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1. Introduction 

Grating anomalies attract attention since the famous observation by R. Wood that grating 
efficiency can vary several orders of magnitude within a very short spectral interval [1]. While 
very boring for grating manufacturers, these anomalies, due to excitation of eigenmodes in the 
grating structure, have found practical application in detection and filtering [2-5]. The 
resonances can be due to surface waves (surface plasmons) along dielectric-metallic interfaces 
[6], guided modes of dielectric waveguides [5], cavity [7] or Fabry-Perot resonances [8]. 

The resonant anomalies can be characterized by sharp maxima or minima whose width 
depends on the resonance finesse and losses. For lossless dielectric waveguides with shallow 
corrugation, the width of the peak can be reduced to less than several angstroms. However, 
excitation of guided modes, which leads to very narrow spectral lines, is characterized by 
strong sensitivity with respect to the angle of incidence and thus requiring very tight 
tolerances with respect to the collimation of the light beams [9]. Several approaches are 
proposed to decrease the angular constraints of such devices, keeping the spectral lines as 
narrow as possible. The first approach is to flatten the mode dispersion curve by using the 
Bragg interaction between counter-propagating modes [10]. A second approach is to juxtapose 
the flatten dispersion curves of two modes, which is possible with deep gratings [11]. The 
third approach is based on the use of cavity resonances, which are generally characterized by 
strong spectral variation and much weaker angular dependence. This difference can be 
understood by taking into account that resonances localized in the direct space have larger 
support in the inverse space. The problem is that the creation of cavity resonances with large 
finesse requires use of metallic walls, because the only-dielectric grating provides strong 
coupling between the consecutive periods and thus reducing the finesse. Unfortunately, in the 
visible, metals have losses, strongly enhanced when resonances are excited, which 
significantly reduces the application performances. On the other hand, since Lord Rayleigh 
[12], it is known that even purely dielectric systems can support well-localized modes, called 
whispering (gallery) modes, because they were discovered in acoustics. These modes can exist 
in optical fibers and in dielectric spheres, provided the optical dimensions are large enough. 
They are characterized by strong field maxima localized inside but close to the surface of the 
object and can be considered from a geometrical point of view as due to total reflection of the 
beam propagating inside the fiber or the sphere.  

There are many papers devoted to whispering modes (WsM) in optical fibers, although 
much less than in dielectric spheres. Initially, the interest was motivated by bending and 
coupling losses in fibers [13-20]. More recently, the use of WsM for guiding of light has been 
proposed [21-23]. Although the WsM are lossy (radiative), they can guide light along a long 
chain of aligned fibers [24], because the losses are small, as we discuss later. The aim of this 
paper is to study the possibility of using the whispering modes in periodically arranged optical 
fibers for optical filtering, characterized by narrow spectral lines and large angular tolerances. 
All studies available in the literature concern WsM having a non-zero constant of propagation 
along the fiber axis, a natural choice determined by the common use of fibers to carry light. 
By contrast, most filtering devices are designed to work at normal incidence, i.e., in direction 
perpendicular to the fiber axis, a configuration in which the longitudinal component of the 
propagation constant vanishes. In the second section of the paper, we will show that gratings 
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made of fibers illuminated under normal incidence can present narrow-band and angularly 
tolerant resonances. The third section will be devoted to show that these radiative properties 
are actually related to the excitation of whispering modes.  

2. Narrow-band and angularly tolerant resonances in gratings made of fibers 

To simplify the understanding of the phenomena, we use step-profile fibers without cladding, 
suspended in air. There are several complications that should appear and must be solved for 
any practical application. First, the whispering modes are very sensitive to fiber dimensions, 
thus identical fibers must be used. Second, suspending fibers in air is technically almost 
impossible, thus a dielectric matrix has to be used. Third, in order to maintain the required 
distance between the fibers during their assembly in the grating, there are two possibilities: 
either to use fibers with low-index cover, with total diameter equal to the grating period, or to 
use some self-assembling technique, such as putting the fibers on a Si surface with etched 
equidistant grooves. However, such technical analysis lies outside the scopes of this paper. 
Figure 1 represents schematically the rod grating under study. The working polarization is TE, 
electric field vector parallel to the fibers. All along the paper, the plane of incidence is 
perpendicular to the fibers axis (e.g. the (Oxy) plane). The wavelength is close to 1.55 µm, the 
fibers are made of Si with refractive index n2 = 3.45, and suspended in air (refractive index n1 
= 1). The period d is equal to 1.45 µm. Consequently, near normal incidence, the only 
propagating orders are the reflected and transmitted zeroth orders.  

