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Abstract: A detailed review of the theory of effective permittivity for one- and two-
dimensional periodic structures shows its limited validity for metal-dielectric structures in the 
visible and near infra-red if the feature dimensions are comparable with the metal skin depth. 
We propose a phenomenological correction to the static formulae using a realistic assumption 
for the electric field behavior inside the metal features. This approach allows us to obtain 
analytical expressions for the effective permittivity in the case when the electric field is not 
sufficiently homogeneous within the unit cell of the gratings. A comparison with the 
numerical results of the Fourier modal method demonstrates the validity of the analytical 
formulae. Additional study is made on the impedance approximation at the outer boundaries 
of the periodical structure in order to propose analytical formulae for the reflection coefficient 
that permits better correspondence with the numerical results. The link between the values of 
effective permittivity and permeability defined as the ratios between the averaged fields, and 
the metamaterial permittivity and permeability is discussed. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 
Effective medium theory plays a major role in explaining and modeling many problems in 
physics and chemistry. The fundamental work of Maxwell-Garnet [1] refers to works of 
Stokes, Lorenz, and Lord Rayleigh in the 19th century that describe the scattering by spheres, 
small compared to the wavelength of light. During the 20th century this approach was 
developed at first in detail for conductivity and transport phenomena for inclusions of 
different geometries, later extended to electromagnetic and optical properties, as explained in 
detail in Sec.2. Since more than 20 years a term ‘metamaterial’ has emerged to describe 
structures with artificial properties due to the subwavelength structuring and mixing. 
Curiously, the first use of the term, as far as we can say, was in the dentistry in 1988 [2], quite 
soon later picked up by opticians. Another remark concerning metamaterials is that nature and 
humanity have produced and used metamaterials a long time ago. Nanostructuring of some 
butterfly wings leads to their pigmentless coloring [3, 4], while metal inclusions in glass vases 
or colored window glasses have been used to obtain coloring since 500-400 BC [5]. 

Effective permittivity (or/and permeability) theories find various applications for 
qualitative and possibly quantitative analysis of nanotubes (for example, in night vision 
masks), color pixel filters for visible and IR cameras, photovoltaic and thermic microcells, 
plasmonic effects, and resonant filters. The common feature of these structures is their 
periodicity in one (1D) or two (2D) dimensions, whereas photonic crystals, studied 
extensively in the 90s and beginning of this century can have three-dimensional (3D) 
periodicity. 

While the theory is quite well established for periodic structures having such small feature 
dimensions, which is considered as almost homogenized because the electromagnetic field 
varies very slowly inside (see Sec. 2), there are many still open problems to solve. The first 
one that is the topic of our study concerns metallic gratings with features (much) smaller than 
the wavelength in vacuum, but larger than the skin depth of the metal. In that case it is not 
possible to consider the EM field as almost constant inside. 

Another problem that lies out of the scope of this paper deals with aperiodic (random) 
distribution of inclusion and has been the topic of extensive interest during the 20th century. 
An interested reader can find a review by Milton [6]. In some cases it is even necessary to 
average not only the values of the field, but also of the intensity (modulus square) of the 
electric field (ch.16 of [6], and [7]). 

In the paper we use the definition of the effective permittivity as the ratio between the 
average values of the electric displacement and electric field, which differs from the 
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definition used in the recent metamaterial papers, but there is an explicit relation between 
them, as discussed in Sec. 5. 

In the following we treat several different cases with one- or two-dimensional periodicity. 
The first class of examples considers features with dimensions much smaller than the skin 
depth, so that the classical effective medium theory, which is based on the assumption that the 
electric field is constant within the metal, is valid. The second type of examples treats the 
opposite case with feature dimensions larger than the skin depth, for which the effective 
medium approach does not work, and we propose a correction based on the modal method. 
The reference numerical results are obtained using the rigorous Fourier modal method, also 
known as RCWA (rigorous coupled-wave approach). 

Section 2 presents a short review of the results of the effective medium theory, together 
with some confirmative examples, and points out the problem for larger features. In Sec. 3 we 
propose a semi-phenomenological solution to this problem, and demonstrate the existence of 
another discrepancy with numerical results for the reflectivity of the effective layer due to the 
inconsistency of the presentation of the surface impedance. An attempt to qualitatively solve 
this problem is given in Sec. 4. Section 5 gives the link between the effective permittivity and 
permeability defined in the homogenization approach as the relations between the averaged 
field, and the metamaterial permittivity and permeability. We discuss why the average 
effective permeability of non-magnetic materials is equal to the vacuum permeability, 
whereas its metamaterial counterpart can present magnetic properties, and show how the 
metamaterial permittivity and permeability can be obtained from the results of Sec. 2 – 4. The 
derivation of the Green tensor approach and its singularities are given in detail in Appendices 
A and B. 

2. Effective medium permittivity for periodic homogenized structures 
We consider a system with 1 or 2-dimensional periodicity made of lamellae or cylindrical 
objects invariant in vertical direction (Fig. 1). 

 

Fig. 1. Schematic presentation of the elementary cell of a 1D (a) or 2D (b) and (c) periodical 
system with notations. 

In order to obtain a simple model that enables us to better understand the behavior of these 
short-pitch structures, we use a homogenization approach based on the Maxwell-Garnet 
approach [1] and Green tensor singularity analysis. Let us suppose that the unit cell contains 
two regions 1 and 2, within each of them the permittivity jε  (j = 1, 2) is homogeneous. We 

assume that the region 2 is included in region 1. For 1D grating this assumption is ambiguous, 
but the formulas that are obtained are symmetrical in that case. In the case of anisotropic 
medium 2, 2ε  is a tensor. V is the volume of the entire unit cell, Vj (j = 1, 2) are the volumes 

of each region. The filling ratio is f = V2/V. 
The original approach proposed by Maxwell-Garnet [1] enables us to find the effective 

permittivity εeff of the inhomogeneous medium, based on a simple hypothesis that it gives the 
link between the mean values (arithmetic means) of electric and displacement fields: 

 0 effD E ,= ε ⋅
 

ε  (1) 
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where a pair of angular brackets stands for the arithmetic mean value and ε0 is the vacuum 
permittivity. Similar definition applies for effective permeability, which for non-magnetic 
media is simply equal to the vacuum permeability µ0, as shown in Sec. 5. As mentioned in the 
introduction, these two definitions differ from the definitions used in the metamaterial theory, 
but there is a direct link between them (see Sec. 5). 

