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Abstract:  Numerical analysis of diffraction by a single aperture surrounded 
by a circular shallow channel in a metallic screen shows the possibility of a 
50-fold increase of the electric field intensity inside the central aperture, 
when compared to the incident field. Detailed analysis of cavity modes and 
their coupling through surface plasmon wave determine the parameters 
leading to maximum field enhancement. This effect can be used in high-
efficiency single-molecule fluorescence analysis in attoliter volumes. 
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1. Introduction 

Light transmission through single or periodically arranged apertures has attracted the interest 
of scientists, at first, due to the possibility to confine the electromagnetic field into a relatively 
small region, smaller than the diffraction limit in free space, thus generating evanescent 
wavevectors, leading to increased resolution in optical microscopy [1-3]. Even the early 
studies have shown [2] that the transmission values exceed significantly scalar theoretical 
predictions [4, 5]. The observation made by Ebbesen, et al., [6] that in periodically arranged 
array of apertures the transmission enhancement can be almost 100 times stronger, was 
sufficient to attract the special attention of scientific community. Although the role of the 
surface plasmon excitation by the periodicity of the geometry was already invoked in this 
work, it generated many theoretical and numerical studies aiming to explain this phenomenon. 
While the first attempts were made by use of models with one-dimensional (1-D) periodicity 
(classical lamellar gratings), it was necessary to apply a two-dimensional periodicity analysis 
to better understand the complexity of the process. In a few words, while the periodical 
arrangement of the apertures is responsible for the surface plasmon excitation on both sides of 
the metallic sheet, the tunnelling of the field inside the apertures is made through the 
fundamental waveguide mode supported by the hollow metallic waveguide inside the holes [7, 
8]. While 1-D slits can support the TEM mode which has no cut-off, this mode cannot 
propagate in 2-D apertures (coaxial apertures being the exception), and even the fundamental 
mode has a cut-off and thus the optical field is evanescent inside small apertures. A new 
application was born [9, 10] that profits from the small size of the cross-section area of single 
apertures, combined with the exponential decrease of the electromagnetic field inside it gives 
the possibility to significantly reduce the investigated volume (down to a few attoliters) for 
single-molecule probing in solutions with micromolar concentrations. In addition, and quite 
helpfully, when the fundamental mode is close to its cut-off, there is a substantial (6-7 fold) 
increase of the local field intensity inside the aperture [10, 11] that contributes to enhance the 
detected signal. This can be explained by the fact that close to the cut-off the mode group 
velocity tends to zero, so that its field is “accumulated” at the aperture opening. 

As already mentioned for hole arrays, the periodicity of the structure can lead to 
significant local field enhancement by resonantly exciting surface plasmons. A single aperture 
can have the surrounding metal surface structured in a specific manner in order to better excite 
the surface plasmon. Instead of the simple periodicity, the structuring has to follow rules 
established in cylindrical geometry, where Bessel functions naturally substitute the 
exponentials that serve as basic functions in Cartesian coordinates [12]. The first problem is 
that one ends up with relatively complex structures of quasi-periodic concentric grooves 
which are difficult to reliably fabricate and control.  

The second problem is that from the point of view of practical applications, only the final 
excitation intensity per surface unit matters. With the aperture surrounded by concentric 
grooves, it is necessary that both the surface structure and the incident wave cover a diameter 
of about 4 times the wavelength. This limits the focusing of incident light and the incoming 
intensity per surface unit (for a fixed input power). Therefore, even with large enhancements, 
the excitation intensity in the central aperture may not be significantly higher than the 
intensity reached with a tightly focused laser beam without the nanostructure. For instance, in 
the case of a bull’s eye structure, the relative electromagnetic enhancement is about 100 
(computed for an incoming plane wave), but the structure radius and thus the laser beam focus 
spot are about 4 times the diffraction limit (minimum focus size). If we compare the net 
intensity reinforcement to the case of a diffraction-limited spot, the intensity reached with the 
bull’s eye is increased by 100 x (1/4)² = 6.25, which is about the reinforcement reached with a 
single (bare) aperture. Still, more complex nanostructures can further improve practical 
realizations by increasing the emission rate of molecules or modifying the emission radiation 
pattern to improve the detection efficiency. 

