phys.

Rev. B 65(8), 085106 (2002).
3. G. Blau, E. Popov, F. Kajzar, A. Raimond, J.-L. Roux, and J.-L. Coutaz, “Grating-assisted phase-matched second-

harmonic generation from a polymer waveguide,” Opt. Lett. 20(10), 1101–1103 (1995).
4. M. Siltanen, S. Leivo, P. Voima, M. Kauranen, P. Karvinen, P. Vahimaa, and M. Kuittinen, “Strong enhancement of

second-harmonic generation in all-dielectric resonant waveguide grating,” Appl. Phys. Lett. 91(11), 111109 (2007).

https://doi.org/10.1364/OL.44.005198
https://doi.org/10.1103/PhysRevB.65.085106
https://doi.org/10.1103/PhysRevB.65.085106
https://doi.org/10.1364/OL.20.001101
https://doi.org/10.1063/1.2783969


Research Article Vol. 30, No. 21 / 10 Oct 2022 / Optics Express 38803

5. G. Poberaj, H. Hu, W. Sohler, and P. Gunter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,”
Laser Photonics Rev. 6(4), 488–503 (2012).

6. C. Wang, K. Zhaoyi, L. Myoung-Hwan, X. Xiong, X.-F. Ren, G.-C. Guo, N. Yu, and M. Loncar, “Metasurface-assisted
phase-matching-free secondharmonic generation in lithium niobate waveguides,” Nat. Commun. 8(1), 2098 (2017).

7. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X.-F. Ren, G.-C. Guo, and M. Loncar, “Second harmonic
generation in nano-structured thin-filmlithium niobate waveguides,” Opt. Express 25(6), 6963–6973 (2017).

8. M. Borghi, C. Castellan, S. Signorini, A. Trenti, and L. Pavesi, “Nonlinear silicon photonics,” J. Opt. 19(9), 093002
(2017).

9. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator
(LNOI) for photonic integrated circuits,” Laser Photonics Rev. 12(4), 1700256 (2018).

10. J. Bravo-Abad, S. Fan, S. Johnson, J. Joannopoulos, and M. Soljacic, “Modeling nonlinear optical phenomena in
nanophotonics,” J. Lightwave Technol. 25(9), 2539–2546 (2007).

11. N. Segal, S. Keren-Zur, N. Hendler, and T. Ellenbogen, “Controlling light with metamaterial-based nonlinear photonic
crystals,” Nat. Photonics 9(3), 180–184 (2015).

12. M. Logan, A. Gould, E. Shmidgall, K. Hestroffer, Z. Lin, A. Jin, W. Majumdar, F. Hatami, A. Rodriguez, and K.-M.
Fu, “400 percent/W second harmonic conversion efficiency in 14micrometer-diameter gallium phosphide-o-oxide
resonators,” Opt. Express 26(26), 33687 (2018).

13. A. Krasnok, M. Tymchenko, and A. Alu, “Nonlinear metasurfaces: A paradigm shift in nonlinear optics,” Mater.
Today 21(1), 8–21 (2018).

14. R. Mohsen, G. Leo, I. Brener, A. V. Zayats, S. A. Maier, C. De Angelis, and H. e. a. Tan, “Nonlinear frequency
conversion in optical nanoantennas and metasurfaces: Materials evolution and fabrication,” Opto-Electron. Adv.
1(10), 18002101 (2018).

15. A.-L. Fehrembach, B. Gralak, and A. Sentenac, “Vectorial model for guided-mode resonance gratings,” Phys. Rev. A
97(4), 043852 (2018).

16. A.-L. Fehrembach, F. Renaud, E. Popov, H. Tortel, A. Monmayrant, O. Gauthier-Lafaye, and S. Calvez, “Dark
mode-in-the-box for enhanced second-harmonic generation in corrugated waveguides,” Opt. Express 29(25), 40981
(2021).

17. F. Lemarchand, A. Sentenac, and H. Giovannini, “Increasing the angular tolerance of resonant grating filters with
doubly periodic structures,” Opt. Lett. 23(15), 1149–1151 (1998).