The average over the whole cell in Eq. (1) is related to the average over each region (1 and 
2) by 

 
1 2

1 2

1 2
1 2 1 2

V V V
1 2V V V

V V1 1 1
D DdV D dV D dV (1 f ) D f D ,

V V V V V
= = + = − +  

     
 (2) 

Here the subscript V(1,2) stands for the domain of averaging and, in general, εeff is a tensor. In 
the same manner: 

 
2 1

2 1
V V V

E f E (r) (1 f ) E (r) .= + −
    

 (3) 

On the other hand, from the macroscopic Maxwell equation we have the two standard 
relations, valid also for the mean fields: 

 2 2

1 1

2 20 2
V V

1 10 1
V V

D E .

D E

= ε ε

= ε ε

 

   (4) 

Substitution of Eqs. (2) – (4) into Eq. (1) results in the following relation: 

 
2 1

2 1eff 2 eff 1
V V

( ε ) E (1 f )( ε ) E .f − = − − −
 

ε ε  (5) 

In order to obtain a form of εeff that does not depend on the mean electric fields, it is 
necessary to explicitly determine, if possible, the relation between the mean fields: 

 
2 1

2 1m
V V

E E .= Q
 

 (6) 

There are many different ways to determine this link, all based on the assumption that the 
volume of inclusion is so small that the fields are uniform, so that the link between the 
averaged values is the same as for the uniform fields. Two main approaches are usually used: 
1) from the relation between the polarizability of the inclusion and the effective permittivity 
(Causius-Mossoti formula [8, 9]) and 2) from the Green tensor singularities [10]. Some less 
known methods use the boundary conditions in 1D case, or a matrix approach to solving 
Maxwell equations [11]. In order that the effective media approach results in a linear effective 
permittivity, it is necessary that the tensor mQ  does not depend on the electric field, so that 

 [ ][ ] 1

eff 1 m 2 m(1 f ) f f ( )
−= − ε + ε − −1 Q 1 1 Qε  (7) 

In the case of highly symmetrical inclusions the Qm tensor is diagonal, so the above equation 
is simplified into 

 1 m,ii 2
eff ,ii

m,ii

(1 f ) f Q
, i x, y, z

1 f (1 Q )

− ε + ε
ε = =

− −
 (8) 

Appendix A presents a Green tensor approach to obtain a tensor Q relating the field in the 
medium 1 to that in the medium 2 at the interface (see Eq. (61)). The resemblance of Eqs. (6) 
and (61) must not be misleading, because the electric fields in the two equations are generally 
quite different, as well the tensors that serves as a link. However, to combine the two 

                                                                                                  Vol. 26, No. 10 | 14 May 2018 | OPTICS EXPRESS 12816 



approaches and derive expressions of the effective permittivity, we can suppose that the field 
in the two media is almost a constant, or in other words, well homogenized. This is equivalent 
to making the following strong assumption: 

 m .Q = Q  (9) 

Then, Eqs. (61) and (74) from Appendices A and B permit immediately to obtain the well-
known electric response of a spherical or cubic inclusion (or cavity) [1]: 

 1
2 1

1 2

3
E (r) E (r)

2

ε
≈

ε + ε

   
 (10) 

resulting in the well-known expression for the effective permittivity: 

 1 2
eff ,ii 1

1 2

2(1 f ) (1 2f )
, i x, y, z

(2 f ) (1 f )

− ε + + ε
ε = ε =

+ ε + − ε
 (11) 

For an infinitely long (in z direction) circular cylinder, by using Eqs. (61) and (75), the link 
between the two fields is given as 

 
1 1 2

2 11 1 2

2 / ( ) 0 0

E (r) 0 2 / ( ) 0 E (r),

0 0 1

ε ε + ε 
 ≈ ε ε + ε 
 
 

   
 (12) 

so that 

 
1 2

eff ,ii 1
1 2

eff , 1 2

(1 f ) (1 f )
, i x, y.

(1 f ) (1 f )

(1 f ) fzz

− ε + + ε
ε = ε =

+ ε + − ε
ε = − ε + ε

 (13) 

As far as we are able to find, in the case of cylindrical elliptical inclusions, an equation having 
Eq. (8) as a special case was first established by Nicorovici and McPhedran Eq. (39) of [12], 
and it corresponds to the conductivity relation of Galeener [13]. 

For a slab infinite in y and z directions, the link between the field values at the interface 
between V1 and V2 is determined from Eq. (76) and corresponds to the well-known boundary 
condition 

 

1
2x 1x

2

2y 1y

2z 1z

E E

E E      .

E E

ε
=

ε
=

=

 (14) 

Equations (14) and (8) result in uniaxial effective permittivity. In direction parallel to the 
plane (TE polarization) it is given by the arithmetic mean value: 

 eff ,yy eff ,zz 2 1 TEf (1 f ) .ε = ε = ε + − ε ≡ ε  (15) 

In direction perpendicular to the plane (TM polarization) it is equal to the harmonic mean 
value: 

 1 2
eff ,xx TM

1 2

.
f (1 f )

ε ε
ε = ≡ ε

ε + − ε
 (16) 

                                                                                                  Vol. 26, No. 10 | 14 May 2018 | OPTICS EXPRESS 12817 



Equations (15) and (16) give the components of the well-known effective permittivity tensor 
of a 1D grating periodic in x direction in the limit of small period-to-wavelength ratio. 

In the limit of much larger (in absolute value) permittivity (almost infinitely conducting 
metallic gratings) the last formula takes the form: 

 1
eff ,xx .

(1 f )

ε
ε =

−
 (17) 

As discussed after Eq. (6), the above formulas are obtained using a strong 
assumption mQ = Q . 

For simple geometries and for more complex ones (elliptical or rectangular cylinder) the 
relevant formulas are given in Appendix B. However, as shown in the next section, when the 
feature dimensions are comparable with the metal skin depth, this assumption is not valid and 
it is necessary to replace it by another one. 

