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Abstract: A detailed study of light absorption by silver gratings having 
two-dimensional periodicity is presented for structures constructed either of 
channels or of holes with subwavelength dimensions. Rigorous numerical 
modelling shows a systematic difference between the two structures: hole 
(cavity) gratings can strongly absorb light provided the cavity is sufficiently 
deep, when compared to the wavelength, whereas very thin channel gratings 
can induce total absorption. A detailed analysis is given in the limit when 
the period tends towards zero, and an explanation of the differences in 
behavior is presented using the properties of effective optical index of the 
metamaterial layer that substitutes the periodical structure in the limit when 
the period tend to zero. 
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1. Introduction 

Enhanced light absorption by periodic structures has attracted the attention of scientists and 
engineers since the first observation of grating anomalies by R. Wood [1]. Resonant excitation 
of surface plasmon waves, responsible for these anomalies was first proposed by Fano [2] as 
the explication of this phenomenon. Later, Hutley and Maystre [3] have predicted and 
observed total light absorption (called by them Brewster effect) by relatively shallow gratings, 
with groove height not exceeding 10% of the wavelength. The resonant excitation of surface 
plasmons gave explanation to surface-enhanced Raman scattering (SERS) [4] and was largely 
used in nonlinear optics [5]. 

Since the work of Ebbesen et al. [6] on the observation of enhanced transmission through 
metallic hole arrays, surface and volume plasmons became object of so great number of 
experimental and theoretical studies that gave birth to a new name ‘plasmonics’ of the 
domain. 

Light absorption remains also a separate topic of interest for applications in photovoltaics 
and microwave isolating. Recently, it has been shown that very shallow periodic structures 
having one- or two-dimensional periodicity can absorb light totally in relatively large spectral 
and angular interval [7–9]. The advantage of 2D periodicity is the possibility to enhance 
absorption in unpolarized light, whereas for 1D gratings this is possible by combining surface 
plasmon and cavity resonances, which imposes tighter constraints to manufacturing. 

There are many yet unsolved problems in the theory of periodic structures. A typical 
example is the study of the similarities and differences between inductive (with continuous 
perforated metal layer in the grating region) and capacitive grids (where the metal inclusions 
are separated from each other inside the grating) [10]. Another problem is the choice of 
homogetization procedure for structures having very small periods when compared with the 
wavelength of light, structures known as metamaterials. 

Our aim in this paper is to study light absorption by two different types of 2D gratings, 
constructed of channels or holes. If the substrate is dielectric, and the grating bulk material is 
metal, these systems are called capacitive and inductive grids, respectively [10]. While 
channel gratings of just several nm depth can absorb light totally, as already shown in [7, 8], 
the inverted geometry requires much deeper modulation values to obtain similar performance. 
This difference persists even when the period is reduced to just several nanometers (1/100 of 
light wavelength). We propose an explanation from metamaterial point of view by testing two 
approaches for obtaining the formula for the effective dielectric permittivity when the period 
of the structure tends to zero. A very good agreement is observed between the rigorous 
electromagnetic modeling and he effective index approach. 

2. Comparative study of channel and hole array gratings 

Let us consider the reflection properties of silver-made gratings with 2D periodicity, 
presented schematically in Fig. 1. The first system consists of square pillars separated by 
channels; the second one contains square holes separated by metallic wall. In what follows, 
the substrate and the grating material is silver, the wavelength is equal to 457 nm, the 
cladding, channel and hole material is air. The calculations are done using a rigorous 
electromagnetic home-made code based on the Fourier Modal Method. Li’s factorization rules 
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[11, 12] are applied for square holes and pillars, and Normal Vector Method [13] is used for 
circular shapes. 

 

Fig. 1. Schematic representation of two types of gratings having two-dimensional periodicity: 
(a) channel (capacitive) grating, (b) hole (inductive) grating 

The reflection properties of the first system has been studied in [7, 8] and they are 
characterized by strong absorption in large angular and spectral intervals, even for quite 
shallow channels. Figure 2(a) gives the dependence of the reflectivity on the channel depth h 
and the filling ratio f: 

 
2

2

c
f

d
=  (1) 

 

Fig. 2. Reflection of the gratings presented in Figs. 1(a) and 1(b), respectively, as a function of 
the filing factor f and the channel (hole) depth h (given in µm). Period in x- and y-direction is 
equal to 250 nm. Wavelength 457 nm in normal incidence. 

