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Abstract: A two-dimensional periodic sub-wavelength array of vertical
dielectric cylinders on a glass substrate is studied numerically using three
different electromagnetic approaches. It is shown that such structure can
present a narrow-band spectral resonance characterized by large angular
tolerances and 100% maximum in reflection. In particular, in a two-
nanometer spectral bandwidth the reflectivity stays above 90% within
angles of incidence exceeding 10 degrees for unpolarized light. Bloch
modal analysis shows that these properties are due to the excitation of a
hybrid mode that is created in the structure by a guided-like mode and a
localized cavity mode. The first one is due to the collective effect of the
array, while the second one comes from the mode(s) of a single step-index
fiber.
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1. Introduction

Realizing a spectral filtering function with nanopatterned structures is not new but it is a still
dynamic field of research. One advantage of nanopatterned structures over the interferential
thin films filters is their smaller thickness, which is particularly interesting for applications in
the far-infrared, where the thickness of the stacks needed is often an obstacle. Another
advantage is that nanopatterned filters with different spectral characteristics can be created on
a single chip, their filtering function can be differentiated by varying only few parameters of
the pattern (for example the period, for a periodic pattern), preserving the same thickness of
the assembly of different filters. On the contrary, fabricating an interferential thin films
component with different filtering functions at adjacent points requires to modify the
thickness of the films during their deposition. In other words, nanopatterned filters are more
suitable to create pixelized filters, for example for spectroscopic imaging applications.

Furthermore, reducing the size of the pattern may be required, either to fulfill applications
requirement (for pixelized filters for instance) or for fabrication reasons: a smaller pattern is
etched within a shorter time, and will present less fabrication imperfections. Yet reducing the
patterned size is possible only if the spectral function of the component is maintained when it
is illuminated with a focused beam, which is particularly difficult to achieve together with a
strong spectral selectivity. Narrow-band spectral filters can be achieved with the so-called
Guided mode resonance filters (GMRF) composed of a subwavelength grating and a planar
waveguide. The excitation of one eigenmode of the structure through one diffraction order of
the grating generates a very narrow spectral peak in reflection (or transmission) [1], but with a
very weak angular acceptance [2]. The excitation of two counter propagating modes generates
a localized mode, which still presents a strong spectral selectivity but having a better angular
acceptance. The angular acceptance can be further enhanced by increasing the interaction
between the two counter propagating modes, either thanks to a complex basic periodic pattern
[3,4], or by putting the GMRF in a box made of surrounding Bragg mirrors [5,6].

Another way to achieve a strong angular tolerance together with a strong spectral
selectivity is to create a strongly localized resonance either by using a very high index
material or high etching thicknesses [7-9]. In these, so called “High contrast grating”, the
coupling between a mode similar to the guided mode of a planar waveguide and a cavity
mode leads to a hybrid mode [10], which presents a high angular tolerance, and having either
a high spectral selectivity in the reflectivity [7-9] or a high reflectivity over a wide spectral
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range suitable to create broadband mirrors [11,12]. This phenomenon can be interpreted in
terms of modes propagating along the ridges for two-dimensional (2D) structures [13,14]
(invariant along one direction). Recently, it has been shown that the same phenomenon occurs
in 3D structures composed of circular or square pillars periodically arranged along two
directions [15,16], allowing to exhibit a polarization independent wideband mirror behavior
[17].

In this paper, we report the numerical simulation of an angularly tolerant and polarization
independent narrow band spectral filter created with a deep 2D grating made of circular
cylinders. Contrary to the studies presented in [15—17], our aim is to create a narrow-band
filter working in reflection. The design proposed here has a 2 nm wide reflection maximum
maintained above 95% within an angular interval of several degrees around normal incidence
in unpolarized light. We show that the wide angular acceptance is due to the formation of a
hybrid mode composed of a guided mode and a cavity mode. In the first part of the paper, we
present the reflectivity behavior of the deep circular rods grating. In the second part, we
interpret its property using a modal analysis.

Fig. 1. Schematical presentation of a two-dimensional array of dielectric cylinders.

