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Abstract:  The propagation of a plasmon surface wave in deep metallic 
lamellar gratings is shown to be characterized by absorption losses smaller 
than on a flat metallic-dielectric interface. This feature is due to the 
formation of a resonance of the electric field inside the groove. Similar to 
the plasmon surface wave in shallow gratings, this kind of plasmon can lead 
to total absorption of incident light and to a significant enhancement of the 
local field density in the vicinity of the grating surface, contrary to the other 
type of grating anomaly linked with a cavity resonance. 
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1. Introduction 

Plasmon surface waves that are supported by a metal-dielectric interface are known to play a 
major role in many domains of optics, spectroscopy, chemistry, and biophysics. If the history 
has started with Wood’s discovery of grating anomalies [1] finding its links with the plasmon 
surface waves in the works of Fano [2] and Hessel and Oliner [3], their importance in periodic 
structures has not been rerouted by the interest devoted to SERS [4] in the 1980s’. On the 
contrary, during the entire 20th century surface waves anomalies have attracted attention of 
grating manufacturers and theoreticians in order to avoid or to use them in different 
applications. The interest was revived dramatically in 1998 by work of Ebbesen [5], followed 
by tens of thousands of published works devoted to enhanced transmission through 
periodically pierced metallic layers. Surface plasmon excitation allows for increasing of 
electromagnetic field density even in single apertures, which starts to serve for single-
molecule detection [6] in chemistry and biology. All this has recently led to creating a domain 
of optics called ‘plasmonics,’ which resembles quite strangely the boom of Integrated optics 
more than 30 years ago. However, despite the similarities between these two domains of 
modern optics, there is a quite important difference between them, due to the fact that contrary 
to the integrated optics, the plasmonic deals with metals that have much more important 
absorption losses than the dielectric waveguides. The only domain where these losses become 
negligible is the microwave region, but unfortunately surface plasmons are nor supported 
there. However, it has been recently shown that surface plasmon-like wave can propagate on 
the surface of infinitely conducting gratings [7-8]. Homogenization of the structured layer 
shows that suitably corrugated metal present surface wave with a relation dispersion similar to 
those of surface plasmon. 

The aim of this work is to analyze the behavior of another type of surface plasmons, which 
exist on deep-groove gratings and are characterized by smaller absorption losses. The physical 
reason for these lower losses is the appearance of a standing wave inside the grooves formed 
by the fundamental TEM waveguide mode. This phenomenon has already been studied 
theoretically in sinusoidal gratings [9] but progress in nanotechnologies triggered a new 
interest in short period gratings. The problem of plasmon surface waves (PSW) in lamellar 
metallic gratings and hole arrays has been the subject of extensive theoretical, numerical, and 
experimental studies during the last decade. In particular, there has been demonstrated 
theoretically and experimentally that deep corrugations can support new kind of plasmon 
modes created by the coupling between the plasmon surface wave and the groove cavity 
resonances [10-11]. It has also been shown that surface plasmons in deep and narrow 
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Gaussian grooves exhibit very flat dispersion curves [12]. Totally different situation is 
observed when considering deep and narrow Gaussian ridges [13].  

However, there is still a discussion about the physical nature of PSW and the role played 
by the groove resonances. Some authors have proposed the existence of another mechanism 
distinct from the PSW denoted as a composite diffracted evanescent wave [14]. Our 
comparative study of the PSW in shallow and deep grooves enable to clarify their common 
nature including the energy flow distribution and local field enhancement. Contrary to several 
previous studies [10-11], the energy flow distribution above the groove top presents a non-
localized (propagating) character, for deep grooves as well as for shallow gratings. The other 
new feature is the possibility to obtain smaller decay constant of the surface wave in deep 
gratings, a fact that could be used in plasmonic devices. 

The study is made using the differential method for modeling light diffraction by periodic 
structures [15]. The analysis of the field maps and the Poynting vector direction shows the 
great similarity between the first (for shallow grooves) and the second (for deep grooves) kind 
of plasmon surface waves and the differences between them and the cavity resonances. 

2. Light absorption by lamellar metallic gratings and plasmon surface wave excitation 

As already discussed, the influence of plasmon excitation on the efficiency of metallic 
gratings has been at first observed experimentally by Wood [1], the effect has attracted the 
attention of Lord Rayleigh [16], leaving the name of Rayleigh anomalies to the cut-off effects 
due to the disappearance of a given diffracted order when the angle of incidence or/and the 
wavelength are varied. In particular, shallow gratings were demonstrated to totally absorb the 
incident light under special conditions [17], an analogue of the famous Brewster effect for 
plane dielectric interfaces. 