The period d = 250 nm is chosen to avoid non-specular diffraction orders in the visible. As 
previously explained [7, 8], these regions of high absorption are due to the metamaterial 
behavior of the grating structure, which has effective permittivity that is characteristic for 
highly absorbing anisotropic dielectric, rather than metal (see also next section).On the 
contrary, the holes grating reflectivity remains highs for shallow holes (Fig. 2(b)), and 
diminishes significantly only when h > 500 nm. An explanation of this difference between 
hole and channel gratings, obtained from the metamaterial point of view is discussed in the 
next section. 
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There exists a physical explanation for relatively large periods that is linked with the 
existence of cavity modes inside the channels and the holes, modes that can propagate in the 
vertical direction. In the case of channels, the fundamental mode has no cut-off for 1D 
gratings and it is equivalent to the TEM mode in metallic plane waveguides. Figure 3 presents 
the dependence of the real and imaginary part of the normalized propagation constant of the 
modes for 2D channel and hole gratings of finite conductivity, taking into account the modal 
interaction through the channel (or hole) walls by the tunneling effect, and the interaction 
through the channels open in the perpendicular direction. 

The modes are determined by the Fourier-modal expansion of the field inside the grating 
region, an approach widely known as rigorous coupled-wave (RCW) method. Due to the 
periodicity of the structure in x- and y-direction, and the invariance in z-direction, the electric 
field vector in monochromatic regime can be represented in a modal form: 

 ( ), , 0
, ,

( ) expm n p m n p
m n p

E r ik x y zα β γ
∞

±

=−∞

 = + ± 
 

E  (2) 

with constant amplitudes , ,m n p
±

E , where the sign +/− stands for propagation upward and 

downward and k0 is the wavenumber in the superstrate, assumed to be air. If the eigenvalues 

of the transmission matrix are denoted by ( )exp pi hγ , γp are the eigenvalues of the diffraction 

matrix [11–16] that links the electromagnetic field values with its z-derivatives inside the 
grating layer. In normal incidence: 

 
m

x

n
y

m
d

n
d

λα

λβ

=

=
 (3) 

where λ is the wavelength, and dx and dy, the periods in x- and y-direction, respectively. 
Because of the invariance of the grating region in z-direction, the mode constants are 

independent of z. As the filling factor is varied, Fig. 3(a) presents the mode constant having 
the smallest imaginary part for the channel grating. 

In the case of 1D perfectly conducting channels, the TEM mode constant is equal to the 
refractive index of the channels (equal to one in our case). When f = 0, the pillars in Fig. 1(a) 
have zero width, so that the fundamental harmonic of the field in Eq. (2) is also equal to one. 
When the bums are growing in size, the interaction between the modes in the parallel and 
perpendicular channels leads to increase of the losses (reflected in the increase of the 
imaginary part of γ). 
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Fig. 3. Real and imaginary parts of the eigenvalues γ of the diffraction matrix, corresponding to 
Fig. 2(a), as a function of the filling factor. (a) the basic mode with minimum imaginary part; 
(b) three higher modes. 

More interesting is the fact that the real part also grows with f, which can be understood 
by the fact that the capacitance of the system increases as the gap between the conductive 
elements decreases. The analysis of the equivalent effective index in the next section for 
shorter periods shows an increase of the real part of the effective refractive index, which 
explains the increase of Re(γ). 

The existence of this fundamental mode can explain the appearance of consecutive 
minima and maxima in the reflectivity as a function of h, as well as the decrease of the 
distance between them as f increases. Indeed, a Fabry-Perot resonance within the grating 
structure due to the fundamental mode has to be quasiperiodic with respect to h, with the 
period Dh determined by the real part of the mode propagation constant: 

 
2 Re( )hD

λ
γ

=  (4) 

For example, when f = 0.6, 150hD ≈  nm in Fig. 2(a), which corresponds to γ = 1.53 in Fig. 

3(a). 

 

Fig. 4. Real and imaginary parts of the eigenvalues γ of the diffraction matrix, corresponding to 
Fig. 2(b), as a function of the filling factor. 