The aim of this paper is to study the possibility of field enhancement by using the 
combined effect of simultaneous excitation of cavity resonances inside the aperture and in a 
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surrounding channel groove, situated on the illuminated side of the metal layer, these 
resonances coupled through the surface plasmon wave. This triple interaction results in 30-50 
fold field enhancement in the opening of the central aperture. To this aim, it is sufficient to 
use a single channel of about one wavelength diameter, i.e., enabling strong focusing of the 
incident beam down to the diffraction limit. Therefore, the net excitation intensity 
reinforcement in the central aperture is 30-50 fold as compared to the maximum intensity 
reached in a diffraction limited focused spot. Moreover, a single channel is much simpler to 
fabricate than a large-area quasiperiodic channels.  

For the sake of completeness, we review in Sec. 2 the waveguide mode excitation in a 
single aperture and its effect on the field enhancement. The modes in the coaxial channel are 
described in Sec. 3, and their effect on the field in the central region is described in Sec. 4, 
together with a theoretical and numerical analysis of the role played by the surface plasmon 
that can propagate along the metal-glass surface. 

Numerical analysis is made using the differential method formulated in cylindrical 
coordinates using Fourier-Bessel functions basis [13] and using eigenvalue/eigenvector 
technique due to the piecewise invariance of the geometry along the z-axis. 
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Fig. 1. Schematic representation of a screen with a circular aperture and a circular channel 
around it, made in an aluminum screen with thickness t = 200 nm. The cladding is glass and the 
substrate is water. The channel width is R3 – R2, its depth h, and it is filled with glass. 

 

2. Intensity enhancement – effect of the channel 

The structure under study is presented schematically in Fig. 1. It represents a 200 nm thick 
aluminum screen with a circular aperture filled with water, as is the substrate, as well. The 
cladding is glass, which fills also a surrounding circular channel with depth h. The structure is 
illuminated by a plane wave incoming from the glass side, with wavelength λ = 488 nm and 
linear polarization along the x-axis. We chose that configuration in order to have the 
maximum intensity enhancement in epi-configuration (illumination and detection from the 
glass side), with the metal structure restricting the observation volume to the inner of the 
aperture. This corresponds to the configuration leading to the best results in single molecule 
fluorescence analysis [10], which determines the choice of water as a substrate. The complex 
refractive index of aluminum at 488 nm is equal to 0.628 + i 5.452. 

Throughout this paper, we will consider the averaged intensity IS over the central aperture 
in a plane located at the entrance (z = 0) of the aperture: 
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normalized in a such way that the incident electric field amplitude is equal to unity. For a 
single circular aperture, a sharp maximum is observed [10, 11] when R 75 nm≈ , a value lying 
below the cut-off dimensions for the fundamental waveguide mode supported inside the 
hollow metallic waveguide formed inside the aperture.  
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Fig. 2. Field enhancement averaged in the entrance plane of the aperture as a function of the 
channel depth h for R1 = 75 nm, R2 = 200 nm, R3 = 280 nm.   

 
The introduction of a channel around the aperture can multiply IS by a factor of 6-9, as 

observed in Fig. 2, which presents the influence of the channel depth h on the field intensity 
inside the axial aperture, for R2 = 200 nm and R3 = 280 nm. R1, R2 and R3 values were chosen 
to obtain the maximum effect. The dependence of the enhancement factor on R2 for three 
different values of the channel width R3 – R2 are presented in Fig. 3 and one observes a well-
defined maximum around R2 = 200 nm, a value explained in Sec. 4.1. In order to keep the 
investigated volume small, the depth of the channel has to be kept relatively small compared 
to the screen thickness, otherwise it is possible to enhance the transmission by tunneling 
through the channel bottom. When h = 0 (i.e. no channel), the enhancement is about 6-fold as 
compared to free space, while the channel can enhance it substantially. The large 
enhancement brought by the channel groove can seem strange, taking into account that there 
is no possibility that the excitation of the coaxial cavity resonances could directly influence 
the field in the central aperture by tunneling through the metal walls, 125 nm thick in our case. 
Such coupling can happen only through the surface plasmon wave, propagating along the 
interface metal-glass, as discussed in Sec. 4. The small depth of the channel leading to 
maximum field enhancement can be understood in analogy with the 1-D periodical diffraction 
gratings, where the deeper channels modify substantially the plasmon propagation constant 
and increase its losses [14, 15]. The optimal excitation of surface plasmon waves along 
metallic gratings happens when the groove depth is about 10% of the wavelength [16], a value 
observed also for circular channel in Fig. 2. 

