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A simple formula is derived that allows evaluation by a single integration the diffraction efficiencies of transmission reliel
gratings when they support a greal number of orders, Validity of the method is demonstrased by comparison with a rigorous

differential method.

1. Intreduction

Scalar theory of gratings has attracted the atlen-
tion of scientists for quite some time [1-6]. Its ap-
plication offered one of the rare possibilities to deal
satisfactory with light diffraction by simple formu-
lations before rigorous electromagnetic theories were
developed. After a massive attack by numerical
methods [ 7] scalar theories almost went in oblivia-
tion, although Maystre commented on their impor-
tance: However is inust be emphasized that such a
theory is very valuable when %/d is low [8]. when the
Ald ratio is small, which is typical because trans-
mission gratings tend to have coarse spacing and
shallow modulation, it is an unnecessary luxury to
use rigorous theories. Because of the large number of
propagating orders they require excessive and waste-
ful amounts of computer time. [t might be noted that
the importance of scalar theories is indicated by the
fact that the most recent reference in this field is given
by the authors who have contributed the most 1o the
development of rigorous methods [6].

Since publication of ref, [6] the role of surface re-
lief gratings has greatly increased. Undoubtly the
most popular use, by far, is their application in CD
players [9] and in similar systems for optical data
storage [10]: symmetrical groove profile transmis-

sion gratings are used to spiit laser beams in1o three
parts, the zeroth order being used for signal recovery
and the = |st orders providing the track centering
signal. Not so obvious are the many possibilities for
beam splitting in numerous research projects.

The aim of this paper is to present a simple ap-
proach for deriving a closed formula capable of eval-
uating the diffraction efficiencies of surface relief
transmission gratings by a single inlegralion, pro-
vided only that 4/d < 1. Section J contains numer-
ical examples that demonstrate the possibilities and
restrictions of the method and the comparison with
the results of rigorous differential method is empha-
sized. An unexpected result was that the simpler ap-
proach gave better results than the more sophisti-
cated one of section 3.4,

2. Theoretical considerations

A plane monochromatic wave is incident at an an-
gle &, on a relief grating whose profiie is defined by
y=f(x). The y-axis is perpendicular to the prating
plane and the x-axis is perpendicular 1o the grooves,
The grating surface separates two semi-infinite me-
dia with refractive indices n; and n..

The main assumption is that f{x) varies slowly
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with respect to wavelength: the reflected and trans-
mitted fields, £y and Ey respectively, are assumed
equal to the corresponding fields that exists when
light is incident upon a plane interface, i.e.

Ex(x, ) yann=Texplifagx—jof(x)}}, (1)
co=knysin By, xjo=hknycosty, k=2n/1,

(2)

and T is the transmission coefficient that is derived
assuming normal incidence:

T=2n/(n+n,). (3

In deriving eq. (1) we have taken into account that
incident wave field value calculated in a point {x,
y=S(x)) on the profile is equal to

E, =explifaox~x0/(x)]1}. (4)

It is well known that below the modulated region
y<minf(x) the transmitted field can be represented
in the form of the Rayleigh expansion;

ET("-‘» .V)z‘ Z Tm exp[i(a’m-\’—b.m."” ’ (5)
with .

Ca=0g+mK, K=2r/d, {6)
;{;_n,z(k:ng-&’i!}uz, (7)

and {7} are diffraction orders amplitudes.

A second assumption is the so-called Ravieigh hy-
pothesis, i.e. that representation {3) is valid not only
outside the modulated region, but all over the entire
lower medium, The validity of this hypothesis has
been widely discussed during the last decade {8], so
that its theoretical and numerical restrictions are well
known, For the shallow and slowly varying profiles
under consideration here it works quite well, as
shown in the next section.

Unigueness of the field in the second medium leads
to the following equation on the grating profile:

Z Tm exp{i[am-l’—a'(z.m (.V) ]}

=Texp{ilapx—x10/(x)1}, (8)

that enables us to obtain a closed form expression for
diffraction orders amplitudes. Multiplying eq. (8)
with

(U/dyexp{—i[@,x—x2 mf(x) ]}
308

OPTICS COMMUNICATIONS

15 January 1991

and integrating over one period one obtains that

d
T= = [ expl—imKx =g =) )] dr.
Q

(9)
In evaluating eq. (9) it is assumed that
| d
E’J expl —i{n—m)Kx—i()z2.m—Xou) flx}1dx
b
mdum ] (10)

where 4, is the Kroneker's symbol. Eq. (10) is valid
in the Hmit A-0, but also when A/d—-0. In the last
CASE Y3 m~* Xa.n—r Kz COS Oa g, i.e, all diffraction orders
are gathered around the zeroth transmitted wave,
Strictly speaking, eq. {10) assumes that all orders
carrying significani amount of energy should have
negligible angular deviation from the specular trans-
mitted wave.

In a similar manner reflected orders amplitudes
B, can be represented in closed form:

a
B, = % j exp[ —imKx—i(x o +i1m) Ax) ] dx,

° (1n
where
Re=(ny—n)/ (n;+m) . (12)

Eq. (11) coincides with the formula derived by
Beckmann [5] at normal incidence, when the sub-
strate is not perfectly conducting.

3. Discussion

In the case of well known simple profiles egs. (9)
and (!11) can be evaluated with a pocket calculator:

3.1, Sinusoidal gratings

When grating profile is described by a sine func-
tion f(x)=4{Asin(Kx) the mth order amplitude is
expressed by the mth order Bessel function

2n,
no+n,

y - Il (0=20m) 1+ (13)
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describing the well known case of Raman-Nath dif-
fraction {11,12].