There are higher modes propagating (and evanescent) inside the structure, as observed in 
Fig. 3(b) for the next three modes having minimum imaginary part. They are characterized by 
cut-off filling factor of approximately 0.3, 0.75, 0.85. Contrary to the case of hole grating 
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(discussed below), we are not able to identify the role of higher modes in the reflectivity 
behavior in Fig. 2(a), although they definitely participate in the diffraction process. The modal 
analysis of the hole array grating has been made in detail after the work of Ebbesen [6]. The 
hole waveguides do not present a TEM mode that has no cut-off. Figure 4 shows that the first 
mode becomes propagating for f ~0.3, the second one at f ~0.6, the third one at f ~0.85. Each 
of them leads to well-distinguished anomalies observed in Fig. 2(b), but even their combined 
role cannot lead to strong light absorption for shallow gratings, contrary to the channel 
structure. 

3. Metamaterial analysis of channel and hole arrays 

Since the works of Maxwell-Garnett [17] on the homogenization of Maxwell equations for 
media with inhomogeneous inclusions, there are numerous theoretical, numerical, and 
experimental works devoted to the determination of an equivalent effective refractive index 
(or dielectric permittivity and magnetic permeability in case of magnetic properties of the 
media) that can replace the “alloy” of different substances involved in the structure. It is 
difficult here to even mention the most important works. One approach is the so called 
homogenization technique for periodic media, an approach that analyses the optical properties 
in the quasistatic regime, when the optical frequency tends to zero. While this is interesting 
and fruitful approach, it is not quite practical in the near-IR, visible and UV domain, where 
the optical constants depend strongly on the wavelength. To take into account the dispersion, 
instead of increasing wavelength to infinity, it is possible to diminish the period(s) to zero. If 
together with that the grating thickness tends to zero, all effects disappear and the limit 
becomes a reflection from the substrate-superstrate interface. To avoid this, in what follows, 
we fix the wavelength and the grating thickness h, and decrease the x-y dimensions. 

 

Fig. 5. As in Fig. 2 but for the period of the structures equal to 3 nm (h is again given in µm). 

3.1. Numerical results for short periods 

The intuitive assumption that the effective permittivity would be the average of the 
permitivities of the participants fails to be true. The first contra-argument is that it is not clear 
when to take arithmetic average, when geometric, when some other. The second argument is 
that the average values for two media are symmetric when the permittivities are mutually 
permuted, simultaneously with the filling factor. 
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Fig. 6. Reflectivity as a function of the filling factor for the channel grating of Fig. 2(a) for two 
different periods (10 and 3 nm) and for two different forms of the pillars, square and circuler, 
as described in the legend. Blue curve, the results of Eqs. (23) and (24), cyan line, Eqs. (25) 
and (26). (a) h = 15 nm, (b) h = 415 nm. 

Numerical results for very small periods, when compared to the wavelength show that the 
peculiarities in the properties of the gratings, presented in Fig. 3(a) and 3(b) persist, as can be 
observed in Fig. 5 that shows the dependence of the reflectivity on the filling factor f and 
grating depth h in the regions of high absorption, obtained by the rigorous numerical method 
for the two structures of Fig. 1 with period d = 3 nm. In particular, very shallow channel 
gratings can totally absorb the incident light, which is not the case of hole arrays as seen in 
Fig. 2(b). Figure 6 shows the dependence on the filling factor of the reflectivity of the grating 
of Fig. 2(a) for square pillars with period 10 and 3nm, together with a circular pillar 
reflectivity having period of 3 nm. The grating thickness h is equal to 15 nm (a) and to 415 
nm (b). Results obtained for d = 1 nm practically coincide with the results for d = 3 nm. We 
see that for h = 15 nm the fill-factor dependence of the reflectivity goes down to less than 
0.1%, whereas it remains greater than 94.5% for the gratings consisting of circular or square 
holes. The blue and cyan lines in the figure describe the effective-index results of the 
effective-index approach, presented further on. 

Figure 7 presents similar results of the reflectivity of a square hole arrays for two different 
hole depths as a function of the filling factor. Similarly to Fig. 6(b), there is no difference 
between the gratings with periods 3 and 10 nm. 

Two conclusions could be drawn from the results: 

1) The behavior of very small pitch gratings shows similar peculiarities, independent on 
the pitch size; the position of the anomalies tends toward a limit position as the 
period tends to zero. Channel gratings properties differ significantly from the hole 
arrays whatever small the period is. 