A plane aluminum-air interface can support plasmon surface wave and in the red 
(wavelength λ = 0.6328 µm, aluminum refractive index equal to nAL = 1.378 + i 7.616) its 
effective index is equal to αp = kx/k0 = 1.0079 + i 0.003, where kp is the surface wave 
propagation constant and k0=2π/λ is the free-space wavenumber. In what follows, all 
dimensions will be expressed in microns and the dispersion of aluminum is not taken into 
account, in order to simplify the understanding, because otherwise the spectral behavior will 
be complicated by the refractive index dispersion. 

As is well-known, a periodic corrugation can lead to a coupling between the incident plane 
wave and the surface wave, provided a necessary phase condition coming from the grating 
equation is satisfied: 

 p m
d

λα = α +  (1) 

 
 
 
 
 
 
 
 
 
 
        (a)      (b) 

Fig. 1. Schematic representation of lamellar grating with notations. One-dimensional (a) and 2-
dimensional (b) geometry.  

 
where isinα = θ  is linked to the angle of incidence, m is integer, and d is the corrugation 
period [see Fig. 1(a)]. On the other hand, this coupling is reciprocal, i.e., the surface wave can 
be radiated into the cladding in the directions given by Eq. (1). This outcoupling leads to 
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radiation losses which are expressed as an increase of the imaginary part of the mode 
propagation constant. In addition, as the surface corrugation deepens, the absorption in the 
substrate increase, in general, thus contributing to the increase of the plasmon decay constant. 

The competition between the transfer of energy to the surface wave and its radiation in the 
propagating orders (and, more important, change in the phase difference between these two 
processes when the corrugation depth increases) leads to the existence of an optimal groove 
depth for maximal absorption. It is generally at almost the same conditions when the intensity 
of the surface wave is maximal and so is the local field density in the close vicinity of the 
corrugated interface. As already mentioned, this effect has found numerous application in 
SERS, nonlinear optical effects [18], solar absorption cells based on grating structures [19-
20], etc. 

It is possible to obtain an almost total absorption (and thus maximum local field 
enhancement) only when the structure supports small number of diffraction orders, otherwise 
the competition between them spoils the absorption. In particular, the best configuration 
requires that only the specular order propagates, although in some case (as demonstrated later) 
it is possible to achieve almost total absorption of the incident light with two propagating 
orders. As it is well-known, for aluminum in the red, the optimal plasmon excitation appears 
at about 10% modulation depth h (compared to the groove period d). This can be observed in 
Fig. 2, which presents the total diffracted efficiency (the sum of the zeroth and the –1st order, 
when existing) as a function of the lamella width c and groove depth h.  
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Fig. 2. Total reflected energy as a function of the sinus α of the incident angle and the lamella 
width c (in µm) for several groove depth values h (labelled in nm). Period d = 0.5 µm, 
wavelength λ = 0.6328 µm. 

 
For h = 0.05 and independently of the lamella width c, one can observe a sharp drop in the 

total reflectivity very close to the –1st order angle of appearance (cut-off), corresponding to α 
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due to the plasmon surface wave excitation is reduced, as already discussed and as observed 
in the rest of Fig. 2 in the region lying close to the line α = 0.2656 (region labeled with A). In 
order to study the behavior of the mode, we have calculated the normalized propagation 
constant αp of the plasmon surface mode, which represents a complex pole of the determinant 

of the scattering matrix S, -1
pdet[S ( )]=0α , and the results are given in Fig. 3. The decrease of 

absorption can be understood taking into account the fact that the increase of the groove depth 
leads to an increase of the imaginary part of the mode propagation constant (radiation and 
absorption losses included), as observed in Fig. 3(a), an increase which depends on the groove 
filling factor. In particular, for c = 0.18 the increase is less pronounced, which leads to a larger 
in h extension of the anomaly (see the region labeled as B in Fig. 2). In addition to the 
increase of the imaginary part, one finds an augmentation of the real part as well [Fig. 3(b)], 
which moves the position of the anomaly from the –1st order cut-off toward the normal 
incidence, as confirmed in Fig. 2 for h = 0.15 and 0.20, but with a diminishing absorption. 
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Fig. 3. Variation of the imaginary (a) and the real (b) part of the mode effective index as a 
function of the groove depth for two filling factors (i.e. lamella width c). 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

Fig. 4. The same as in Fig. 2 
but for h = 0.35 µm.  