3. Numerical examples and counter-examples, modified approach 

3.1. 1D lamellar grating 

In normal incidence and TM polarization the propagation constant of the fundamental mode 

that can propagate inside the grooves is proportional to eff ,xxε . It is important to stress that 

Eq. (17) is valid in the limit of the assumption of Eq. (9), i.e. that the electric field in regions 
1 and 2 is sufficiently homogenized. This occurs for two situations: (1) for dielectrics 
materials, in which the field is generally slowly varying, (2) for metals, when the skin depth 
Ls is much greater than the metal width Φ, 22 Im(n ) / 1πΦ λ << . In the latter case if |ε2| tends 

to infinity, the limit of eff ,xxε  is given by Eq. (17). 

On the other hand, when the skin depth is much less than the metal width, in particular, 
when metals can be considered as perfectly conducting as in the microwave region, we can 
assume that E2 = 0, as it is observed in wire polarizers, so that 

 eff ,xx 1ε → ε  (18) 

The problem with these simple Eqs. (15)-(17) is that they represent the static limit with 

22 Im(n ) / 0πΦ λ → , whereas in the visible or near IR the real structures are far away from 

this limit. As mentioned in the Introduction, one can find many attempts to overcome the 
limitation for 1D, 2D, 3D periodic structures, and for aperiodic distribution of inclusions. A 
detailed historical analysis can be found in [11]. In case of 1D gratings, Rytov [14] proposed 
a correction for 1D grating, proportional to the second order of period-to-wavelength ratio 
(d/λ)2. Rytov obtained the following expression valid within second order of the small 
parameter: 

 ( )
2 2

2

eff ,yy TE 2 1

d
f (1 f ) .

3

π ε ≈ ε + − ε − ε    λ 
 (19) 

In TM polarization [14, 15], present another closed-form expression: 

 
( )

TM TE

22 2
2 1 3 3

eff ,xx TM
1 2

d
f (1 f ) .

3

ε − ε  π ε ≈ ε + − ε ε  λ ε ε   
 (20) 

As we see further on, these two expressions work quite well when the wavelength is fixed and 
the period is reduced. However, they differ from the numerically obtained values even for 
dielectric gratings, when 22 Im(n ) / 0.5πΦ λ > , which is quite natural, because the electric 

field varies significantly within one grating period. Moreover, for metallic gratings, when d is 
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fixed and the wavelength increases while the metal dispersion is taken into account, the 
absolute value of ε2 also increases and in many cases the expressions do not converge, as the 
wavelength tends to infinity. In the case of metallic gratings, first, the limitations of the 
validity of the expression (in TM polarization) with respect to d/λ ratio are much stronger. 
Moreover, they cannot take into account the case when the skin depth is smaller than the 
metal thickness. 

Let us consider a lamellar metallic grating made of silver. Below the free-electron plasma 
frequency (above wavelength of 0.350 µm) the skin depths Ls does not decrease with the 
wavelength and stays around 0.01 µm up to wavelength values exceeding 10 µm. 

 

Fig. 2. Spectral dependence of Re( eff ,xxε ) for a 1D lamellar grating (the medium 2 in Fig. 

1(a) is silver. Medium 1 is air, d = 30 nm, w = 15 nm). Long (a) and short (b) wavelength 
regions. Numerical values (Fourier modal method) are presented with dots, harmonic mean 
from Eq. (16) in blue, Eq. (20) in red, and the correction by using Eq. (25) in black. 

As a “good” example, we take the period equal to 30 nm and the metal lamella width w = 
15 nm, which is comparable to the skin depth in the infrared. Figure 2 presents the real part of 

eff ,xxε  given by Eqs. (16), (20), and the numerical values obtained by the Fourier-modal 

method [16] and equal to the square of the eigenvalue of the mode inside the grating structure 
having the smallest imaginary part. A very good coincidence is observed between numerical 
results and the approximate formula, Eq. (20), even in the spectral domain where silver 
changes from a conducting metal (0.4 µm) to a lossy dielectric (0.3 µm). The mean harmonic 
values in Eq. (16) start to divert systematically from the values given by the other methods at 
longer wavelength, because w is comparable to Ls. For the same reason, the results of Eq. 
(20) slightly differ from the numerical values and from the black line, that is made by 
introducing a correction to Eq. (16), described in the next paragraph, Eqs. (23) and (24). 
Equation (16) was obtained by applying the strong assumption of Eq. (9). If the period d and 
the width w are decreased 10 times more, its results coincide with the numerical values. 
However, it is clear that this assumption cannot work if the electric field is strongly varying 
within the grating period. The Fourier-modal method is rapidly converging and does not 
require more than +/− 10 Fourier harmonics. 

For covering partially this case, there is a limited number of possibilities. Concerning the 
Green’s tensor approach, there are several options: 

1. In addition to the singular part, it is possible to integrate the principal part, assuming 
small variation of the electric field E. Detailed analytical results for 2D to 3D cases 
can be found in [17]. However, our numerical experiment showed that the 
corrections to the effective permittivity are quite large. In 1D case, Eq. (70) of 
Appendix B contains only a singular part for Gxx, and the integration of Gyy gives 
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results that are of first order with respect to d/λ, a correction larger than necessary to 
fit the numerical results. The reason is that the hypothesis that E varies more slowly 
than the Green tensor is not valid. 

2. To solve the integral equation with a full kernel (singular and principal value) with 
unknown E. However, it is more rigorous to use the Green tensor of the 
corresponding periodic structure, and the difficulties are the same. This leads to the 
rigorous integral method that already exists, and requires numerical solutions. 

3. Intermediate hypothesis, that one can limit oneself to the singular part L, and to 
assume that the electromagnetic field varies in some known manner inside the 
medium 2. 

In what follows, we chose the third option by proposing a second, weaker assumption 
instead of Eq. (9). 