2) There is a small difference in Fig. 6 between the gratings consisting of square and 
circular pillars, the absorption curve for circular pillars is shifted to larger filling 
factors, as if they seem to have slightly smaller filling factor than the one given by 
the simple surface ratio in Eq. (1). 
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Fig. 7. Reflectivity as a function of the filling factor for the square hole grating of Fig. 2(b) for 
two different periods (10 and 3 nm), as described in the legend. Blue curve, the results of Eqs. 
(23) and (24). (a) h = 15 nm, (b) h = 900 nm. 

3.2. Equivalent effective-index analysis 

In order to obtain a simple model that enables us to better understand the behavior of these 
short-pitch structures, we use an effective-index approach based on the Maxwell-Garnett 
approach [17] and Green tensor singularity analysis [18]. 

Let us consider at first the Green’s function approach to light scattering by an object 

having permittivity ε2 embedded in a medium with permittivity ε1. The incident field ( )iE r
 

 

will create a total field ( )E r
 

, which is a sum of the incident and the scattered field: 

 2

1

( ) ( ) ( ) 1 ( )i

scatterers

E r E r r r E r dr
ε
ε

 ′ ′ ′= + − − 
 

 G
       

 (5) 

The latter depends on the total field all over the scattering object through the electric dyadic 
Green’s tensor G. This tensor has a singular L and a principal value Pv parts: 

 ( ) ( ) ( )vr r r r G r rδ′ ′ ′− = − + −G L P     
 (6) 

where ( )r rδ ′− 
 is the Dirac function. In the first order approximation, the strongest 

contribution is the auto-scattering part expressed by the singular part of the Green’s function: 

 2

1

( ) ( ) 1 ( )iE r E r E r
ε
ε

 
≈ + − 

 
L

    
 (7) 

wherefrom: 

 

1

2

1

( ) 1 ( )iE r   E r
ε
ε

−
  

≈ − −  
   

L
  1  (8) 

where bold one stands for the tree-dimensional unit tensor. The trace of L must be equal to 
one [18]: 

 ( ) 1Trace =L  (9) 

The singular part has a simple form and depends on the form of the object. A detailed analysis 
and many examples can be found in ref.17. In particular, for a sphere or a cube: 
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1 / 3 0 0

=  0 1/ 3 0

0 0 1/ 3

 
 −  
 
 

L  (10) 

and for long cylindrical inclusions with circular or square cross-section having axis along z-
direction: 

 

1/ 2 0 0

= 0 1/ 2 0

0 0 0

 
 − 
 
 

L  (11) 

Equations (8) and (10) permit immediately to obtain the well-known electric response of a 
spherical inclusion (or cavity): 

 1

1 2

3
( ) ( )

2 iE r E r
ε

ε ε
≈

+

  
 (12) 

For our needs, we shall at first consider as if the grating layer is extended infinitely in z-
direction, in order to obtain its effective permittivity. Using Eqs. (8) and (11), the link 
between the scattered and the incident field is given as: 

 

1

1 2

1

1 2

2
0 0

2
( ) 0 0 ( )

0 0 1

iE r E r

ε
ε ε

ε
ε ε

 
 + 
 

≈  + 
 
 
 

  
 (13) 

There are some doubts whether the choice of the geometry (infinitely long cylinders) is the 
good one, because for thin gratings probably more suitable is to consider the inclusions as thin 
discs. If the height of the disk is much smaller than its cross-section width, the singularity of 
the Green’s function tensor takes the form: 

 

0 0 0

= 0 0 0

0 0 1

 
 − 
 
 

L  (14) 

And the link between the total and the incident field takes the following form: 

 

1

2

1 0 0

( ) 0 1 0 ( )

0 0

iE r E r

ε
ε

 
 
 
 ≈
 
 
 
 

  
 (15) 

The tensor establishing the link in Eqs. (13) and (15) is denoted as Q. In what follows, 
numerical study will distinguish the choice between Eqs. (13) and (15). 