The structure under study presents a two-dimensional array of vertical dielectric cylinders
oriented along the z axis represented schematically in Fig. 1. Their cross-section can have an
arbitrary form, but we shall concentrate our attention to mainly circular cylinders. The periods
in x- and y-direction are equal to d, and the wavelength A is chosen so that near normal
incidence there are no other than the Oth propagating orders in the cladding and the substrate.

The polar angle of incidence 0 lies between the incident wavevector and the z-axis; the

azimuthal angle of incidence ¢ lies between the plane of incidence (l—q, Oz) and the x-axis.

The incident polarization is linear and is defined with respect to the plane of incidence: as
usual, it is called transverse electric (TE), when the electric field vector is perpendicular to the
plane of incidence, and transverse magnetic (TM), when the electric field vector lies inside
the plane of incidence.

2. Reflectivity behavior

In what follows, we consider a glass substrate (refractive index ny = 1.5), a 2D periodical
grating composed of cylinders with refractive index ng = 1.97 embedded in air, the cladding is
air. If d = 0.5 pm then, close to wavelength A = 0.865 um and normal incidence, there are
only the Oth reflected and transmitted propagating orders. The map of the reflectivity in
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normal incidence is presented in Fig. 2 as a function of the cylinder diameter @ and its height
h. Figure 2(a) covers a large interval of diameters and the practically interesting range of
depths from 0 to 2 pm. The calculations were performed using a home-made numerical code
based on the Fourier Modal Method [18] including the S-matrix propagation algorithm [19]
and the Normal Vector Method [20] to perform a correct factorization of the product of
discontinuous functions. Two different regions can be distinguished: (1) smaller diameters (up
to 0.4 um) with low reflectivity characterized by Fabry-Perot-like variations with h, that are
more rapid for larger diameters; (2) a second region for longer and thicker cylinders, where
fine and high maxima of the reflectivity can be observed, a zoom is presented in Fig. 2(b).
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Fig. 2. Reflectivity of the dielectric grating in normal incidence as a function of the cylinder

diameter and height given in microns. Period d = 0.5 um, A = 0.865 um. (a) logarithmic scale
over a large interval of diameters; (b) zoom of the upper right corner.

Two types of resonances are clearly visible with different speed of variation with ®@ and h.
Highest values of the reflectivity are obtained when two modes are simultaneously excited, as
it is shown further on.
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Fig. 3. (a). Spectral dependence of the reflectivity in normal incidence for d = 0.5 pym, h =1
pum, ® = 0.4333 pum; (b) Angular dependence of the reflectivity for A = 0.865 um, incident
polarization along the x-axis. The other parameters as in Fig. 3.

Most interesting feature of the regions with high reflectivity is that it can reach 100% in a
relatively small spectral interval, width at half-maximum around 2 nm in Fig. 3. Moreover,
this specific resonance has very large angular tolerances (Fig. 4), suitable for smaller grating
sizes and not well-collimated beams, as explained in the Introduction. The 100% value of the
reflection maximum is due to the symmetry of the system. In particular, a geometry that has a
vertical plane of symmetry is characterized by a presence of a real zero of the transmissivity
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at resonance, due to the excitation of mode(s) of the system, thus the reflectivity can reach

100% at a resonance, as happens if Fig. 3. The mathematical explanation of this property in

the case of 1D periodicity can be found in [21], and is extended to 2D periodicity in [22].
Next section is devoted to the modal analysis of these specific cases.

3. Modal analysis

In order to obtain a better physical understanding of the different types of behavior and of
their cause, numerical tools enable us to “look™ inside the diffraction process, for example, by
subjecting it to a modal analysis of the grating structure (assuming that the rods are infinitely
long), and how the incident plane wave couples to these modes.