The assumption is based on the physical fact that the field inside the metal decreases 
exponentially in direction perpendicular to the surface with a decay factor equal to 

22 Im(n ) /π λ , and it vanishes beyond a skin depth Ls distance, whereas it is much less 

rapidly varying inside the dielectric regions. In order to take this into account, we consider an 
approximation of the modal method in which the electromagnetic field in each medium is 
represented as a sum of modes, each one being an exact solution of the propagation equation. 
Preserving only the fundamental mode, its x-dependence is given by the x-propagation 

constant 2 2
2,x 2 0 effk k k= − ε  with k0 is the vacuum wavenumber. For highly conducting 

gratings 2,x 2k k≈ , and fixing the coordinate origin in the middle of medium 2, we assume 

that 

 

0 2
2 2,0

0 2

1 1

cos(k n x) w w
E (x) E , x ,

cos(k n w / 2) 2 2

E (x) E (w / 2)

≈ − ≤ ≤

≈

 

   (21) 

 

Fig. 3. Same as in Fig. 2, but d = 300 nm and w = 150 nm. 

so that at the boundaries 2 2,0E (w / 2) E≈
 

. If E2,0 is much slowly varying than the cosine term, 

the mean field is given by: 

 2 2,0E q E≈
 

 (22) 

with 
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0 2

0 2

w
tan(k n )

2q .
w

k n
2

=  (23) 

From Eqs. (6) and (22) we find that in this weaker assumption 

 m q=Q Q  (24) 

which, for lamellar grating in TM polarization becomes 

 0 21
m,xx

2 0 2

tan(k n w / 2)
Q .

k n w / 2

ε
=

ε
 (25) 

The black lines in Fig. 2 are obtained by using Eq. (8) together with Eq. (25). In the TE case 

 0 2
m,yy

0 2

tan(k n w / 2)
Q .

k n w / 2
=  (26) 

In order to investigate the validity of the method for larger lamellae dimensions, Fig. 3 shows 
the same dependencies as in Fig. 2, but with grating dimensions 10 time larger, d = 0.3 µm 
and w = 0.15 µm, much more realistic than the previous ones. Here, the lamellae width is 15 
times the skin depth in the infrared, so that we can expect that the field is not at all 
homogenized inside the metal, even for very large λ/d ratios. We can observe that the 
corrected approach accounts quite well not only for large wavelengths, but also when λ 
approaches d. 

 

Fig. 4. Re( eff ,yyε ) for the case presented in Fig. 3 as a function of the filling factor f = w/d. λ 

= 1µm. 
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Fig. 5. Same as in Fig. 4 but for TM polarization. 

Figures 4 and 5 present the dependence of the effective permittivity in TE and TM 
polarization for λ/d = 3 and the different approaches as a function of the filing factor f = w/d. 
Again, the corrected approach given by Eqs. (8), (25), and (26) works much better than the 
approximation (d/λ)2. The latter does not converge with increasing λ, because the absolute 
value of permittivity of Ag increases more rapidly than λ1, Fig. 6. As a result the right-hand 
side of Eqs. (19) and (20) tend to infinity as λ grows. 

Several remarks are due: 

1. When the lamellae width w is small, the correction factor q tends towards 1, i.e. to the 
strong assumption, and the static Eqs. (15) and (16) are valid. 

2. For thicker conducting lamellae the correction factor q decreases, reflecting the fact 
that the mean field in region 2 becomes smaller than on the interface. For highly 
conducting gratings, q decreases as 2/ [w Im(n )]λ , and eff ,xxRe( )ε lies within the 

limits of Eqs. (17) and (18). 

3. One may ask why we have taken cosine dependence in Eq. (21). In case of normal 
incidence, electric field is symmetrical with respect to the origin, which is taken to 
be in the middle of region 2. An additional argument is that the antisymmetrical sine 
dependence gives a zero contribution to the mean field, when integrated from –w/2 
to + w/2, so that we are using the symmetric cosine dependence. 

 

Fig. 6. Spectral dependence of the real part of silver relative permittivity [18]. 
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4. This renormalization approach cannot be applied to dielectric grating, because the 
tangent function diverges at odd multiple π/2, and vanishes at the even multiple of 
π/2. In the metallic case, they do not influence the results when the imaginary part of 
the refractive index is large. 

5. Below λ = 0.35 µm, there appear other eigenvalues that have lower imaginary part 
than the one presented in Fig. 3, so that it is not reliable to consider that there is a 
single transfer channel inside the corrugated region. 

3.2. 2D gratings 

In what follows, we present a study of gratings having 2D periodicity with a square unit cell 
and cylindrical inclusion, invariant in the vertical direction. We consider inclusions of square, 
rectangular, circular, and elliptical cross sections. In addition to Eq. (11) that works perfectly 
in the static limit, there are several other approaches that determine a lower and an upper limit 
of the effective permittivity. A detailed demonstration can be found in [19], where the authors 
consider the case of the mean electric conductivity. The lower bounds are obtained by 
considering the unit cells arranged at first in series in one direction, summing the resistivity, 
and then summing the conductivity (inverted resistivity) in the other direction. The upper 
bounds are obtained by considering the arrangement at first in parallel by summing the 
conductivity in one direction, then summing the reciprocal (i.e., the resistivity) in the other 
direction, and then inverting the result to obtain the conductivity. These two bounds can be 
directly applied for the permittivity, although the inverse of the permittivity has no direct 
physical sense. 

It is interesting to note that the two bounds obtained in [19] can be derived from the 
Fourier modal method when applied to 2D gratings with rectangular inclusions. For 2D 
gratings, there can be many equivalent Fourier representations of the permittivity function, all 
obeying the Fourier factorization rules. Among them the formulation in [16] gives the lower 
bound and that in [20] gives the upper bound, both in the form of the 00-th element of the 
permittivity function. Therefore, 
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1 2 x
y y 1 eff,xx

x 1 x 2 2 y 1 1

f (1 f )
Re f (1 f ) Re( ) Re .

f (1 f ) f (1 f )
x
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−
  ε ε −

+ − ε ≤ ε ≤ +  + − ε ε + − ε ε    
(27) 

Here fx and fy are the filling ratios in x- and y-directions, respectively. 

 

Fig. 7. Spectral dependence of Re( eff ,xxε ) = Re( eff ,yyε ) for an array of silver circular 

cylinders in air, Fig. 1(c). Square cell with d = 3 nm and R = 0.75 nm. Numeric values 
presented with dots, static limit, Eq. (13) in red, lower and upper limits, Eq. (27) in blue and 
rose. Long (a) and short (b) wavelength domains. 
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Figure 7 presents the dependence of the effective permittivity on the wavelength for an 
array of silver circular cylinders, when their dimensions are much smaller than the 
wavelength and the skin depths. The side of the unit cell is d = 3 nm and the cylinder diameter 
is 2R = 1.5 nm., with a filling factor f = πR2/d2. As can be observed in Fig. 7(a), the static 
limits is included within the two bounds, and coincide with the numerical values, even in the 
resonant domain around the free-electron plasma frequency, where the upper and the lower 
bounds are inverted, Fig. 7(b). Contrary to the 1D case, the Fourier modal method in the 2D 
case has slower convergence rate and it is necessary to use not less than 25 Fourier harmonics 
in each direction, i.e. totally 51x51 harmonics, which requires much longer computation time 
(several minutes per point). 

