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The effect of normal incidence mode excitation in a corrugated waveguide is studicd theoretically. The behaviour of the

reflectance is explained by a phenomenclogical approach,

1. Intreduction

In our previous paper {1} we have shown that the
resonance anomaly of a dielectric coated grating due
to excitation of a waveguide mode induces strong
wavelength and angular selectivity in the zeroth re-
flected order efficiency. In particular, u tunable nar-

_row-band reflection filter with spectral halfwidth of

3 A has been demonstrated, The theoretical minimum
and maxirum values of the reflectivity depend only
on the symmetry of the systemn [2]. Howsver, the
considerations in ref, {2] are valid only away from
the domain of anomaly interactions when in the
waveguide two different modes are excited simults-
neously,

On the 6ther hand very often filter and tuning de-
vices are used in a regime when the light is incident
perpendicularly to the surface (for exampie-Fabry-
Perot interferometers, dielectric multilayered mirrors
and wavelength filters, etc)) If the grating pericd is
chosen properly a normatly incident on the corru-
gated waveguide wave excites modes propagating in
two directions, since the phase-matching conditions
are satisfied simultaneously for both of them. The
purpose of this work is to study the basic features of
the anomaly in the zero-order ¢fficiency caused by’
mode excitation at normal incidence, Although the
problem can be treated using rigorous electromagnet-
ic theories [3], the utilizaticn of the phenomenologi-
cal approach [4]} enables to establish some simple
rules, very useful for the optimization of the device
operation,

‘schematically in fig. 1. From air {r,

2. Symmetry and phenomenological approach

Let us consider a corsugated waveguide shown

= 1) a linearly
polarized plane wave with an amplitude 2, iluminates
the structure. We suppose that the grating pertod is

»such that in air and in substrate only the zeroth re-

flected and transmitted orders with amplitudes b
and b5, respectively, are diffracted.-At a certain set
of the sys..m parameters it is possible to excite two
mades i the waveguide simultaneously (for example
by two different diffractior ord xrs). In the vicinity
of the anw:naly interaction the amplitudes of the dif-
fracted wave can be represented by the following
phenomenological formulae [5]:
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Fig. 1. Schematical representation of waveguide with double-

side corrugation.
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where a = sin 8, 8 is the ang:!c of incidence, af'_ 5 and
af 5 are the zeroes and the poles cozresponding to
the two excited modes and T are oty vandse with
- ¢« functions, which without corrugation coincide with
Airy refiectance and transmittance coefficients of the
plane layer,

The structure in fig. 1 has a symmetry with respect
to a vertical Oyz plane and the zeroth reflected order
efficiency must be independent of the sign of @, thus

wy S —uy =a) oby = —ai =ab . 2
Therefore (1) cen be expressed in the form:
o? —~ (ozf)2
bl =Fll 2 2 1
- (e?)
2 zy2
ot — (o)
by =1 ap . 3
2 21 O‘.?’ .(ap)z 1 ( )

To check the validity of (3) in fig. 2 a comparison be-
tween rigorous numerical [6] and phenomenological
results is made, For a single mode excitation in the
case of a symmetry with respect o the Oyz plane the
transmission zero at" is real [2], therefore a 100% re-
flectivity is achieved, independent of grating and
waveguide parameters, If the system is symmetrical
with respsct to the z-axis, too {fig. I with nmy =n3),
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Tig. 2. The numerical (solid curve} and phenomenological
(black circles) reflectance for a waveguide with ny=p3=l,
1 =2.3,d=037 pm, k=004 um, t = 0.102 pm, TE po-
irized light with wavelength A = 0.6328 pm. The foltowing
phenomenological parameters arc used: Ty I* = 0.262, af
=0.05298 and o P = 002427 +10.01654.
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Fig. 3. Variation of (a )% and (af)? with the waveguide
thickness. The other parameters are the same as in fig, 2,

both the reflection and the transmission zeroes are
real [2]. Repeating the treatment in ref, [2] with o?
instead of « (see the Appendix), it directly fallows
that in our case (a-f)z and (atz}z must be real, Nu-
merical calculations conflirm this, The dependence
of (a?)? and (@?)* on the waveguide thickness for
the system with both kinds of symnietry is given in
fig. 3. In the next section it is shown that the zeroth
teflection order elficiency 7 = 1b, fa, 12 is quite dif-
ferent for each one of the seven thicknesses indicated
with arrows in fig. 3. . .

3. Reflectance peculiarities

The realness of the zeroes squases means that the
zeroes are either real or purely imaginary. This is
quite important for the reflectance behaviour since
it depends on a and not on o2, In the regions where :
af or o are imaginary , total reflection.or transmis- . 3

where the dependence of the reflected energy on the

incident angle is shown for the seven waveguide thick- »ﬁ-’:
nesses of fig. 3. It is worth noting that glc system pes o
response as a function of wavelength s a similar =
form. - 3
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Fig. 4. Reftected zeo-order efticiency asa function of the angle of incidence. Different cases correspond to varions Jayer thick-

nesses indicated with arrows in fig. 3.

Tn the point d of fig. 3, (af)z = (o:t"‘)2 = (aP)?,
so the annihilation of the zeroes and the pole takes
place [7]. Each zero is destructed by the pole thus
the curve in fig. 4d is not influenced by the anomaly.

For the filtering and/or tuning, the device of fig. 1
is desired to operate in the regime shown in fig, 4f.
However, the waveguide thickness and the symmetry
of the system have to be chosen most carefully.
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Appendix

Let us introduce another wave with an amplitude
@, incident from the lower medium at the same angle
¢ having the same wavelength and polarization as the -
first incident wave. Due to the linearity of the
Maxwell's equations and boundary conditions there
exists a linear connection through a scattering mateix
s - ) . .

1

b=Sa (S);

between the incident g = (g;) and the diffracted b =

(g;) wave amplitudes. At fixed system parameters
the components of § are functions ol o §;;(a), i,/
=1,2.

As it is shown in ref. {2] the energy balance crite-
rion, time reversal symmelry and the symmetry with
respect to the vertical Oyz plane and to the horizon-
“tal z-axds results in the following connections be-
tween the components of the § muiri.x

S =Sy, Sp@=5,). (6

The unitarity of § on the segment of the real a-axis

a €{—1, 1), determined by the energy balande crite-
rion can be continued in the eomplex a-plune in the
form (2,5} - '

ST@S@) =1, ' Q)

where the overbar means complex confugation, index
T stays for matrix transposition and / is a unit matrix.
Let us recall now that near the investigated anomaly
the components of the § matrix are functions of a?,
having the form of eq. (3):

1. V -l -

- al_(a?)Zz
511(“)=F11m-‘ e
i
o = (of)?
Spa(@) = T2 ;_—(;:j)*{ . (8)
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. Substii_ution'of(B) into (7) taking into account (6) = (&tz)z. But if (ortz)2 = (&f)z # {aP)? then the left

results in fand side uf {23 will bz zore, Mg the ouee (nf)z =
0 ge2 N ) (¢%)? = (aP)? corresponds to the case of Lig. 4d and
¥ L 7 A el /2 ' is discussed in the text separately, so (&))" = (o)
N2 (aey? a2 (ap)? is real. Substitution a? = ((x?)2 in the cight hand side

of (10) repeating the same considerations provides
for the realness of (cr’f)z.

= o? — (&} 2 o? - (o:f)2
il NVE e (9
s — (&P ot — (P )
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