For convenience, let us repeat the definition of the modes as given in the formulation of
the Fourier modal method, an extension of the rigorous coupled-wave (RCW) theory to the
two-dimensional periodicity. In a few words, the x and y components and the electric and
magnetic fields are presented inside the grating region as a Fourier series in x and y (stored in
a column vector F), whereas in z-direction the propagation constants y are searched
numerically as the eigenvalues of a given M-matrix, which contains the coefficients of the
differential set of equation for F, derived from Maxwell equations:

iF =MF. @)

dz
The reconstruction of the field in the direct space is made using the matrix V containing the
eigenvectors of M:

mn,p p

E
Ey _ ikn(amxﬂiny)v iypzb 2
s De e"’b,, 2)
H

where b, are the Bloch modal amplitudes, determined by applying the boundary conditions at
z=0andh, and k, =2n/A . Equation (2) can be rewritten in an explicitly modal form:

E, E ,xy)
E Z Eyp(X Y) " 3)
Hx P Hx p (X Y) v
H H  (x,y)
where the p-th modal field is given by
Ex,p (X$ Y)
E  (xy) ;
v.p _ ik (amx-+B,y)
=Ye V.., 4)
H, , (x,y) mzp "
H  (x,y)

and its x-y distribution (and V,,,, in particular) does not depend on the z-direction, because
the grating shape is invariant in z.

An important technical remark is due: in presence of mode degeneration (two or more
modes having the same value of y), it is necessary to consider an appropriate linear
combination of these modes, with coefficients determined by the corresponding modal
amplitudes b,,. This is always the case of two-dimensional high-symmetry gratings that modes
appear in couples with two mutually orthogonal polarizations.
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Figure 4(a) presents the normalized propagation constants n.; =v, /k, for the modes that

propagate in the structure along the z-direction (i.e., having lossless propagation constant
Im(y,) = 0). In fact, there is either only a single mode, or three modes, each of which is twice
degenerated. Each of them can propagate upwards or downwards so that for each vy, it exists a

mode with —y,. Their amplitudes will be noted as b; and b, , respectively. In what follows,
we shall call these modes ‘vertical modes’.
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Fig. 4. (a). The dependence of the mode effective index n.s = yp/ko equal to the normalized
propagation constant y in z-direction as a function of the cylinder diameter. d = 0.5 pm, A =
0.865 pum. The red line corresponds to a mode that cannot be excited with linear incident
polarization in normal incidence; (b) the same as in (a) but for d = 5 pm. In addition, the
squares stay for the modes that can propagate along a single infinitely long fiber.

For narrower cylinders, only a single mode has a real propagating constant and it is larger
than 1. If instead of a set of fibers, we consider a single one, this case represents the
fundamental mode of a single step-index fiber with evanescent field in the surrounding air. If
we consider a long-period grating (5 um instead of 0.5 um), where the fibers are separated by
large distances and the propagating modes do not interact mutually (via evanescent field of
the mode), the modes have exactly the same propagation constants, as those calculated for a
single step-index fiber, as can be observed in Fig. 4(b). The calculations for a single step-
index fiber are made by solving the transcendental equation obtained by applying continuities
of the fields (written as Fourier-Bessel expansions) at the fiber circular interface [23, 24].

As the fiber diameter increases, the vertical mode propagation constant increases
gradually, both in the case of a single fiber, long- and short-period grating, and with the larger
diameter, new guided modes appear. The first new ones, represented with dots on the red
curve in Fig. 4(b) correspond to the TEy and TM,; modes of the single fiber [25]. They have
azimuthal or radial polarization, with electric field antisymmetrical with respect the fiber axis,
thus they cannot be excited with a linearly polarized light, because the overlap integrals
(scalar products) between their electric fields and the incident field vanish. Moreover, for
short-period gratings, the coupling between the guided modes in the closely lying cylinders
increases, as is discussed further on.

In addition to these vertical modes, there exists in Fig. 4(b) a large family of other modes
(Re(nggr) < 1) that does not exist in a single fiber — these are almost plane waves that can
propagate in the x-y plane, as discussed in detail later. They represent collective modes of the
grating structure; in what follows they are called ‘horizontal modes’. For the short-period
grating, this family (which becomes quite different from the plane wave approximation) of
modes reduces to only two, one of which cannot be excited with linearly polarized incident
light.