As can be expected from the 1D case, if the feature dimensions are larger than the skin 
depth, the static approach is not valid, unless perfect conductivity is assumed. And indeed, 
Fig. 8 shows that the numerically obtained values are lower than both the bounds and the 
static predictions, when real metal is considered. On the contrary, if a correction to Eq. (8) is 
introduced in the same manner as in Eqs. (23) and (24), it is possible to quite well match the 
numerical results, as observed in Fig. 8. 

In cylindrical geometry, the natural assumption of the field behavior inside the metallic 
cylinder is that it is proportional to the Bessel function of the 1st kind and 0th order J0. With 
an almost purely imaginary argument for highly conducting metals, J0 is equal to the modified 
Bessel function I0, and decreases rapidly in the metal depth. The coefficient of proportionality 
has to be taken, as in Eq. (21), to be equal to the value of J0 at the cylinder surface, ρ = R: 

 

Fig. 8. Same as in Fig. 7, but with d = 300 nm and R = 75 nm. The black curve is made by 
using the correction in Eq. (29). 
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As in 1D case, assuming that E2,0 varies in ρ much weaker than J0, the mean electric field 
over the cylinder surface is then given by: 
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(29) 

As in the 1D case, the correction factor tends to 1 when R becomes small compared to λ/|n2|, 
i.e., smaller than the skin depth. The black curve in Fig. 8 is from Eq. (8) using this correction 
q to Eq. (24). Let us remind that the singularity L is diagonal and isotropic in the x-y plane, 
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Lxx = Lyy = 1/2, Lzz = 0, Eq. (75). In the region below 0.4 µm, there appear a multitude of 
eigenvalues with small imaginary part, see Fig. 9, that allow no definitive answer which 
approach is better. In addition, the existence of these eigenvalues show in the same manner as 
in the 1D case, that when λ approaches the period, any approach that lays on a single channel 
of transmission by the structure cannot succeed. 

The singularity tensor for cylinders with square section is the same as for circular 
cylinders, so that Eq. (8) can be applied directly, by taking into account the difference in the 
filling factor f = w2/d2. Figure 10 presents numerical and different analytical results for square 
and circular cylinders as a function of the filling factor f at wavelength of 2 µm. As can be 
observed, for very small period, the numerical results match perfectly the static formula, and 
lies between the two bounds. When the dimensions become larger than the skin depth, 
numerical results differ significantly from the static ones. On the contrary, the modified 
formula by taking into account Eq. (29) gives results closer to the numerical values, the 
difference growing with the filling factors. 

 

Fig. 9. Same as in Fig. 8 but for shorter wavelengths. 

 

Fig. 10. The dependence of Re( eff ,xx,yyε ) on the filling factor f for an array of circular or 

square cylinders. Dots present the numerical results (red squares with d = 3 nm, black for 
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squares, and green for circles with d = 300 nm). Red curve Eq. (13), lower and upper limits, 
Eq. (27) in blue and rose, and the correction from Eq. (29) in black. 

The general tendency observed in the examples shows that in the non-homogenized cases, 
the effective permittivity has lower real part than in the static case, because in the former, the 
electric field penetrates only inside the skin depth in the metal and is more localized in the 
surrounding dielectric (air) with n = 1. 

3.3. Cylinders with elliptic and rectangular cross-sections 

The singularities for elliptic profiles can also be obtained analytically (Appendix B), and they 
introduce anisotropy in the x-y plane. In order to obtain a correction similar to Eq. (29) in the 
static equation for the effective permittivity, we have several requirements: (1) the correction 
function must be equal to 1 over the elliptical surface of the inclusion and (2) it has to vary in 
the direction normal to this surface. There exist elliptic functions with these properties that are 
solutions of propagation equation in elliptical coordinates, Mathieu functions. However, we 
were not able to find their analytical integration, and we shall use an approximate approach. A 
natural generalization of Eq. (29) that provides analytical formulas is given by the Bessel 
function, with an argument that is constant over the ellipse: 
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where R is a free parameter. We chose it so that the surface of the equivalent circle is equal to 
the elliptic surface: 

 Rab ab.=  (32) 

Equation (30) satisfies the two requirements, it is constant on the ellipse and its change is 
presented by the gradient of the function, which is perpendicular to the ellipse. 

The integration of Eq. (30) over the ellipse surface is straightforward: 
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 (33) 

which is exactly the same as for a circle, only that the value of R is given by (32). 
We can use the same approach for a rectangular cross-section, with the singularities given 

in Appendix B, Eq. (81). The comparison between the numerical data and approximate 
formulas gives results, similar to those for circular cylinders, as observed in Fig. 10. 

4. Effective surface impedance and the reflection of the homogenized layer 
As remarked by Rytov at the end of his paper, while in the depth of the grating region it is 
usually sufficient to consider a single transmission channel (having the smallest imaginary 
part of the constant of propagation in z-direction) between the cladding and the substrate, on 
their boundaries even the fast decaying field components can play an important role. And 
indeed, Fig. 11 shows that in the case of a 1D lamellar grating, the effective permittivity of 
the fundamental transmission converges much more rapidly when increasing the number of 
Fourier harmonics in the Fourier modal method than the reflectivity of the grating. 

The precision of 1% for εeff is reached by taking into account no more than ± 3 Fourier 
harmonics, whereas for the reflectivity it is necessary to use at least ± 10 harmonics. 

If the grating region is considered as an equivalent plane anisotropic but homogeneous 
layer, the reflection coefficients at each of its plane boundaries are given by the Fresnel 
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formulas. In normal incidence, the reflection between the cladding and the homogeneous 
layer is simply given by, for x-polarized electric field 

 cl s
cl

cl s

n n
r ,

n n

−
=

+
 (34) 

where ns is the ratio between the magnetic and electric field at the boundary between the 
cladding and the grating region (i.e. the normalized inverse impedance), and ncl is the 
cladding refractive index. The reflection coefficient of the layer with thickness h is then given 
by Airy formula: 

 

Fig. 11. Convergence of the relative error of the real part of εeff and of the reflectivity as a 
function of the number of Fourier harmonics [-N, N] for a lamellar diffraction grating made of 
silver with d = 0.3 µm, w = 0.15 µm suspended in air in normal incidence and TM 
polarization, λ = 1 µm, h = 0.25 µm. 

 cl sub 0 eff

cl sub 0 eff

r r exp(2ik n h)
r ,

1 r r exp(2ik n h)

+
=

+
 (35) 

where rsub is the reflection coefficient at the substrate boundary and eff eff ,xxn = ε . 