 
 
 
 
 
 
 
 
 

Fig. 1. Rod grating under study. 
 
As can be expected from general theoretical considerations [5], in the vicinity of resonance 

excitation, one can expect the reflectivity to vary from 0 to 100%. Figure 2 presents the 
behavior of the reflectivity as a function of the fiber diameter Φ. 
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Fig. 2. Reflectivity of the rod grating of Fig. 1 versus the rod diameter (in µm). Period d = 1.45 
µm, wavelength λ = 1.55 µm, TE polarization, normal incidence, rod refractive index equals to 
3.45. 
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The calculations are performed thanks to the Integral Method [25]. One can observe multiple 
anomalies, which are wider for smaller diameters and become very narrow when the fiber 
diameter becomes large. This can be expected, because the WsM become more localized for 
larger rods, a fact that is illustrated further on. Stronger localization is also expected to lead to 
larger spectral finesse. Indeed, localization means that the field of the mode is confined into 
the cylinders, which is related to weak losses in the superstrate. Figure 3 shows that the 
spectral dependence of the different anomalies indicated with arrows in Fig. 2 is significantly 
sharpened with the increase of rod diameter Φ.  
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Fig. 3. Spectral dependence of the reflectivity of the rod grating presented in Fig. 1. Period 
d = 1.45 µm. The rod diameters Φ correspond to the anomalies indicated with arrows in Fig. 2. 

 
Let us thoroughly study the system composed of fibers with diameter 0.8947 µm, chosen 

among the others as having a spectral response most suitable for narrow-band reflection 
filtering. We plot on Fig. 4 the angular dependence of the reflectivity. It presents a flat top 
resonance expanding over a wide angular range. The reflectivity decreases quickly for angles 
greater than 4° because the first order of the grating becomes propagative above 4°.  
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Fig. 4. Angular dependence of the reflectivity of the rod grating with period 1.45 µm, rod diameter 0.8947 µm. 

 
An angular tolerant resonance is especially interesting in practical filtering applications for 

two reasons. First, experimental incident beams have non-zero divergence, which may cause a 
loss of filtering efficiency for low angular tolerant resonances [26]. Second, an angular 
tolerant filter will be efficient even for focused incident beam and devices having small 
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dimensions. As an example, the grating composed of 0.8947 µm diameter fibers will keep its 
efficiency for incident beams with convergence angle up to 8°, which corresponds to a 
Gaussian beam with waist diameter of about 13 µm (for a wavelength of 1.55 µm). We plot on 
Fig. 5 (solid curve) the reflectivity versus the incident wavelength for a finite-size grating of 
30 µm length, illuminated by a Gaussian beam (invariant along the z-axes) with 20 µm waist. 
The calculations were performed using the Scattering Matrix Method [27]. The curve is 
almost the same as that obtained for the infinite grating illuminated by a plane wave under 
normal incidence (dashed curve), except for the peak observed around 1.544 µm. This extra 
resonance is caused by the non-normal incident plane waves that compose the Gaussian beam 
and which can couple modes having anti-symmetric fields with respect to the normal to the 
grating, contrary to the normally incident plane wave. For confirmation, the extra resonance 
also appears when the infinite grating is illuminated by a plane wave with an angle of 
incidence of 2° with respect to the z-axes in the (Oxy) plane.  
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Fig. 5. Spectral dependence of the reflectivity of the finite rod grating illuminated by a 
Gaussian beam (solid curve), infinite grating illuminated by a plane wave under normal 
incidence (dashed curve) and under an incidence of 2° (dotted curve) (period 1.45 µm, rod 
diameter 0.8947µm).  

3. Physical insight into the origin of the resonance properties 

In order to find the physical origin of these anomalies, we plot on Fig. 6 the modulus of the 
electric field inside the structure at the resonance wavelength. One can observe that the field is 
particularly localized into the fibers.  
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Fig. 6. Modulus of the electric field for the finite rod grating (period 1.45 µm, rod diameter 
0.8947 µm) illuminated by a Gaussian beam with 20 µm diameter at waist. 