We present in Table 1 the values of the normalized propagation constant for the three
modes when A = 0.865 um and ® = 0.4333 pm. The imaginary part of the propagation
constant is within the machine error, so that we consider that these modes have real
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propagation constant. The first two are twice degenerated; the second pair is noted as mode 1’
and mode 2’ and they participate in the diffraction process if the incident wave is polarized
along y-direction. As far as we use incident wave polarized along x, the amplitudes of these
secondary modes are negligible when compared to modes 1 and 2. The slight difference in the
values of n.s in each pair is probably due to the asymmetry in the prolongation of the vector
normal to the cylinder surface because we perform an analytical 2D Fourier decomposition of
the permittivity, instead of FFT [26]. One can observe, in addition, that mode 3 is not excited
(the electric field values are of the order of the computer error) in normal incidence because
of its symmetry. Its electric field (the modulus given in Fig. 5) has azimuthal direction in each
cylinder and thus is antisymmetrical in Cartesian coordinates, as already discussed with
respect to Fig. 4(b). All over the paper, the incident electric field amplitude is taken to be
equal to one, and the field maps are normalized with respect to the incident wave modulus.
Table 1. The values of the real part of the normalized mode propagation constant for the

different modes of a system with d = 0.5 pm, ® = 0.4333 pm, A = 0.865 pm, together with
the modulus of the up- and downwards traveling mode amplitudes b for h =1 pm.

Re(ner) b+ b—
mode 1 1,64182 0,67963328 0,6819777
mode 2 0,3556 2,13137972 2,13108853
mode 3 0,43448 1,04E-12 1,34E-12
mode 1’ 1,64103 0,00004620 0,00003548
mode 2’ 0,35547 0,00011827 0,00010419

|E|] of mode 3
IMI 7

0.000

4.063E-13
8.125E-13
1.219E-12
1.625E-12
2.031E-12
2.438E-12
2.844E-12

Fig. 5. The map of the modulus of the electric field of mode 3 as a function of x and y, ® =
0.4333 um and A = 0.865 um, and normal incidence. All coordinates are given in microns.

There exist a direct link between the modes of distant fibers and of the subwavelength
grating. Figure 6 presents the dependence of n.s on the groove period for a fixed cylinder
dimensions, corresponding to that giving the reflection maximum in Fig. 3(a). We observe a
gradual transfer from one set of modes to another. Decreasing the distance between the fibers,
the vertical modes (ne > 1) couple between each other, and n.s increases because the average

refractive index decreases with the filling factor f = nd* /d*, Fig. 6(a). The red dashed curve

presents the valus of the normalizedpropagation constant of the next mode (4) that is below its
cut-off for d < 0.75 um, and that plays no role in the diffraction process for d = 0.5 um.
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Fig. 6. Variation of ne as a function of the period d for a fixed cylinder diameter @ = 0.4333
pum and A = 0.865 um, and normal incidence.

On the contrary, for the collective, horizontal modes, the values of n. decrease when d
decreases. This behavior can be understood by using a quite approximate plane-wave model
and average refractive index values, represented by the blue curve in Fig. 6(b). If the plane
wave that can propagate in the x-y plane is excited in normal incidence through the first
diffracted orders of the grating, having normalized wavevector amplitude in x or y direction
simply equal to A/d, so that in z-direction we obtain:

Ny = \/Er _(}\’/d)z P (5)

where € =fn; +(1—f) is the average relative permittivity of the grating region, n,=197.

As can be observed in Fig. 6(b), the behavior of the collective horizontal modes is quite well
expressed qualitatively by Eq. (5).

4. Electric field distributions

Deeper physics knowledge can be obtained from the field maps, rather than the modal
analysis of the propagation constants. In particular, we show in this section that the transition
from large- to short-period gratings leads to a stronger localization of the modes in the
structure, which explains the large angular tolerances observed in Fig. 3(b). We return to the
original problem discussed in Sec.2: an array of truncated rods on a glass substrate
illuminated by a plane wave.

The accuracy of the Fourier modal method numerical results described in Sec. 2 and 4 has
been checked by comparing it to the results of the finite element formulation described in [27,
28]. This FEM formulation allows computing numerically the vector fields diffracted by any
arbitrarily shaped crossed grating embedded in a multilayered stack in the time-harmonic
regime. The field maps obtained by the FEM show a quite good agreement with the results of
the Fourier modal method, which confirms the validity of the results.

The field maps confirm the conclusion already made and, in addition, show a gradual
localization of the field intensities in space when the grating period diminishes, which
explains finally the large angular tolerance of the reflectivity maximum observed in Fig. 3(b).