 

Fig. 5. The mode effective index 
(normalized propagation constant) as 
a function of the groove depth for the 
secondary plasmon mode, existing 
for deeper grooves 
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approaching 0.5 (narrow grooves). The second feature (labeled C) found close to c = 0.18 for 
α > 0.4 is due to cavity resonances, appearing when a multiple entities (approximately, for 
non-perfectly conducting materials) of half-wavelengths can fit inside the groove depth and 
width. They can lead to high absorption values, but their role in the increase of local field 
density is quite limited, leading to an increase of 2-4 times [21] when compared to the tens-
fold increase due to the surface wave excitation. The angular tolerances of excitation of these 
cavity resonances are quite large, as observed in particular in Fig. 2 for h = 20, 25, and 30 nm, 
where the position of the anomaly (label C) is practically independent of the angle of 
incidence (anyway, staying in the limits where both the zeroth and –1st diffraction orders 
propagate, i.e. α > 0.2656). 

Our main target is the small feature (label D) that appears for h 0.15≥  in the region 
c 0.4≥  close to the –1st order cut-off and which extends to just below c = 0.3 for h = 0.3. 
This feature is also visible in the region (labeled as E) close to 1α ≈  (in fact, due to the 
symmetry, close to 1α ≈ ± ), which corresponds to an interaction between 0.2656α ≈  and 

1α ≈ −  through the order with m = 1 in Eq. (1), and we shall return to this fact later. Fig. 4 for 
h = 0.35 µm shows the extension of this anomaly to a quite large interval of filling factors, 
pointing out to the generality of the phenomenon. Its importance can be better understood 
when comparing the imaginary parts of the normalized propagation constants, Fig. 3(a) for the 
first kind of plasmon surface wave (supported by shallow corrugations), and Fig. 5 for the 
second kind plasmon (supported by deep grooves). As can be observed in Fig. 5, the second 
kind plasmon surface wave (PSW) is characterized by a decay constant weaker than that for a 
flat interface. This second kind of PSW appears for h = 0.305 µm and, as can be observed in 
Fig. 5, its decaying constant has an imaginary part of 0.0016, almost twice weaker than that 
for a flat interface, i.e. the propagation length is twice larger. This leads to a narrower angular 
width of anomaly in reflection due to the excitation of the second kind of PSW, Fig. 6. 

 
 
 
 
 
 

       
 
 

 
 
 
 
 

Fig. 6. Reflection by the lamellar 
grating as a function of the angle of 
incidence (in a) when either the first ( h 
small and equal to 0.013 µm) or the 
second (h = 0.306 µm) type plasmon 
surface wave is excited . Lamella width 
c = 0.3 µm. 

Fig. 7. Dispersion curves (cyan lines 
with the triangle symbols to the right) 
together with the total reflected 
intensity (to the left) corresponding to 
the plasmon surface wave excitation 
for shallow grooves, c = 0.3 µm, h = 
0.036 µm. 
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following considerations. First whether the phenomenon really corresponds to a surface wave, 
a localized wave [11], or to a cavity resonance. Second, whether it leads to an important 
enhancement of the field density. In order to answer these questions, it is necessary to look in 
the near-field map and energy flow distribution, together with the analysis of the dispersion 
curves. 
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3. Mode dispersion curves (ω-k) and near-field maps 

The dispersion (ω-k), curves of a PSW for shallow corrugations is quite similar to the 
dispersion curve without corrugation, shown in Fig. 7. Neglecting the spectral dispersion of 
the aluminum refractive index, the dispersion curve is a line parallel to the straight ω/c. Due to 
the coupling at the boundaries of the Brillouin zone, the straight line is deformed when the 
interaction between the PSW propagating in opposite directions becomes stronger. In Fig. 8 
we can observe that the so-assumed as-up-to-now second kind PSW has a propagation 
constant (shown in cyan) which follows quite well a line adjacent to the light cone ω/c, but 
staying outside it (in white region in Fig. 8), a behavior similar to the usual PSW at shallow 
grooves in Fig. 7. Increasing ω/c increases the interaction between the counter-propagating 
waves and so the deviation from the light cone, flattening the k-dependence and bringing it 
closer to the behavior of the cavity resonance (the last partition of Fig. 8 with c = 0.18 µm and 
h = 0.3 µm). 
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Fig. 8. The same as in Fig. 7, but with deep grooves for several values of the groove depth and 
width. The last partition corresponds to a cavity resonance. 
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Fig. 9. Poynting vector map close to the grating surface, corresponding to the first kind PSW, 
existing for shallow grooves with parameters corresponding to a total absorption of incident 
light (c = 0.3 µm, h = 0.036 µm, α = 0.24591). Poynting vector modulus represented by the 
color pallet and its direction by the black lines. 