#87581 - $15.00 USD Received 17 Sep 2007; revised 6 Nov 2007; accepted 6 Nov 2007; published 12 Nov 2007

(C) 2007 OSA 26 November 2007 / Vol. 15,  No. 24 / OPTICS EXPRESS  15738



The natural hypothesis that imposes is that the mode excited in the 30 µm length grating is 
composed of a single mode inside each fiber, slightly modified by the coupling occurring 
between the modes of the neighboring fibers. Therefore, we investigate at first a single fiber 
under the same illuminating conditions. For each of the diameters pointed by arrows in Fig. 2, 
using the method described in [28], we have found the complex pole λp of the scattering 
matrix for a single fiber around 1.55 µm. The real part of the pole represents the resonance 
wavelength, while the imaginary part is related to the spectral width of the resonance. The 
map of the electric field in the fiber when it is illuminated by a plane wave at the resonance 
wavelength is represented in Fig. 7. As expected from the theory of WsM, the localization of 
the mode field decreases with the rod diameter. This is confirmed by the value of the 
imaginary part of the pole, which increases when the rod diameter decreases.  

Fig. 7. Modulus of the electric field at the resonance wavelength for a single fiber, with 
diameter (a) 1.0686 µm, (b) 0.8947 µm, (c) 0.7069 µm, (d) 0.5162 µm, (e) 0.3306 µm. The 
modulus of the incident plane wave is normalized to 1. 

 

The natural question that arises is to know to what extend the WsM resonances remain 
localized when the fibers are assembled into a grating, as there is an inevitable coupling 
between the modes in the adjacent fibers through the air gap, which decreases sharply with the 
increase of the diameter. Let us consider a system of two fibers, with diameter 0.8947 µm. 
The coupling leads to a splitting of otherwise degenerate mode of the single fiber into four 
modes, because the cylindrical rotation symmetry is broken into a reflection symmetry with 
respect to the x- and y-axes (see Fig. 1), thus permitting modes that are symmetrical or anti-
symmetrical with respect to these axes. The four poles (in the spectral range of interest) of the 
scattering matrix of the structure are reported in Tab. 1. They are actually distributed in the 
neighboring of the pole of one single fiber (1.5466 + i 1.9 10-3), and are characterized by a 
smaller or larger imaginary part. Hence, the coupling leads to both stronger and weaker 
localized modes. Note that the mode which is symmetrical with respect to x- and y-axes has 
an imaginary part twice as large as the other modes. This can be explained by the fact that the 
field of this mode has the same symmetry as that of the plane waves radiated along the x- and 
y-axes, i.e., this mode is more easily radiated along both axes (including their positive and 
negative directions) than the other modes. 
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Tab.1. Poles of the structure composed of two fibers with diameter 0.8947 µm, separated with a distance of 1.45 µm. 

Pole Symmetry / Ox Symmetry /Oy 
1.5433 + i 1.4171 10-3 Symmetrical Anti-symmetrical 
1.5450 + i 1.5605 10-3 Anti-symmetrical Anti-symmetrical 
1.5483 + i 1.1720 10-3 Anti-symmetrical Symmetrical 
1.5487 + i 2.7626 10-3 Symmetrical Symmetrical 

 
Last, it is expected that the coupling between the modes of the fibers depends on the 

distance between the fibers. Hence it may be possible to tune the spectral bandwidth of the 
resonance by changing the distance between the fibers. We show in Fig. 8 that a twice shorter 
(2 nm) bandwidth can be obtained with the same 0.8947 µm diameter fibers separated by a 
longer grating period of 1.49 µm. The angular tolerance of the resonance is limited, as for the 
grating with period 1.45 µm, by the first order of the grating which becomes propagative for 
angles greater than 2.3°.  
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Fig. 8. Spectral dependence of the reflectivity of the rod grating presented in Fig. 1. Period 
d = 1.49 µm (solid curve) and d = 1.45 µm (dashed curve), rod diameter Φ = 0.8947 µm, 
illuminated by a plane wave in normal incidence. 

 

4. Conclusion 

To conclude, we have shown that spectral filters with narrow bandwidths and broad angular 
tolerances can be obtained by using the excitation of whispering modes in gratings made of 
fibers. The spectral width over wavelength ratio can be as weak as 10-3, with an angular width 
as large as 5°, only limited by the fact that the first order of the grating becomes propagative. 
The spectral bandwidth depends on the coupling between the modes of each fiber, which is 
related to the distance between two neighboring fibers. This result allows us to conjecture that 
it will be possible to obtain ultra-narrow bandwidths (smaller than 1nm) with broad angular 
tolerance. However, the coupling mechanisms are complex and further studies may be 
necessary to be able to design ultra-narrow bandwidth filters.  
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