Given the optimal channel depth, the dependence of the enhancement factor on R2 and R3 
is presented in Fig. 3 and Fig. 4. The optimal value of 200 nm for the radius R2 of the inner 
channel wall is discussed in Sec. 4, and is due to the optimal coupling between the incident 
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wave and the plasmon surface wave, at one side, and between the coaxial modes and the 
plasmon, at the other. 
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Fig. 3. Enhancement factor as a function of the radius R2 of the inner channel wall for three 
different channel widths taken for R1 = 75 nm and h = 40 nm. 
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Fig. 4. Enhancement factor IS (on the left) and the real and imaginary parts of the normalized 
mode propagation constants γ inside the coaxial channel (on the right) as a function of R3. R1 = 
75 nm, R2 = 200 nm, ncl = 1.5 and h = 40 nm. 

 

3. Cavity resonances inside the channel 

When the outer radius R3 of the channel increases, one observes several maxima and minima 
in Fig. 4. To understand this behavior, we also present on Fig. 4 the propagation constants of 
the modes inside the channel, defined later in Eq. (2). The determination of the propagation 
constants is rather straightforward for circular waveguide with perfectly conducting walls, 
coaxial or not. Introducing cylindrical coordinates (ρ, ϕ, z) with z-axis lying along the 
aperture axis, the elementary solutions in Fourier-Bessel basis are the solutions with ϕ-
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dependence following that of the incident field, which is represented for normal incidence and 
x-polarization in the last column of Table 1, with the notations defined in Eqs. (2) and (3).  

Table 1. Radial and azimuthal dependence of the electric field for H- and E-mode, and incident wave. The 
coefficients aE and aH are constants. 

 H mode E mode E 
incident 

ϕ-
dependence 

E

 

1 H 1J (k ) a Y (k )

k
ρ ρ

ρ

ρ + ρ
ρ

 

1 E 1J (k ) a Y (k )ρ ρ′ ′ρ + ρ  1 cos ϕ  

E

 
1 H 1J (k ) a Y (k )ρ ρ′ ′ρ + ρ

 

1 E 1J (k ) a Y (k )

k
ρ ρ

ρ

ρ + ρ
ρ

 1 sin− ϕ  

E
 

0 
1 E 1

z

J (k ) a Y (k )

ik
ρ ρρ + ρ

ρ
 0 cos ϕ  

 
Coaxial channel can have electromagnetic cavity resonances, which represent the mode 

guided by the corresponding infinitely long coaxial waveguide. It can support a TEM mode 
that has no cut-off, a property that could enhance the transmission through coaxially 
structured small apertures [17]. However, in normal incidence this mode cannot be excited 
with linearly polarized light, because of the different symmetry of the electromagnetic fields 
of the linearly polarized wave and the TEM mode, the latter having only radial ρ-component 
of the electric field, which is invariant in ϕ. The other modes are of two types [18], H (or TE, 
for transverse electric) modes with zero axial electric field component, and E (or TM, 
transverse magnetic) modes with zero axial magnetic field component. The ρ-dependence of 
these modes (having the same ϕ-dependence of the electric field as the incident field), are 
listed in Table 1, together with the components of the incident electric field. The z-
dependence is given by 

 z 0exp(ik z) exp(ik z)≡ γ     (2) 

with a normalized propagation constant γ in z-direction , and 

  2 2 2 2 2
z 0k k k k nρ + = =     (3) 

Here k is the wavenumber inside the waveguide, k0 is the free-space wavenumber and n is 
the refractive index of the channel filling medium. 