3.2. Lamellar gratings

The validity of eq. {9) is demonstrated for la-
mellar gratings in figs. ! and 2. Good coincidence is
obtained with results from a rigorous differential
formalism [13], even with relatively moderate an-
gles of incidence, despite the fact that the represen-
tation (3) is for normal incidence. Significant dis-
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Fig. 1. Spectral dependence of diffraction efficiency in the zeroth
and - Ist transmitted orders at normal incidence of lameltar
grating with filling ratio 0.5. Period d= 3 s, groove depth h=0.3
pm. Solid lines - rigorous differential formalism, dotted lines -
eqgs. (3} and (9). n,=1.535 n,=1.
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Fig. 2. Angular dependence of diffraction efiiciency in the zeroth
and - Ist transmitted orders of lametfar grating with fitling ratio
0.5, Period d=3 pm, groove depth A=0.3 um, wavelength 2= 0.6
pr. Solid lines - rigorous differential formalism, dotted fines ~
eqs. {3} and (9). n, = 1.55, mp=1.
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crepancy is observed only at high angles of incidence,
where angular deviation between zeroth and higher
diffraction orders becomes greater, Of course scalar
theory can not predict any threshold anomalies as
higher order cut-off is not included.

It could be useful to use eq. {9) to predict groove
depth values for which grating exhibits some specific
properties. For example, zero efficiency in the zeroth
transmitted order at normal incidence is given by the
following equation

-gexp{—i(rJI—nz)kl:]+d;_£=0, (14)

d
where ¢/d is the so called filling ratio of the profile.
3.3. Blazed gratings

Results for diffraction efficiency in different trans-
mission orders are shown in fig. 3 for a wide spectral
region, Two blaze angles are treated (10° and 15°).

Q Q.25 .5
>/

Fig. 3. Spectral dependence of iransmitted orders diffraction ef-
ficiency of echeletie diffraction grating with blaze angle 10° (a)
and [15° (b), Period d=3.33333 pm, apex angle 90°. Solid lines
- rigorous differential formalism, dotied lines - egs. {3} and (9),
dashed line —eqs. (9) and (19). my =155, my=1.
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Good coincidence is observed between results of rig-
orous and scalar theories, even when the A/d ratio is
relatively large. Surprising is that even for large an-
gles of incidence egs. {3) and (9) can still produce
good results (fig. 4, with blaze angle 18°).

It will be noticed that despite the assumption of
lossless materials for transmission gratings the peak
first order efficiency always lies in the 80 to 85%
range, even when there is very little energy in the ze-
roth and second orders. The explanation lies in the
fact that such gratings will always diffract a certain
amount backward, towards the incident - the resin-
air interface acts like a low efficiency reflection
grating.

It must be pointed out that the blaze wavelength
could easily be determined from eq. (9), by assum-
ing that the main contribution to the diffraction pro-
cess is given by the long facet, whose geometry is de-
fined by the equation:

flxy=xtan gy, (£5)

where gy is the groove angle. Maximum efficiency in
the mith order is obtained when

in In
mw&— =—{n cos 8 g~nrcosf,,) T tan ¢y . (16)

After some simple transformations eq. (16) could
be expressed as

Ny sinws=nsin i, , ("

where

efficiency
o
w

Fig 4. Angular dependence of diffraction efficiencies in —1stand
~nd transmitted orders of echelette grating with blaze angle of
t8*, Wavelength £=0.6328 pm, The other parameters are as
stated in fig. 3.
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‘szﬂﬂa“gz.m, WI=WB_‘8LM- (18)

Eq. {17} is nothing but the Snell's law, i.e. the mth
order efficiency exhibils a maximum when its direc-
tion of propagation corresponds to the direction of
light refracted from the large facet.

3.4. Is higher precision more precise?

We do not argue with the general statement that
higher precision is more precise, but the problem in-
vestigated here exhibits a curious property in pre-
senting an example how an a priori true statement
may not always be carrect. Indeed, it appears to be *
much more correct to replace assumption (3) with
the following hypothesis: the transmitted field is
equal to the feld refracted by a plane that is locally
tangential 1o the profile, i.e. the transmission coef-
ficient is presented in the form:

24

T T (19)
Ay +Z{x)
where 7, and 7. are the incident and refracted wave-
vector components along the 7 axis (fig. 5) that is
locally normal to the profile. We have made calcu-
lations using this assumption (19} instead of (3) and
its result are much less precise, see figs. 3b and 4,
where assumption (19) produces false biazing for
high angles of incidence. This paradox can be easily
understood from the following speculations:

In the case of blazed gratings we are interested in
the contribution of the long facet. Intuitively, when
the angle between incident wavevector and direction

Tix)=

R

y#*(x)

Fig. 5. Schematical representation of grating profile y=/{x) with
two coordinate systems: general Oxy and tocal OXJ ones,
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nbrmal 1o this facet increases, one expects that the
transmitlance decreases (in TE polarization), i.e.
total efficiency in transmitted orders has to go down.
On the other hand, the coefficient represented by eq.
(19) is growing instead of decreasing. In fact, when
light is refracted by a plane surface, the decreasing
of transmitivitty is due wo the factor of 7,/7, in the
efficiency representation:

=TI 0/ 7 o {20)

while the corresponding diffraction efficiency in the
mith order is given by the modulus square of the am-
plitude multiplied by the factor of

x.‘!.m/xl.ﬁ ’ (21 )

For negative angles of incidence and for orders of
negative number, in the case when they are propa-
gating close 1o the negative direction of y-axis factor
{21) when muhiplied with (19) could result in much
higher efficiency values than the real ones. Thus the
false blazing in fig. 4 appears if eq. (19) is used in-
stead of eq. (3).
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