The original approach proposed by Maxwell-Garnett [17] enables us to find the effective 
permittivity εeff of the inhomogeneous medium, based on a simple hypothesis that it gives the 
link between the mean values of electric and displacement fields: 
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 effD Eε=
 

 (16) 

where angular brackets stand for mean value and, in general, εeff is a tensor. On the other 
hand, in the first-order approximation, inside the inclusions the electric field is equal to the 

total field ( )E r
 

, whereas outside the inclusions it is equal to ( )iE r
 

, so that its mean value is 

given as: 

 ( ) (1 ) ( )iE f E r f E r= + −
   

 (17) 

In the same manner: 

 ( ) (1 ) ( )iD f D r f D r= + −
   

 (18) 

where ( )iD r
 

 is the displacement outside the inclusions, and ( )D r
 

 - inside them. On the other 

hand, from the macroscopic Maxwell equation we have the two standard relations: 

 2

1

( ) ( )

( ) ( )i i

D r E r

D r E r

ε
ε

=

=

  
    (19) 

Substitution of Eqs. (17)-(19) into Eq. (16) results in the following relation: 

 2 1( ) ( ) (1 )( ) ( )eff eff if E r f E rε ε ε ε− = − − −
  

  (20) 

Taking into account that ( ) ( )iE r E r= Q
  

, the tensor εeff takes the form 

 [ ][ ] 1

1 2(1 ) 1 ( )eff f f fε ε ε −= − + − −Q 1 Q   (21) 

In the case of electrically isotropic media, ε1 and ε2 are scalars. In addition, in the case of 
highly symmetrical inclusions, the Q tensor is diagonal (see above), Eq. (21) is simplified 
into: 

 1 2
,

(1 )
, , ,

1 (1 )
ii

eff ii
ii

f f Q
i x y z

f Q

ε εε − +
= =

− −
 (22) 

A well-known conclusion implies that a mixture of isotropic substances lead to anisotropic 
effective permittivity. Less obvious is the observation that the exchange of both ε1 with ε2 and 
f with (1 – f) does not keep the result for εeff the same. In particular, considering long 
cylindrical inclusions, as described by Eqs. (11) and (13), the effective permittivity represent 
anisotropic uniaxial medium with axis along the cylinder axis. The ordinary part of the 
permittivity (in the x-y plane) is given by: 

 2 1
, , , 1

2 1

(1 ) (1 )

(1 ) (1 )eff xx eff yy eff o

f f

f f

ε εε ε ε ε
ε ε

+ + −
= = =

− + +
 (23) 

While the extraordinary part along the z-axis represents the mean arithmetic value of the two 
permittivities: 

 , , 2 1(1 )eff zz eff e f fε ε ε ε= = + −  (24) 

If, instead of long object, we consider flat ones, Eqs. (14) and (15), the resulting tensor of 
effective permittivity is also uniaxial, but it contains the mean arithmethic value of the two 
permittivities in the x-y plane: 
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 , , , 2 1(1 )eff xx eff yy eff o f fε ε ε ε ε= = = + −  (25) 

While along the z-axis we obtain the mean harmonic value: 

 1 2
, ,

1 2(1 )eff zz eff e f f

ε εε ε
ε ε

= =
+ −

 (26) 

There are two arguments to choose the first approach (the singularity of infinitely long 
cylinder. First, when the unit cell cross-section tends to zero with the reduction of the periods 
and keeping the thickness h fixed, the cross-section diameter can become infinitely smaller 
than h. Second, Eqs. (25) and (26) are symmetrical when permuting 2 1andε ε  simultaneously 

with (1 )f and f− , i.e., channel and hole gratings would be equivalent by interchanging f to 

1-f, which is not the case. 
If we go back to Fig. 6, the results using the two approaches are presented in blue (for 

infinitely long cylinders) and cyan (infinitely thin disks). As can be expected, the first 
approach, Eqs. (23) and (24), gives much better results, which are quite close to the numerical 
values for circular pillars. 

Similar correspondence between the results of the effective-index approach and the 
numerical method are observed in Fig. 7 for cavity resonances. 

The main disadvantage of this simplified approach is that the results depend only on the 
filling factor, while not taking into account the form of the cross-section of the pillars or 
holes, while numerical results given in Fig. 6 show that there is a slight difference in the 
position of the reflectivity dip for circular and square cross-sections. In order to take into 
account the cross-section form, it is necessary to use more sophisticated approaches that have 
been developed during the last 120 years. An interested reader can find a detailed work on 
homogenization theory in a recent review by G. W. Milton [19]. The specific form can be 
taken into account by the concept of polarisability, and the necessity to use the average values 
not only of the fields but of the modulus square of the electric field (see ch.16 of [19] and ref 
[20].). However, we are not able to directly apply this approach, because it is developed in the 
quasistatic limit as the frequency tends to zero, while in our case the frequency is finite, and 
the periods in the grating plane tend to zero. 