In the case of a single aperture containing the axis, the coefficients aE,H are put equal to 
zero, because the Bessel functions Y1 diverge in origin. The same is valid for the plasmon 
surface wave that can be excited along the surface of the metallic layer, and its field 
dependence is the same as for the E-modes: 

 

1 ,pl 0 ,pl 2 ,pl

1 ,pl
0 ,pl 2 ,pl

,pl

1 ,pl ,pl
z 0 ,pl 2 ,pl

z,pl z,pl

1
E J (k )cos J (k ) J (k ) cos

2
J (k ) 1

E sin J (k ) J (k ) sin
k 2

J (k ) k
E cos J (k ) J (k ) cos

ik 2ik

ρ ρ ρ ρ

ρ
ϕ ρ ρ

ρ

ρ ρ
ρ ρ

⎡ ⎤′= ρ ϕ ≡ ρ − ρ ϕ⎣ ⎦

ρ
⎡ ⎤= − ϕ ≡ − ρ + ρ ϕ⎣ ⎦ρ

ρ
⎡ ⎤= ϕ ≡ ρ + ρ ϕ⎣ ⎦ρ

  (4) 

In the case of highly conducting layer material, the plasmon surface wave has a 
propagation constant in ρ-direction only slightly exceeding the wavenumber in the cladding, 
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,pl 0 clk k nρ >  and its magnetic field vector is almost parallel to the surface (corresponding to 

TM polarization in Cartesian coordinates), thus the field is close to the field of the E-mode 
close to its cut-off.  

The coaxial modes are determined to fulfill the boundary conditions at the vertical walls, 
where Eϕ and Ez have to vanish: 

 
1 2 H 1 2

1 3 H 1 3

J (k R ) a Y (k R ) 0

J (k R ) a Y (k R ) 0

ρ ρ

ρ ρ

′ ′+ =
′ ′+ =

,    H mode   (5) 

 
1 2 E 1 2

1 3 E 1 3

J (k R ) a Y (k R ) 0

J (k R ) a Y (k R ) 0

ρ ρ

ρ ρ

+ =

+ =
,    E mode   (6) 

The cut-off appears when γ = 0, i.e. 0k nkρ = , so that for the central aperture, the first root 

of Eq. (5) is R 108 nm≈ , when λ = 488 nm and n = 1.33. The smallest cut-off radius of the 
E-mode is almost twice that of the H-mode and is of less interest for field localization in small 
volumes. Finitely conducting walls allow for the field penetration inside them and thus the 
cut-off radius is reduced. For the case of aluminum, the cut-off radius of the central aperture 
becomes R1 = 85 nm, and the maximum value of IS is reached slightly below this cut-off, thus 
the choice of R1 = 75 nm. 

In coaxial waveguides, the mode propagation constants of the H and E modes are rather 
different when the inner diameter is smaller compared to the wavelength. The fundamental 
H11 mode has a large cut-off wavelength, given approximately by the relation [19] 

c 2 3(R R )nλ ≈ π + , and thus the cut-off radius is quite small, in the case of λ = 488 nm and    
n = 1.5. For R2 = 200 nm, the exact [numerically determined from Eq. (5)] cut-off value of R3 
is equal to 55 nm, smaller than R1. Thus, this mode is always propagating in our conditions. 

Higher modes behave in a completely different manner. For mode H1m and a perfectly 
conducting metal, the cut-off wavelength λc is determined by the width of the channel, 

c 3 22n(R R ) /(m 1)λ ≈ − − . In addition, the difference between the E and the H modes 
diminishes with the growth of the inner diameter, and becomes almost negligible, 
when 2R /n≈ λ , as can be observed in Table 2 for n = 1.5. As can be observed, already at R2= 

200 nm, we are quite close to the limit value of the cut-off width, equal to λ/2n, and shown in 
the last column of Table 2.  

Table 2. The cut-off width R3 – R2 (in nm) for the modes H12 and E11 of a coaxial waveguide with infinitely 
conducting walls at λ = 488 nm and n = 1.5, given for different values of R2. 

R2 50 100 200 ∞ 

H mode 175 168 164 162.7 

E mode 207 180 167 162.7 

 
The cut-off position in the case of finite conductivity is not well-defined as for perfect 

conductivity, because there is a gradual transfer from evanescent (small radii) to propagating 
(larger radii) character, as can be clearly observed in Fig. 4, where the dependence of the real 
and imaginary parts of γ of the cavity resonances inside the coaxial channel are plotted as a 
function of R3. 