18. T. Ning, X. Li, Y. Zhao, L. Yin, Y. Huo, L. Zhao, and Q. Yue, “Giant enhancement of harmonic generation in
all-dielectric resonant waveguide gratings of quasi-bound states in the continuum,” Opt. Express 28(23), 34024–34034
(2020).

19. R. Laberdesque, O. Gauthier-Lafaye, H. Camon, A. Monmayrant, M. Petit, O. Demichel, and B. Cluzel, “High-order
modes in cavity-resonator-integrated guided-mode resonance filters (CRIGFs),” J. Opt. Soc. Am. A 32(11), 1973–1981
(2015).

20. N. Rassem, A.-L. Fehrembach, and E. Popov, “Waveguide mode in the box with an extraordinary flat dispersion
curve,” J. Opt. Soc. Am. A 32(3), 420–430 (2015).

21. F. Renaud, G. Mohamed, A.-L. Fehrembach, E. Popov, A. Monmayrant, and O. Gauthier-Lafaye, “Quasi-total
backward reflection with a CRIGF under oblique incidence,” Opt. Quantum Electron. 52(3), 184 (2020).

22. P. Chaumet, G. Demésy, O. Gauthier-Lafaye, A. Sentenac, E. Popov, and A.-L. Fehrembach, “Electromagnetic
modeling of large subwavelength-patterned highly resonant structures,” Opt. Lett. 41(10), 2358–2361 (2016).

23. W. Nakagawa, T. Rong-Chung, and Y. Fainman, “Analysis of enhanced second-harmonic generation in periodic
nanostructures using modified rigorous coupled-wave analysis in the undepleted-pump approximation,” J. Opt. Soc.
Am. A 19(9), 1919–1928 (2002).

24. B. Bai and J. Turunen, “Fourier modal method for the analysis of second-harmonic generation in two-dimensionally
periodic structures containing anisotropic materials,” J. Opt. Soc. Am. B 24(5), 1105–1112 (2007).

25. A. Yariv, “Universal relationsfor coupling of opticalpower between microresonatorsanddielectric waveguides,”
Electron. Lett. 36(4), 321–322 (2000).

26. Y. Dumeige, S. Trebaol, L. Ghişa, T. K. N. Nguyên, H. Tavernier, and P. Féron, “Determination of coupling regime
of high-Q resonators and optical gain of highly selective amplifiers,” J. Opt. Soc. Am. B 25(12), 2073–2080 (2008).

27. E. Popov, E. Hemsley, A.-L. Fehrembach, O. Gauthier-Lafaye, A. Monmayrant, and S. Calvez, “Extreme enhancement
of the quality (Q)-factor and mode field intensity in cavity-resonator gratings,” Opt. Express 30(14), 25390 (2022).

https://doi.org/10.1002/lpor.201100035
https://doi.org/10.1038/s41467-017-02189-6
https://doi.org/10.1364/OE.25.006963
https://doi.org/10.1088/2040-8986/aa7a6d
https://doi.org/10.1002/lpor.201700256
https://doi.org/10.1109/JLT.2007.903547
https://doi.org/10.1038/nphoton.2015.17
https://doi.org/10.1364/OE.26.033687
https://doi.org/10.1016/j.mattod.2017.06.007
https://doi.org/10.1016/j.mattod.2017.06.007
https://doi.org/10.29026/oea.2018.180021
https://doi.org/10.1103/PhysRevA.97.043852
https://doi.org/10.1364/OE.444054
https://doi.org/10.1364/OL.23.001149
https://doi.org/10.1364/OE.409276
https://doi.org/10.1364/JOSAA.32.001973
https://doi.org/10.1364/JOSAA.32.000420
https://doi.org/10.1007/s11082-020-02295-8
https://doi.org/10.1364/OL.41.002358
https://doi.org/10.1364/JOSAA.19.001919
https://doi.org/10.1364/JOSAA.19.001919
https://doi.org/10.1364/JOSAB.24.001105
https://doi.org/10.1049/el:20000340
https://doi.org/10.1364/JOSAB.25.002073
https://doi.org/10.1364/OE.464695