 
 

 

 
 
 
 

 

 

 

 

 

 

 

Fig. 10. Same as in Fig. 9 but for the second kind of PSW existing for deep grooves with c = 
0.3 µm, h = 0.34 µm , α = 0.24705, corresponding to the total absorption of incident light. 

 
The similarity between the dispersion curves of the PSW for shallow and deep grooves 

can be further stressed when looking at the map of Poynting vector near the grating surface 
(Fig. 9 for shallow grooves and Fig. 10 for deep grooves). The values of the Poynting vector 
are normalized so that its modulus for the incident wave is equal to unity. The groove 
parameters are chosen in such a way that the incident light is fully absorbed due to the 
resonances. Several wavelengths far from the grating surface, the Poynting vector corresponds 
to the incident plane wave (no energy in the reflected wave). When approaching the grating 
surface, the Poynting vector turns almost parallel to the surface, corresponding to a surface 
wave traveling in –x direction, both for shallow and deep grooves, pointing to the common 
nature of the two kinds of resonances. 

Moreover, in the two cases there is a significant increase in the energy density close to the 
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excitation, contrary to the cavity resonances [9], although it is possible to obtain an almost 
total absorption of incident light when cavity resonances are excited. For example, for groove 
dimensions c = 0.195 µm and h = 0.306 µm, the total reflected energy becomes less that 7% at 
incidence α = 0.92389 (order 0 carries about 2.5% and order –1 the rest). However, despite 
the high absorption, the behavior of the near-field is completely different, as observed in Fig. 
11. Neither the Poynting vector represents a surface wave close to the surface, nor there is a 
significant increase in the local energy density. The weak fluctuations of the direction and 
modulus of the Poynting vector observed in the near and far-field regions are due to the 
interference between the incident and the reflected waves. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11. Same as in Fig. 9 but for the cavity resonance with groove parameters corresponding to 
high absorption of incident light, c = 0.195 µm, h = 0.306 µm, and α = 0.92389. 

 
In order to explain the differences between the first and the second kind of PSW it is 

necessary to look inside the groove by calculating the electric field and the Poynting vector 
defined as the half of the real part of the vector product ofthe electric field and the complex 
conjugate magnetic field: Re( ) / 2= ×P E H . For shallow gratings, the electric field 
distribution and the Poynting vector behavior inside the shallow groove are almost the same 
on the top of the lamella as at the groove bottom, as observed in Fig. 12(a) and in Fig. 13(a), 
leading to approximately the same absorption through the lamellae top and the grooves 
bottoms. On the contrary, the deep groove modifies significantly the field behavior. The 
appearance of the second kind of PSW requires a resonance of the electric field inside the 
grooves, as already shown in Ref. [10]. As observed in Fig. 12(b), the Poynting vector on the 
lamella top and groove opening forms a continuous flow, quite similar to the picture in 
shallow gratings. Due to the high conductivity of aluminum in the visible, the tangential 
component of the electric field almost vanishes on the metallic surface. As a consequence, the 
x-component of the electric field has a minimum at the groove bottom, as well as at the 
lamella top [see Fig. 13(b)]. Its value on the groove opening (y = h) depends on the groove 
depth and the wavelength. When the groove depth is close to a half-wavelength value, inside 
the groove there appears a standing wave of the fundamental (TEM) mode that can be 
supported by the hollow metallic waveguide formed between the groove sidewalls. In that 
case, there is a minimum of xE  at the groove opening, and thus the boundary conditions 

over the entire plane y = h over the grooves and lamellae are almost identical to the conditions 
on a flat metallic surface. As far as the latter can support PSW, the similarity in the boundary 
conditions at y = h for deep grooves leads to appearance of the second kind of PSW. As 
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observed in Fig. 5, this PSW can have losses smaller than the plasmon on a flat surface, if the 
real part of its propagating constant is close to k0. The explanation can be found in the fact 
that when 1α ≈ , the PSW extends a lot inside the covering dielectric and its energy is less 
localized in the metal. 