In the case of aluminum, the first mode cut-off can be approximately defined at R3 – R2 = 
135 nm (compared with 164 nm for perfect conductivity) using the data in Fig. 4, the value of 
R3 taken where the imaginary part of the γ almost vanish. However, one observes the position 
of maximum field enhancement at lower radii. In addition, the excitation of the second cavity 
resonance is accompanied by a minimum of IS, contrary to the excitation of the first and the 

#90072 - $15.00 USD Received 26 Nov 2007; revised 15 Jan 2008; accepted 15 Jan 2008; published 1 Feb 2008

(C) 2008 OSA 4 February 2008 / Vol. 16,  No. 3 / OPTICS EXPRESS  2282



third modes (Fig. 4). There are several factors that complicate the simple link between the 
cavity resonances in the channel and the field enhancement inside the central aperture. 

First, as already discussed, the surface plasmon that propagates along the aluminum/ 
cladding interface is the only channel of coupling between the cavity modes in the central 
aperture and in the circular channel. However, the interaction between the plasmon surface 
wave and the cavity modes will modify both of them [14]. Thus the exact role of the cavity 
resonances has to be determined by taking into account the finite depth of the channel, which 
is made numerically in the calculations of IS, but cannot be evaluated analytically. 

Second, the maximum field enhancement can be expected not at the mode cut-off radius, 
but below it, at radii corresponding to the minimum of the real part of γ, where the group 
velocity of the cavity resonance in z-direction is null, because this will correspond to 
accumulation of energy at the channel opening. This can explain why local maxima of IS can 
be observed below the cavity mode cuts [Fig. (4)]. However, due to the small channel depth, 
neither the cuts nor their role in the field enhancement in the central aperture can be 
determined without taking into account the next point. 

Third, the interaction between the plasmon surface wave and the cavity modes is 
determined by the coupling integral of their fields, which depends strongly on R2 and R3, as 
discussed in the next section. 

Fourth, the plasmon surface wave exhibits its own resonances due to the scattering on the 
channel walls, which will have their influence on the field in the central region. 

The last two factors are discussed in detail in the next section. 

4. Role of plasmon surface wave 

4.1. The choice of the channel inner wall 

In the approximation of infinitely conducting walls, the cavity modes have vanishing ϕ- and 
z-electric field components at R2 and R3, thus the coupling between the surface plasmon and 

the coaxial cavity modes will be maximal when the plasmon field plE
�

 will satisfy the same 

conditions. From Table 1 it is evident that the condition is equivalent to a zero of the azimutal 
and axial components. Figure 5 presents the dependence of 

  0 ,pl 2 2 ,pl 2abs[J (k R )+J (k R )]ρ ρ    (7) 

on R2 (red curve), compared with the same dependence of the enhancement factor IS, when  
R3 – R2 = 100 nm with ,pl 0k = k  (1.5578 + i 0.01425)ρ . As it can be observed, the zero of Eq. 

(7) is located around 185 nm, a value smaller than 200 nm corresponding to the maximum of 
IS. This difference can be easily understood taking into account that for finitely conducting 
walls, the electric field penetrates inside them at 10-15 nm, so that the zeros of Eq. (7) must 
appear at values smaller than R2. 

Another factor that plays an important role for the field excitation is the direct coupling 
between the incident wave and the plasmon surface wave due to the scattering on the channel 
walls. The coupling integral when ρ = R2 is given as: 

 
2

pl inc 2 0 ,pl 2
0

1
d E .E R J (k R )

2

π

ρρ ϕ =
π ∫

� �

  (8) 

where the overbar means complex conjugate. Its maxima appear at the zeros 
of 1 ,pl 2J (k R )ρ , i.e., the zeros of Eq. (7). 

If we increase the index of the cladding, this will lead to an increase of  ,plkρ  by almost 

the same factor, and thus the optimal value of R2 will decrease. And indeed, for ncl = 2 the 
optimal value of R2 is 160 nm, and the corresponding enhancement of IS is given in Fig. 6 as a 
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function of R3, together with the dependence of Eq. (7) with ,pl 0k = k  (2.1423 + i 0.037)ρ . As 

in Fig. 5, the maximum of IS appears close to the zero of Eq. (7). 
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Fig. 5. Comparison of the position in R2 of the maximum of the enhancement factor IS with the 
minimum of the surface plasmon electric field components tangential to the channel wall  
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Fig. 6. Same as in Fig. 5 but for a higher cladding index ncl = 2 

4.2. The role of the channel external wall   

Like the internal channel wall, the external one also serves as a perturbation that couples the 
incident wave into the plasmon surface wave, but the sign of this perturbation is opposite to 
the perturbation at R2 [12], so that the cumulative effect of the two walls is given by applying 
twice Eq. (8): 
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This result as a function of R3 when R2 = 200 nm is presented in Fig. 7 together with the 
numerical values of the amplitude of the surface plasmon electric field, both curves presenting 
qualitatively similar behavior.  