The most direct choice is to take the reciprocal relative impedance given simply by the 
normalized propagation constant in z-direction: 

 s eff eff ,xxn n .= ≡ ε  (36) 

In the case of completely homogenized field, this formula gives the same results as the 
numerical results for the periodic structure, as shown in red in Figs. 12(a) and 13(a). 
However, in case of larger period and lamellae width, the numerical values of the reflectivity 
are almost three times larger than when using the “homogenized” values of ns. 

Moreover, as observed in the results obtained all over the paper in the non-homogenized 
cases (feature dimensions larger than the skin depth), the real part of the effective permittivity 
is smaller than in the homogenized case, thus the reflection of the equivalent layer will be 
even smaller than the numerical values. The reason is that the approach in Sec.2 and 3 
requires the continuity of the tangential E and normal D components of the field, which is not 
the case close to the cladding/grating (and substrate/grating) interfaces. On the sharp edges E 
and D are not only discontinuous, but also diverging. In order to obtain satisfactory 
approximation, we use the technique developed in the exact modal method [21, 22]. 
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Let us consider the interface between the semi-infinite homogeneous cladding region and 
a semi-infinite grating region with the interface at z = 0. In TM polarization, the magnetic 
field in the cladding is represented as a sum of plane waves, and in the grating structure as a 
sum of modes, each one exact solution of Maxwell equations. 

 

Fig. 12. Reflection by a 1D lamellar silver grating suspended in air in normal incidence and 
TM polarization at λ = 1 µm. (a) dependence on the grating thickness h. In red, d = 3 nm, w = 
1.5 nm, with points, numerical results, and with a line, Eq. (35) using Eqs. (16) and (36). d = 
300 nm and w = 150 nm, in black, numerical results, in blue, modal method using Eq. (42) for 
ns. (b) dependence of the first maximum of the reflectivity on the lamellae width w for d = 300 
nm (n2 = 0.129 + i 6.83 [18]). 

For our purpose, we truncate this representation to single incident and reflected plane 
waves in the cladding and a single downward propagating mode in the grating: 
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In the modal method different projection methods can be used to solve the boundary matching 
equations. Here we use one of the hybrid methods [21–23]. The equation resulting from the 
continuity of H at z = 0 is projected on the basis of the plane waves in the cladding: 

 i r 0H H H I ,ψ+ =  (39) 

whereas the continuity of the field normal (in z) derivative is projected on the basis of the 
modal functions (x)ψ : 

 ( ) 2cl i r eff,xx 0n H H n n H I ,ψ ψ
− =  (40) 

with 
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Equations (39) and (40) enable us to obtain the formula for ns: 
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Similarly to Sec. 2, in region 1 filled with low-index dielectric, the field can be considered 
constant, so that 
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 (43) 

where the single and double primes stand for the real and imaginary parts, respectively. These 
integrals represent approximations of the more complex overlap integrals presented in [23]. 

The blue line in Fig. 12 presents the results of the reflectivity obtained from Eqs. (34) and 
(35) with ns given from Eq. (42). As can be observed, the reflectivity values match the 
numerical results much better than by using Eq. (36) for the entire region of lamellae width. 
In addition, when w becomes much larger than the skin depths, ns from Eq. (42) tends 
towards the static value of Eq. (36). 

In case of 2D periodicity the tendency is the same as in the 1D case, as can be seen in Fig. 
13: 

1. For very small feature size, the static approach is correct for both εeff and ns from Eq. 
(36). 

2. For larger features the reflectivity is higher than the static limit, and the period in h is 
longer, because eff,xxRe(n ) is smaller when using the correction in Eq. (29). 

In order to obtain a relevant correction, we apply the same approach as for the 1D case. 
Let us consider an incident plane wave with its magnetic vector oscillating in x-direction. The 
magnetic field in the cladding is represented as a sum of plane waves: 

 x,cl x,i 0 cl x,r 0 clH H exp( ik n z) H exp(ik n z).= − +  (44) 

In the grating region we assume that the field can be factorized 

 x,gr x,0 2D 0 eff,xxH H ( ) ( )exp( ik n z)= ϕ ψ ρ −  (45) 

with 

 2D
0 2 0 2

1,         >R
.

J (k ) / J (k R),   Rρ ρ

ρ
ψ =  ρ ρ ≤

 (46) 

Using the same procedure as for the 1D case, we obtain the following relations: 
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that enables us to derive the same relation as Eq. (42). As in Eq. (33) the integral of ψ can be 
evaluated analytically: 
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The second integral can be explicitly presented in the following form, provided that 
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Fig. 13. (a) Reflectivity of a 2D array of silver circular cylinders (Fig. 1(c)) in air as a function 
of the grating height h. Normal incidence, λ = 1 µm. Red points, numerical values with d = 3 
nm, R = 1 nm, red curve, the static limit. Black curve, numerical results for d = 300 nm, R = 
100 nm, blue line, correction from Eqs. (42), (48), and (49). (b) the dependence of the 
maximum of the reflectivity on the cylinder diameter for d = 300 nm. 

5. Metamaterial parameters and effective medium permittivity and permeability 
As explained in the introduction, in the paper we follow the classical definitions of effective 
permittivity, Eq. (1), and effective permeability, given by a similar relation, definitions 
essentially used during the 20th century, not only for the permittivity, but also for the 
conductivity [6, 7]. For non-magnetic materials, thus defined effective permeability is equal 
to the vacuum permeability µ0. A simple demonstration follows the logic of Eqs. (1)-(5). The 
average permeability gives the link between the averaged magnetic field and induction: 

 0 effB H= μ ⋅µ
 

 (50) 

For non-magnetic materials the local permeability is everywhere equal to the vacuum 
permeability, and because of the linearity of the integration: 

 0 0 0

V

1
B H B H dV H

V
= μ  = μ = μ

    
 (51) 

whatever the special distributions of the fields, so that it directly follows that 

 eff 1≡µ  (52) 
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This is why in the previous sections we used the relation eff eff ,xxn = ε . 

