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Abstract: A comparison is made between rigorous numerical results and a 
recently proposed analytical method for modeling light diffraction by 
lamellar diffraction gratings. The conclusion is that the analytical model is 
quite restrained in its applicability and can be misleading in determining the 
behavior of the grating efficiencies.  
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A recent paper by Benabbas et al. [1] has proposed an analytical model for treating the 
diffraction by periodic slits in metallic films. While such a task is not a priori impossible, the 
existence of such a reliable analytical method should throw a shadow on the already one-
century-old attempts to build an electromagnetic theory of grating efficiencies, started with 
the early work of Lord Rayleigh [2] published in 1907.  

The authors of ref.1 use the well-known rigorous coupled-wave (RCW) theory [3-5] to 
develop it in a first-order approximation with respect to the Fourier components of the 
permittivity ε, subjected to abrupt variations inside the grating modulated region. In fact, the 
initial lamellar diffraction grating is replaced by a phase grating with sinusoidal modulation of 
ε in a direction perpendicular to the grooves. The second approximation consists of severely 
truncating the number of diffraction orders taken into account in the calculations, preserving 
only the 0-th and the 1-st± orders. While these approximations could apply for a low-
modulated phase grating or a low-contrast lamellar dielectric grating, they are very inaccurate 
when considering metallic gratings. For example,  in the near-IR, a silver grating with a filling 
factor equal to 2/7 would be equivalent to a phase grating having mean value of  equal to 

mean 17 i0.56ε ≈ − +  and modulated with 6 i0.2Δε ≈ − , the exact values varying with the 

wavelength and the groove aspect ratio. 
Using two well-established rigorous numerical methods, namely the RCW method and 

the classical differential method [6], we made a comparison between our numerical results 
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and some results presented in Ref. [1]. Figure1(a) presents a superposition of Fig. 3 of Ref. [1] 
and the rigorous results obtained for a phase grating with a sinusoidal modulation of the 
dielectric permittivity, as described in Eq. (30) of Ref [1]. In addition to the slight variation of 
the position of the resonant maxima (maxima due to the excitation of surface plasmons on the 
upper and lower grating interface), it is necessary to stress out the 4-fold discrepancy between 
the transmission values (note the different scales on the left and right). Thus the conclusion 
that the analytical results cannot be reliable even if one could assume the equivalence between 
a metallic lamellar grating and a phase one. Moreover, such an equivalence is not valid at all, 
as illustrated in Fig. 1(b), which presents the rigorous results for the true lamellar (slit) 
grating. The transmission behavior is completely different from the simple Fano-like 
resonances observed in Fig. 1(a). 

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

(b) 

Fig. 1. . Zeroth transmission order efficiency of a 110 nm thick silver grating on a glass 
substrate at normal incidence in TM polarization: Groove period equal to 700 nm, groove 
width 200 nm. (a) Equivalent phase grating with a sinusoidal modulation of electric 
permittivity. Red curve and the left scale, results of the analytical method, ref.[1], black curve 
and the right scale, rigorous numerical results. (b) The rigorous numerical results for a lamellar 
silver grating. 
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A similar or even more pronounced difference between the analytical and the rigorous 
results exists when a symmetrical structure (substrate the same as the cladding) is analysed. 
The advantage of such a structure is that the plasmons at the two grating interfaces are 
identical and thus much strongly coupled than in the asymmetrical geometry. Figure 2 
presents a comparison between the analytical results given in Fig. 6(a) of [1] and the rigorous 
results obtained for a true lamellar grating. The difference is not only in the position and the 
height of the resonant maximum, but also in the tendancy. While the analytical model predicts 
a blue shift and decrease of the maximum with the grating thickness h, the lamellar grating 
exhibits the opposite behavior, the transmission increasing and presenting a strong red shift, at 
least within this range of variation of h.  

 
(a) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Fig. 2. The same as in fig.1 but for a symmetric structure, cladding, grooves and substrate 
having optical index of 1. Results for different groove depth (grating thickness), as indicated in 
the figures. (a) Analytical results reproduced from ref.[1]. (b) numerical results for a true 
lamellar profile.  

 
Results that are not important in the context of the comparison between the two 

approaches show that further increase of the groove depth leads again to a red shift with 
decrease of maxima and then a quasiperiodical behavior is observed when the groove depth is 
varied within the range of several wavelengths. This peculiarity is due to the existence of the 
TEM hollow-waveguide mode inside the slits that propagates without cut-off and is leads to 
Fabry-Perot like resonances as function of the waveguide length (i.e., the groove depth h)  

The conclusion is that the analytical model presented in [1] could present results which 
significantly differ from the behavior of the real grating under study and could be misleading 
in drawing physical conclusions. Thus the usefulness (and necessity) of rigorous grating 
theories. 
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