200 300 400 500 600 700
-1

0

1

2

3

4

5

6

|E
pl
|

R
3

0

10

20

30

40

50

60

eq.(9)

 
Fig. 7. Absolute value of the electric field amplitude of the plasmon surface wave (in blue) as a 
function of R3 when R2 = 200 nm and ncl = 1.5, compared with the coupling between the 
incident light and the plasmon, as given in Eq. (9) 

 
More detailed analysis requires taking into account the cavity modes and their coupling 

with the surface plasmon. The difficulty is that the model of a coaxial channel with perfectly 
conducting walls is not valid for quantitative analysis. On the other hand, taking into account 
the influence of the finite conductivity on the mode propagation constant and field 
distribution, together with its coupling with the surface plasmon, requires for detailed 
electromagnetic analysis, which is made using the numerical code based on a rigorous 
electromagnetic method.  

A qualitative understanding of the link between the field enhancement in the central 
aperture and the cut-off radius of the channel groove can be found using the following 
argument. As it is well-known, the real part of the propagation constant ,plkρ  of the plasmon 

surface wave along the finitely but highly conducting surface is slightly higher than the free 
wavenumber 0 clk n  in the cladding, as observed from the numerical values given in the 
previous subsection. This leads to small but almost purely imaginary values of the 
wavenumber z,plk  along the z-axis (i.e., the surface plasmon field is evanescent in the 

cladding). Such values of zk  correspond to cavity modes that are just slightly below their cut-
off. Thus, the surface plasmon will couple more efficiently with the cavity modes that lie 
close below their cut-off. 

This explains the maxima of the enhancement factor IS observed in Fig. 4 for values of R3 
lying just below the mode cut-off positions (R3 = 325, 475, and 630 nm). The minimum 
around R3 = 500 nm is already explained in connection with Fig. 7 and is due to the 
interaction between the incident wave and the surface plasmon. The first maximum in Fig. 4 
at R3 = 250 nm is probably due to the excitation of the mode H11, but we were not able to find 
a simple direct link.  
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Fig. 8. Response (as in Figs. 4 and 7) as a function of R3 of the structure with cladding index 
ncl= 2 and R2 = 160 nm. (a) IS and γ, (b) incident wave – surface plasmon coupling integral 
according to Eq. (9). 

 
Similar conclusions can be drawn for another configuration, where the cladding index is 

increased to ncl = 2, which changes the plasmon propagation constant to ,plk =ρ  

0k  (2.1423 + i 0.037).  As already shown at the end of Sec. 4.1 (Fig. 6), this change will 
decrease the optimal value of R2 to approximately 160 nm. The dependence of the 
enhancement factor on the channel width is presented in Fig. 8, compared with the values of 
the cavity modes propagation constants [Fig. 8(a)], given in the vicinity of their cut-off radii. 
One observes that the enhancement factor has maxima lying below the mode cut-off radius. 
The minimum around 325 nm can be explained by the coupling strength between the incident 
wave and the surface plasmon, as given by Eq. (9) and presented in Fig. 8(b). 

5. Conclusion 

The simultaneous excitation of cavity modes in the central aperture and in the surrounding 
coaxial channel can lead to almost 50-fold increase in the electric field intensity in the central 
aperture, compared to the intensity of the incident field. The coupling between the two 

(
b) 

(
a) 
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cavities is made through the surface plasmon wave that propagates along the metal-cladding 
interface. The optimal conditions for maximum field enhancement require that the cavity 
mode inside the central aperture is below its cut-off. The coupling between the two cavities is 
made through the surface plasmon propagating along the upper metal-dielectric interface; as 
can be expected from general physics considerations, this coupling is the strongest when the 
field of the channel cavity mode matches the field of the plasmon surface wave, i.e, when the 
channel modes are below their cut-off. In addition, it is necessary to ensure maximum 
excitation of the surface plasmon by the incident wave. The results are useful in optimizing 
optogeometrical parameters of circular apertures in metallic screens leading to strong field 
enhancement. 
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