Let us consider the evolution of the modal field maps (modulus of the electric field) for
the two modes (mode 1 and mode 2 as noted in Table 1) for two different grating periods, d =
2 and 0.5 pum in Fig. 7. For a large distance between the cylinders, as expected, mode 1 is
localized mainly inside the fiber, while mode 2 has a minimum of the field in the fiber and has
an almost constant intensity in the surrounding space, as for a plane wave in the x-y plane.
These modes are localized in much smaller regions for the subwavelength grating (d = 0.5
pm). Mode 1 becomes strongly localized in-between the close points of the cylinders (Fig.
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7(e)), while mode 2 field distribution resembles a dipole along the x-axis (incident wave is
polarized along the x-axis). The total field of the grating structure with h = 1 pm represents a
superposition of the two modes
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Fig. 7. x-y maps of the modulus of electric field of mode 1 (b, ¢), mode 2 (c, f), and the total
field (a,d) for two grating periods, d = 2 pm (a-c) and 0.5 um (d-f) for a fixed cylinder
diameter 0.4333 pum, wavelength 0.865 pm and polarization along x-direction. The modal
fields calculated for a 2D array of rods infinitely long in z does not depend on z-direction,
while the total field, which is a solution of the 3D diffraction problem is calculated at mid-
height z= 0.5 pm with h = 1 pm. Black circles represent the cylinder boundaries.

Fig. 8. Fourier spectrum of the x-components of the electric field of mode 1 and mode 2,
corresponding to Fig. 7 for two different period values. Vertical axis represent the values of the
modulus of the Fourier components, numbered on the horizontal axis.

Fourier analysis in Fig. 8 of the predominant field component (Ey) of each mode confirms
the presumptions that mode 1 is much more localized in the direct space (larger Fourier
spectrum) than mode 2. The larger Fourier spectrum and the enhanced spatial localization
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express in larger angular tolerances. In addition, mode 2 is characterized by a predominant
first Fourier harmonic, which represents a wave propagating in x-direction that has almost
plane-wave distribution for d = 2 um, and is much more structured for d = 0.5 pm, because it
is formed as a standing wave due to the interference of order + 1 and -1 inx or y.

IE

total |

Fig. 9. Vertical (d-f) and horizontal (a-c) distribution of electric field, calculated by taking into
account all existing modes (a, d), mode 1 only (c, f), or mode 2 alone (b, ¢). The vertical maps
are calculated at y = 0, and the horizontal maps at z = 0.5. The cylinder boundaries are
presented by black circles or lines.

0.000

0.1662
0.3325
0.4987

0
(

g) 04 02 0. (d) 04 02
y

totall | mode 1+mode 2

Fig. 10. The y-z field maps calculated at x = 0 and taking into account different modal
contributions: (a) mode 2 alone; (b) mode 1 alone; (d) mode 1 and mode 2; (c) all modal
components

Additional study for the intermediate values of d not reported here shows a gradual
transfer from the field maps fromd=2tod = 0.5 pm.

After having analyzed the mode fields of the two different modes that have real
propagating z-constants in z, a natural question arises — what is the role of each of them for
obtaining a 100% reflection maximum in Fig. 3(a).
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Let us at first compare the field maps of the total field |E (x, y)| calculated using all the

tot
modes with the field distribution of the separate modes |Em0del(x, y)| and |Emodez(x, y)| by

taking into account the true values of the mode amplitudes b, and the fact that there are up-
and down-going modes in the structure. This means that for each mode we take the four
components coming from the double degenerating and for the two signs of y. These field
maps are presented in Figs. 9 and 10, for the xy, xz, and yz cuts. There are several conclusions
that can be made:

(1) xz-cut clearly shows that mode 2 is much stronger than mode 1 and that it approaches
quite well the total field distribution (Fig. 9(d)-9(f));

(2) the same conclusion is valid for the xy map in the middle of the height (z = 0.5 pm)
(Fig. 9(a)-9(c));

(3) on the contrary, the slices for which mode 2 is weaker (yz for x = 0, or xy for z =0
and h, the last two not shown here), mode 1 is as important as mode 2 in the total
field maps. In particular, Fig. 10 shows that the yz slice for x = 0 of the total field
requires the participation of both mode 1 and mode 2 in the total field reconstruction.