The field map peculiarities of this second kind PSW as given in Fig. 13(b) can explain the 
behavior of the dispersion curves in Fig. 8. In particular, one observes that at a given value of 
groove parameters (width and depth), there exist a cut-off frequency for the second kind of 
PSW, below which the effective refractive index crosses the light cone and the wave is 
radiated into the cladding. This can be explained by the fact that for lower frequencies (i.e., 
longer wavelengths), the grooves must be deeper in order that a half-wavelength resonance of 

xE  fits inside it (otherwise the absorption is so strong that the plasmon surface wave cannot 
propagate). This is the reason why the cut-off frequency is reduced when the groove depth is 
increased in Fig. 8, deeper grooves can better support longer wavelength. One can observe 
also at y=-0.2 μm a semi-curl of the energy flow inside the groove, similar to the complete 
curl observed already in Ref. [22]. The difference lies in the groove width which is in our case 
too small to allow an entire swirl of the energy flow. 
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Fig. 12. Poynting vector maps inside the shallow (a) and deep (b) grooves corresponding to the 
first and the second kind of PSW. 

 
As can be expected, when the groove depth is doubled, the standing wave of the TEM 

mode inside the groove leads to another resonance, similar to the case presented in Fig. 13(b). 
A third branch of PSW appears at groove depth values, for which the x-component of the 
electric field almost vanishes at the groove opening, as shown in Fig. 14(a). This new branch 
can also be accompanied by a total absorption of the incident light, Fig. 14(b).  

-0.2 -0.1 0.0 0.1 0.2

-0.3

-0.2

-0.1

0.0

0.1

 

 

0.050
0.071
0.10
0.14
0.20
0.29
0.41
0.58
0.82
1.2
1.7
2.4
3.3
4.7
6.7
9.6
14
19
27
39
55

(a) 

#78439 - $15.00 USD Received 22 December 2006; revised 17 January 2007; accepted 17 January 2007

(C) 2007 OSA 2 April 2007 / Vol. 15,  No. 7 / OPTICS EXPRESS  4233



0.08

0.04

0

-0.036

 

0.08

0.04

 

-0.036

0

|Ex|
2

 

 
0.010
0.016
0.026
0.044
0.072
0.119
0.195
0.320
0.525
0.862
1.41
2.32
3.81
6.25
10.2
16.8
27.6
45.3
74.3
122
200

 

0.050-0.05-0.10-0.15

0.05-0.15 -0.10 -0.05 0

|Ey|
2

 

 

   

 

-0.3

-0.2

-0.1

  0  

-0.15 -0.10 -0.05  0.05  0  

|Ex|
2

 

 

-0.3

-0.2

-0.1

  0  

 

|Ey|
2

 

 

0.0100

0.0241

0.0581

0.140

0.338

0.815

1.96

4.74

11.4

27.5

66.4

160

 
Fig. 13. x- and y-components of the electric field normalized with respect to the incident wave 
amplitude for shallow (a) and deep (b) grooves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

      (a)                                 (b) 

Fig. 14. The map of the x-component of the electric field inside the groove of a deep lamellar 
grating (a) with h = 0.644 µm, accompanied by a total absorption of the incident light, as 
observed in the angular dependence (b). 

 
A natural question that arises from the comparison between shallow and deep gratings, is 

whether the PSW in deep gratings behaves like a surface wave when its dispersion curve 
moves away from the light cone with the decrease of the wavelength values, observed in Fig. 
8. This question becomes even more important, because in this region the dispersion curve of 
the PSW starts to behave like a cavity resonance, as observed in the last partition of Fig. 8. 
Fig. 15 presents the Poynting vector map above the grooves of a grating with h = 0.40 µm, c = 
0.30 µm (presented in the middle of the lower line in Fig. 8) and with a working point 

corresponding to the flat region of the dispersion curve with 1
xk / 2 1.74 µm−π =  and 1/ λ = 

1.5. As can be observed, contrary to Fig. 11, close to the grating surface the vector turns in 
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direction corresponding to a surface wave excitation through order –1, and there is an increase 
in its density, although smaller than in Figs. 9 and 10. 
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Fig. 15. Poynting vector modulus (color pallet) and its vector lines for a grating with h = 0.4, c 
= 0.3 µm, 0.675λ =  µm and α = 0.258. 