4. Single-mode model and effective index behavior 

This quite good correspondence between the rigorous numerical results and the metamaterial 
approximation enables us to obtain a deeper insight in the origin of the strong light 
absorption, as well as of the difference between channel and hole structures. Similar to Fig. 2, 
well-designed regions of low reflectivity are observed, pointing toward some type of modal 
structure for d = 3 nm in Fig. 5. This can be observed in detail in Fig. 8 that presents the 
results of the metamaterial behavior of the two structures in Fig. 1 by using Eqs. (23) and (24) 
to model the grating region, i.e., the structures are represented as a homogeneous anisotropic 
layer deposited on a metallic substrate. The square regions bordered by black lines in the 
figure correspond to the scale limits of Figs. 5(a) and 5(b). 
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Fig. 8. Reflectivity as a function of f and h of metamaterial layers on silver substrate, 
corresponding to the limit of structures given in Fig. 2 when the period of the structures tends 
to zero. (a) channel grating, (b) hole array. 

In normal incidence, the normalized propagation constant of the waves propagating in 
direction to +/− z is equal to the effective refractive index in direction x for the waves 
polarized in y. The values of neff,xx are given in Fig. 9. For the channel gratings, as f increases, 
the real part of the effective index (and thus the real part of the normalized propagation 
constant of the vertical mode) increases, which explains why the distance in h of the 
resonances in Fig. 8(a) decreases with h (see Eq. (4)). In fact, for f < 0.7, the metamaterial 
behaves like a lossy dielectric with large optical index, having real part that varies from 1 to 6. 
The same behavior was observed for d = 250 nm in sec.1. As f approaches 0.7, both real and 
imaginary part grow significantly, thus a very thin optical layer (several nanometers thick) 
can totally absorb the incident light. 

 

Fig. 9. Dependence on the filling factor f of the real and imaginary parts of the normalized 

propagation constant of the wave propagating in direction of z, equal to 
, , 0

/=
eff xx eff xx

n ε ε . 

(a) channel grating, (b) hole array. 

When the channel width decreases (f > 0.7), the effective medium is transferred into a 
lossy metal, with optical proparties tending towards the properties of the metal of the pillar. 

Let us consider now the case of hole gratings. When the holes cover completely the 
grating region (f = 1), the modulated layer is air. Reducing the hole size, the real part of the 
effective index decreases, in contrast with Fig. 9(a). The other important fact is the small 
increase of its imaginary part, as compared with Fig. 9(a). Close to the cut-off of the mode 
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near f = 0.7, both the real and the imaginary parts remain small, which fact explains why for 
small values of h there is no strong absorption, as seen in Fig. 8(b). 

Conclusions 

As already observed in [7–9], the reflection properties of subwavelength two-dimensional 
grating depend significantly on the form of the structure. When it consists of pillars separated 
by channels, there exists a fundamental mode that propagates in vertical direction due to the 
field interaction through the channels, even for narrow channels, with width less than 5% of 
the light wavelength. Due to the existence of this mode, the grating structure behaves like a 
lossy high-index anisotropic dielectric, with characteristic Fabry-Perot resonances observed as 
a function of its thickness. For channels narrower than 5%, this fundamental mode becomes 
evanescent and the structure behaves like lossy metal. Close to the cut-off, due to the very 
high losses and large real part of the effective index, one can observe total light absorption by 
the layer having thickness of the order of 10 nm. 

The corresponding structure that consists of hole instead of pillars is characterized by a 
vertical mode that has a cut-off (fact well known for single apertures and periodical hole 
arrays). When propagating, its real part is smaller than unity; this is why strong light 
absorption and Fabry-Perot resonances appear for thicknesses comparable to the wavelength 
of light. 

These conclusions are also valid in the limit as the structure periods in both x- and y-
directions tend toward zero, as shown numerically. A simple Maxwell-Garnett 
homogenization approach gives very good coincidence with the rigorous numerical results. 
An open question remains to explain the small difference between the numerical results for 
circular and square-form pillars, difference that cannot be explained using effective-index 
approximation that depends only on the filling factor. 
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