These conclusions confirm the analysis in the one-dimensional case made by Lalanne [13]
that it is required to have the excitation of two simultaneous modes in order to obtain high
reflectivity with a plateau in the angular dependency. Moreover, we are able to further extend
the numerical experiment by forcing the rigorous Fourier Modal Method to calculate the
reflectivity by working with only a single or several z-modes, instead of all modes that are
necessary for the rigorous solution of the Maxwell equations and the boundary conditions at z
=0 and h (and the outgoing wave conditions above and below the grating). To this aim, the
calculations of the eigenvalues and the eigenvectors of the M-matrix in Eq. (1) are correctly
done. Then, the imaginary parts of all the eigenvalues, except some specific ones is increased
drastically to ensure that they are completely damped between z = 0 and z = h, so their
participation in the energy transfer between the upper to the lower interface becomes
negligible. However, all the modes are taken into account in satisfying the boundary
conditions at z=0 and z=h.

14 ——mode,+mode,

mode,
0.5

mode,

= All modes
0.25

0.125

reflectivity

0.0625

0.03125

0.01563

0.860 0.862 0.864 0.866 0.868 0.870
A

Fig. 11. Spectral dependence of the reflectivity corresponding to Fig. 3(a) and obtained by
suppressing all other modes than mode 1 (blue), or mode 2 (red), or both of them (black). The
squares are obtained by using the complete modal set.

Figure 11 presents the reflectivity by taking into account the total number of modes
(points), only mode 1 and modes 2, separately only mode 1 or mode 2. Quite amazingly,
mode 1 and mode 2 are perfectly sufficient to reproduce the Fano-type resonance
(asymmetrical Lorentzian containing both a pole and a zero), while mode 1 reproduces a
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Fabry-Perot weak resonance (without a peak appearing inside the spectral interval given in the
figure). The single mode 2 leads to a Lorenzian-shape resonance at the same spectral position
as the true curve, but it does not reach 100%. The energy balance is neitherfulfilled in the last
two cases.

The reason seems obvious: When a single mode is taken into account, either a Fabry-Perot
resonance in z-direction, having weak reflection coefficients at z = 0 and z = h appears for a
single mode 1, or stronger Lorentz-type resonance is participating with mode 2 that
“propagates” in the xy-plane (similar to a waveguide mode for classical gratings). However,
despite the resonance behavior in both case of single-mode contribution, they cannot lead to a
100% maximum in the reflectivity due to the following reason. This value of the maximum is
due to the fact that in the Fano-type anomaly, the zero in transmission is real for such
symmetry of the structure. However, the existence of a zero in transmission (or, more general,
also in reflection) for a Fano anomaly requires as a minimum two independent contribution, a
resonant and a non-resonant one (or, why not, two resonant ones, although it goes outside the
Fano contribution) in order to create a zero from the Lorentzian anomaly:

_ _ c A=A
tFam: - tnonrcsanant + thrcmz - tnonrcsonam + )\’ _ }\‘p ~ “nonresonant }\‘ _ }\’p (6)
. C .. . . .
with A* =A" —————— where t stays for the transmission, c is a slowly varying function,

nonresonant
corresponding to a coupling coefficient between the incident field and the mode, the subscript
p stays for the pole and z for the zero. Without the nonresonant contribution, the zero of the
Lorenzian curve is sent to A — oo .
Same is valid for two resonant contributions:
Cl

tFano = +
A-2 A=A

7\/2 — clﬂ; +02£1p ,
c, +c,

% =(c, +¢,) s
(r=27)(A-4)

()

which represents Fano anomaly if only both ¢, , # 0, otherwise it rests Lorentzian.

Acknowledgment

The support of the ANR funded project PLANISSIMO (ANR-12-NANO-0003) is gratefully
acknowledged.

#264075 Received 26 Apr 2016; revised 14 Jun 2016; accepted 14 Jun 2016; published 23 Jun 2016
(C) 2016 OSA 27 Jun 2016 | Vol. 24, No. 13 | DOI:10.1364/0OE.24.014974 | OPTICS EXPRESS 14985