 
Another interesting feature observed in Fig. 8 is the existence of a second region of high 

absorption situated in grazing incidence just in the vicinity of the light cone. Its appearance is 
even more surprising when one takes in fact that at these angles of incidence the grating can 
support two propagating diffraction orders, so that high absorption requires that their 
efficiencies are simultaneously suppressed. And indeed, this is the case as shown in Fig. 16. 
The groove parameters for this value of the wavelength correspond to the region just below 
the cut-off, as in the figure the groove depth h = 0.294 µm, while the plasmon propagation 
constant starts to be greater than k0 for h > 0.304 µm). It is well-known than when the 
trajectory of the mode propagation constant crosses the cut-off, the pole corresponding to the 
modal resonance is transformed into a zero of the zeroth diffracted order [23], responsible for 
the minimum of the diffraction efficiency in this order, observed in Fig. 15. On the other 
hand, the curl of the Poynting vector which fills almost entirely inside the groove separates 
the groove bottom from the incident wave and decreases the diffraction in order –1, thus its 
efficiency remains low in a large interval of angles of incidence. 
 

 

 

 

 

 

 

Fig. 16. Diffraction efficiency in order 0 and –1 in grazing incidence. Wavelength 0.6328 µm, 
groove width c = 0.3 µm, and groove depth h = 0.294 µm. 
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4. Two-dimensional (crossed) gratings 

When considering the extension of the preceding results to biperiodic grating, two 
straightforward possibilities can be envisaged. The first one is to consider a grating consisting 
in a biperiodic layout of metallic blocks that can also bee seen as crossed slits [Fig. 1(b)]. 
There are few and obvious differences between this configuration and the one-dimensional 
grating we have studied above. We have numerically checked that for similar parameters the 
same effects can be observed. Further details on such structures can be found in a recent 
article by A.-L. Baudrion et. al (see for example Fig. 10 of Ref. [24]). 
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Fig. 17. Total reflected energy by a periodic array (d = 0.5 µm) of square finite-depth holes in 
an aluminum substrate with side-wall length c = 0.1 µm. Wavelength of 0.6328 µm, incident 
magnetic field vector parallel to the metallic surface, and the plane of incidence parallel to the 
hole walls. 

 
The second possible geometry consists in a bi-periodic array of holes. In this case one 

notable difference is the existence of a cut-off for the propagating modes inside the holes [7-8, 
25], when considering them as metallic waveguides. For square holes (or any simply-
connected cross section), the fundamental TEM modes has a cut-of frequency, which does not 
exist for slits. And indeed, as in the case of the so-called extraordinary transmission, one can 
expect that the slits and hole will have very different behaviour. In order to emphasize this 
difference we show in Fig. 17 the total reflected energy for three values of the square hole's 
edges c. As previously, we consider gratings made of aluminium with a period of d = 0.5 µm 
and a wavelength λ = 0.6328 µm. The incident plane wave is assumed to be polarized so that 
the electric field vector lies in the incident wave-vector plane (i.e. the magnetic field is 
parallel to the grating plane). For a small value of c (c = 0.1 µm), Fig. 17 shows that the hole 
depth h doesn't have a significant influence on the reflectivity of the structure, the total 
reflected energy curves are hardly distinguishable for h = 0.05 µm to 0.3 µm. For c = 0.3 µm 
and c = 0.4 µm, the behaviour is different and one can easily see that the depth of the hole 
strongly influences the reflection. This can be easily understood by taking into account the 
fact that for c = 0.1 µm, contrarily to the two other cases, no propagating modes exist in the 
holes. Thus, due to the exponential decay of the non-propagating modes, the electromagnetic 
field barely reaches the bottom of the holes and it is not surprising that the depth of the holes 
is of little importance. A comparison between c = 0.3 and 0.4 µm in Figs. 18-19 shows first 
that almost total absorption can be obtained for c = 0.3 µm with a relatively low sensitivity to 
the depth of the hole, while for c = 0.4 µm, the behaviour seems to be much more sensitive to 
h. Here again the understanding comes from the behaviour of the modes in the holes, as λ = 
0.6328 µm is close to the cut-off wavelength for c = 0.3 µm thus in that case the absorption 
(as well as nonlinear effects [26]) can be enhanced significantly [27]. For c = 0.4 µm, the 
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oscillation of the amplitude of the absorption peaks can be understood as the consequence of 
the Fabry-Perot modes in the holes. 
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Fig. 18. Same as in Fig. 17, but for larger holes with side wall length c = 0.3 µm. 
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Fig. 19. Same as in Figs. 17 and 18, but for c = 0.4 µm. 
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