It is necessary to stress out that the definition of effective permittivity and permeability 
used in this paper represent the link between the averaged fields and differ from the 
definitions used in most of the papers devoted to metamaterials [24,25], although there is a 
direct link between them. The metamaterial effective permittivity Mε  and permeability Mμ  

are obtained from the fundamental Bloch mode propagation constant nM and the reflection 
coefficient rcl on the interface between the metamaterial and the homogeneous layer, defined 
in Sec. 4. In the case of ncl = 1, the link is given by: 

 
M M

M

M

M cl cl

n

/ (1 r ) / (1 r )

ε μ =

μ ε = + −
 (53) 

In most of the metamaterial studies the values of nM and rcl are calculated using some 
numerical method, except for ref [23]. This allows to determine Mε  and 

M
μ  using Eq. (53). 

On the contrary, in Sec. 2 and 3 we were able to introduce an analytical correction to the 
average permittivity obtained from the homogenization approach, summarized in Sec. 1. This 
correction permits to directly obtain the fundamental Bloch mode propagation constant: 

 
M eff eff,xxn n= = ε  (54) 

for non-magnetic materials. Subsequently, the correction to rcl coming from Eqs. (34) and 
(42) enables us to analytically obtain its values, so that the metamaterial permittivity and 
permeability can be determined from 

 

Fig. 14. Spectral dependence of the real parts of the metamaterial permittivity εM and 
permeability µM, calculated using the values of neff and ns from Sec. 2 and 4 for a lamellar Ag 
grating with 50% filling ratio, and having two different periods, (a) d = 3 nm in red and (b) d = 
300 nm in black. 

 
M

M eff s

eff

s

n n

n

n

ε =

μ =
 (55) 

where ns is the normalized inverse impedance. In the case of (almost) completely 
homogenized fields and non-magnetic materials, 

 eff s eff,xxn n= = ε  (56) 

as discussed in connection with Figs. 2, 7, and the red lines in Figs. 12 and 13 and thus 

MM eff,xx , 1.ε = ε μ =  
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In the cases of non-homogenized fields the fundamental mode propagation constant is 
different from the optical index participating in the surface impedance, eff sn n≠ , and even 

non-magnetic materials can have magnetic response with 
M

1μ ≠ , although the average 

permeability as defined in Eq. (50) is equal to one. Figure 14 presents the spectral dependence 
of the real parts of metamaterial permittivity and permeability for the case of 1D lamellar 
grating having two different periods, 3 nm with homogenized fields, and 300 nm. As 
observed, in the small-feature case the permeability calculated from Eq. (55) is equal to one, 
whereas for large feature-size the system shows magnetic properties. 

Another example concerns an Ag grating suspended in air with a period d = 0.15 µm and 
channel width of 0.0256 µm (w = 0.1244 µm) that shows several anomalies in reflection in 
the visible, as observed in Fig. 15(a). The numerical results (in black) are compared with the 
reflectivity obtained by using the static values of neff and ns (red curve), and with their 
corrected values from Sec. 2 and 4 in blue. The corrected results match quite well the 
numerical values, even taking into account that λ/d ratio is relatively small (from 2 to 4). 

If the period and the lamella width are reduced 100 times, the static limit reflectivity 
match the numerical results (red circles), because the dimensions are much larger than the 
skin depth and the fields are completely homogenized. 

 

Fig. 15. 1D lamellar Ag grating in air with d = 0.15 µm, h = 0.24 µm, and w = 0.1244 µm in 
TM polarization. (a) Reflectivity as a function of the wavelength, numerical results in black, 
modal correction in blue, the static results, red line. The numerical results for d = 1.5 nm and w 
= 1.244 nm is presented with red circles. (b) The spectral dependence of the metamaterial 
parameters εM and µM, calculated using Eq. (55) with the modal correction for neff and ns from 
Sec. 2 and 4. 

Figure 15(b) presents the dependence of the metamaterial permittivity and permeability 
obtained using Eq. (55). They vary strongly within the spectral interval and, in particular, the 
structure shows well pronounced magnetic properties. It is necessary to stress that the values 
of neff and ns are not found numerically, but using the analytical corrections to the static limit 
from Sec.2 and 4. 

On the contrary, the small-feature structure (d = 1.5 nm) is non-magnetic, as shown with 
red circles in Fig. 15(b). 

6. Conclusions 
The phenomenological physical hypothesis for the electromagnetic field behavior inside finite 
conducting metal features of 1D and 2D gratings having invariant vertical geometry serves to 
obtain both effective permittivity and surface impedance in the cases when electromagnetic 
field is not sufficiently homogenized to behave according to the static approximation. In 
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particular, this is the case in the visible and near IR if the metallic feature size is comparable 
with the metal skin depth. 

The analytical expressions for the correction factor are also valid in the two limiting well-
known cases: 

1. In the static limit, when the grating dimensions are so small with respect to the skin 
depth that the electromagnetic field can be considered constant (correction factor q 
tends to 1). 

2. For perfectly conducting metals (q tends towards 0). 
They also permit us to determine the metamaterial permittivity and permeability, as 

defined in Sec. 5. In particular, our approach confirms that non-magnetic gratings can show 
magnetic metamaterial behavior in the case of non-homogenized fields, even if the relative 
effective permeability, defined as the ratio between the average induction and the average 
magnetic field is equal to one. 

Appendix A. Green’s tensor relation between the electric fields in V1 and V2 
Let us consider at first the Green’s function approach to light scattering by an object having 
permittivity ε2 embedded in a medium with permittivity ε1. 

The total field pE (r)
 

 is the sum of the field solution of the unperturbed problem unpE (r)
 

 

(obtained if V2=0) and the field scattered by the inclusion (volume V2): 

 
2

2 2
p unp p0 1

1

E (r) E (r) k (r r ) 1 E (r )dr ,
V

 ε′ ′ ′= + ε − − ε 
G

        
 (57) 

where the bold one stands for the three-dimensional unit tensor, and the electric dyadic 
Green’s tensor is the solution of 2

0 1rot rot k (r r ).′− ε = δ −G G 1  

The scattered field depends on the total field all over the scattering object through the 
electric dyadic Green’s tensor G. This tensor has a singular part L and a principal-value part 
PvG: 

 vG 2
0 1

1
(r r ) (r r ) (r r ),

k
′ ′ ′− = − − δ −

ε
G P L
     

 (58) 

where (r r )′δ −
 

 is the Dirac function. In the first-order approximation, the strongest 

contribution is the auto-scattering part expressed by the singular part of the Green’s function: 

 2
p 2 unp p 2

1

E (r) E (r) E ((r) E ((r), in V
 ε

≡ ≈ − − ε 
L 1

       
 (59) 

 p 1 unp 1E (r) E (r) E ((r), in V .≡ ≈
     

 (60) 

Wherefrom at a point Sr


 on the boundary S between the two media: 

 2 1S SE (r ) E (r )≈ Q
   

 (61) 

with 

 

1

2

1

.  

−
  ε

= + −  ε   
Q L 11  (62) 

The trace of L must be equal to one: 
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 Trace( ) 1.=L  (63) 

The singular part is quite often called depolarization factor and it has a simple form and 
depends on the form of the object. A detailed analysis and many examples can be found in 
[10]. In Appendix B, we present a short review of Green tensor singularities. 

Appendix B. Green’s tensor and its singularities 
For the sake of completeness, here we summarize some of the properties of Green’s tensor 
singularities that can be found dispersed among many different publications. For the electric 
field, the Green’s tensor is a solution of the singular propagation equation: 

 2rot rot k (r r ).′− = δ −G G 1  
 (64) 

By taking divergence of this equation and taking into account that div(rot) = 0, we obtain 

 2
2

1
k .

k
− ∇ ⋅ = ∇δ  ∇∇ ⋅ = − ∇∇δG 1 G  (65) 

Equation (64) can be further developed: 

 2k (r r )′∇∇ ⋅ − Δ − = δ −G G G 1  (66) 

so that 

 2 2
2 2

1 1
k k .

k k
 − ∇∇δ − Δ − = δ ⇔ Δ + = − + ∇∇ δ 
 

G G 1 G G 1  (67) 

On the other hand, the scalar Green’s function satisfies the equation: 

 2g k g (r r )′Δ + = −δ − 
 (68) 

and the relation between the Green’s function and tensor becomes 

 0 02

1
( ) ( ),g

k
 − = + ∇∇ − 
 

G r r 1 r r   
 (69) 

where the derivatives are taken with respect to the observation coordinate r


. From this 
equation it becomes clear that even in the case of no singularity of the Green’s function, the 
tensor can have singularities. For example, in the 1D case: 

 

( )0 0

2
2

0 0 02

02
0 1

0 0

0

i
g(x x ) exp ik x x

2k

d
g(x x ) (x x ) k g(x x )

dz
1

(x x ) 0 0
k

(x x ) 0 g(x x ) 0

0 0 g(x x )

− = −

− = −δ − − −

 − δ − ε 
 − = −
 − 
 
 

G

 (70) 

The singularities of G are treated by integrating them in a volume of the inclusion V2, 
excluding a small volume V0 around the singular point, with V0 tending to zero. Applying the 
theorem of Ostrogradski-Gauss, the volume integral is transformed to a surface integral. In 
the electrostatic limit the 3D Green’s function is 01/ 4π −r r 

, i.e., it is necessary to integrate: 
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0

1

4
∇∇

π −r r   (71) 

over the volume of the inclusion V2. Assuming that the source term is in the origin: 

 
2 2 2

0
3

0 0V S S 0

1 1
ˆ ˆdS dS,

4 4 4

−
= − ∇∇ → − ∇ =

π − π − π −  
r rL n n

r r r r r r

 
       (72) 

where n̂  is the unit vector normal to the surface. 
In the 2D case and the source term positioned in the origin, the static potential is given by 

lnρ/2π, and the integration for L is carried over the contour of inclusion C2: 

 
2

2
C

L n dc.
2

ρ=
πρ



 (73) 

For a sphere and a cube, the symmetry of the system results in a symmetrical depolarization 
factor: 

 

1 / 3 0 0

= 0 1/ 3 0 .

0 0 1/ 3

 
 
 
 
 

L  (74) 

For a long cylindrical inclusion with circular or square cross-section (see Secs.B.1 and B.2) 
having axis along z-direction: 

 

1 / 2 0 0

= 0 1/ 2 0 .

0 0 0

 
 
 
 
 

L  (75) 

For a 1D grating, periodical in x-direction: 

 

1 0 0

= 0 0 0 .

0 0 0

 
 
 
 
 

L  (76) 

Finally, for an infinitely thin circular disk the singularity of the Green’s function tensor takes 
the form: 

 

0 0 0

= 0 0 0 .

0 0 1

 
 
 
 
 

L  (77) 

And the link between the total and the incident field takes the following form: 

 2 1

1 2

1 0 0

E (r) 0 1 0 E (r).

0 0 /

 
 ≈  
 ε ε 

  
 (78) 

i.e. the electric field tangential components and the displacement normal component are 
continuous on the disk surface, as expected. 

A demonstration for rectangular and elliptical cross-sections is given below: 
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Infinite cylinder in z direction 

B.1. Rectangular (square) inclusion 

According to Fig. 16, 

  

 
1

1

a
x

2

n xon c :

xx yy

dc dy

 =
 =
ρ = +
 =

 (79) 

 
1

xx 2 2
c

2 xdy
L .

2 x y
=

π +  (80) 

 

Fig. 16. Schematical view of a rectangular cross-section with notations. 

Using the substitution 
a

y tg
2

= ϕ  

 
1 1

2

2

xx 2 2
2c

a
d

1 1 2 b4cos
L d arctg

2 aa a
tg

4 4
c

ϕ
ϕ= = ϕ =

π π π+ ϕ
   (81) 

Similarly yy

2 a
L arctg

b
=

π
. 

For squares b = a and xx yy

1
L L

2
= =  

B.2. Elliptical cross-section 

If the semi -axes are equal to a and b, in parametric representation 

 

ˆ ˆa cos x bsin y

n̂ grad / grad

d
dc

d

ρ = ϕ + ϕ
= ρ ρ

ρ=
ϕ



 (82) 
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2

xx 2 2 2 2
c

2

yy 2 2 2 2
c

1 ab cos d b
L

2 a ba cos b sin

1 absin d a
L

2 a ba cos b sin

ϕ ϕ= =
π +ϕ + ϕ

ϕ ϕ= =
π +ϕ + ϕ




 (83) 

Same as for squares, a circle is characterized by xx yy

1
L L

2
= = . 
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