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Abstract

A differential theory of diffraction by apertures and/or objects described in cylindrical coordinates is outlined. It pro-

jects the electromagnetic field on a Fourier–Bessel basis and uses correct rules to express the components of the electric

displacement D on that basis which is truncated in view of numerical computation. Maxwell equations are then reduced

to a finite first order differential set which provides a fast convergence of the results when the truncation order is

increased. We apply the theory to the study of the transmission of a circular aperture inside a metallic screen connected

with a tapered fiber. Coaxial devices can be studied as well.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

After the discovery of the extraordinary light

transmission by hole arrays [1] in 1998 and the

great amount of theoretical and experimental work
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that it suggested, many researchers are trying to

produce nano light sources by using a single sub-

wavelength hole pierced in a metallic screen and

increasing its natural light transmission by adding

a circular corrugation, or a small concentric disk

[2] to excite a new resonance or propagation proc-

ess. Optimizing such a nano device requires

Maxwell equations as a tool, while its geometry re-
quires working in cylindrical coordinates. Our aim
ed.
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is to take advantage of the recent breakthrough of

the differential theory in Cartesian coordinates [3,4]

to develop a differential theory of diffraction in

cylindrical coordinates able to analyze a wide class

of microstructured devices, and giving results
which converge fast when the truncation order of

the field series is increased. The present method is

thus an extension of the fast Fourier factorization

(FFF) method [3,4], previously developed for ob-

jects periodic with respect to one or two Cartesian

coordinates, to problems in which the field is repre-

sented at another kind of continuous function

basis, namely a Bessel–Fourier basis. Such a gener-
alization will be called fast numerical factorization

(FNF).
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Fig. 1. Schematic representation of a diffraction system con-

sisting of finite-length objects with cylindrical symmetry,

surrounded by homogeneous media.
2. Presentation of the theory

We assume a time harmonic dependence in

exp(�ixt) so that Maxwell equations read:

curlEðrÞ ¼ ixl0HðrÞ; ð1Þ

curlHðrÞ ¼ �ixDðrÞ ¼ �ixeðrÞEðrÞ: ð2Þ
In cylindrical coordinates (r,h,z) any object and

field is periodic with respect to the polar angle h,
with period 2p, so that the field components can

be represented on the exp(inh) basis. Moreover,

as established in a previous work on waveguide

theory [5], each Fourier component of the cylindri-

cal components of the electric field can be ex-

pressed as an integral involving Bessel function

Jn(krr), where kr is the r-component of the wave-

vector of each elementary spectral component of
the field. Thus kr continuously varies from 0 to

1, but will be discretized into a set of values km,

so that the field components finally read:

Erðr; h; zÞ ¼ i
XN
n¼�N

XMax

m¼1

kmDkm bEn;mðzÞJnþ1ðkmrÞ
h

�cEn;mðzÞJn�1ðkmrÞ
i
exp ðinhÞ; ð3Þ

Ehðr; h; zÞ ¼
XN
n¼�N

XMax

m¼1

kmDkm bEn;mðzÞJnþ1ðkmrÞ
h

þcEn;mðzÞJn�1ðkmrÞ
i
exp ðinhÞ; ð4Þ
Ezðr;h; zÞ ¼
XN
n¼�N

XMax

m¼1

kmDkmEz;n;mðzÞJnðkmrÞ expðinhÞ:

ð5Þ
Similar equations apply to the cylindrical compo-

nents of H, with bEn;m changed into bHn;m; c
E
n;m into

cHn;m and Ez,n,m into Hz,n,m. Let us assume that the

device has a cylindrical symmetry, i.e. that e is

h-independent.Moreover, we assume it to be z-inde-

pendent in a piecewise manner (Fig. 1), which ena-

bles us to use the eigenvalue/eigenvector method in

integrating the differential set of equations. How-

ever, this does not represent a limitation of the

method, because in the opposite case when e varies
with z, the system of equations can be integrated

using some other numerical technique.

Eqs. (1) and (2) in cylindrical coordinates lead

to the expression of the z-components of the elec-

tromagnetic field:XMax

m¼1

ðbEn;m � cEn;mÞJnðkmrÞk2mDkm ¼ ixl0Hz;nðr; zÞ;

ð6Þ

XMax

m¼1

ðbHn;m � cHn;mÞJnðkmrÞk2mDkm ¼ �ixeðrÞEz;nðr; zÞ:

ð7Þ
The problem which arises is to express the compo-

nents of the product e(r)Ez,n(r,z) on the Bessel

functions basis in terms of those of e(r) and
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Ez,n(r,z) a process that we call factorizing the

product in the Fourier–Bessel basis. With the

above-mentioned hypothesis, Ez(r,h,z) is a field

component tangential to the discontinuity surface

and is thus continuous with respect to r. So are
its Fourier components Ez,n(r,z). Thus the Bessel

components of the product can be obtained using

the direct rule recently established in any continu-

ous function basis [6]. We recall that if we consider

three functions f, g, and h, such that h = gf, and fp
are the components of f on the up function basis,

then

hm ¼
X
p

gmpfp; ð8Þ

where

gmp ¼ gupjum

� �
: ð9Þ

Here we have to apply this rule to the (n)th Fourier

components of e(r). As shown in [6], the (m,p)th

Bessel components of gn are given by

gn;mp ¼ Dkmkm

Z 1

r¼0

rgnðrÞJqðkprÞJq0 ðkmrÞ dr: ð10Þ

In this equation q and q 0 can be equal to (n), be-

cause Ez is expressed in term of the (n)th Bessel

functions (see Eq. (7)); but q can also be equal
to (n + 1) while q 0 is equal to (n � 1), and inver-

sely, because, as shown in Eqs. (3)–(5), the (n)th

Fourier components of Er and Eh are expressed

in terms of the (n + 1)th and (n � 1)th Bessel

functions. When applied to the function e(r),
Eq. (10) allows computing a square matrix ½e�n;~n
having (Max + 1) · (Max + 1) size and with ele-

ments ½e�n;~np;m defined by

e½ �n;~n
0

p;m ¼ kmDkm

Z 1

r¼0

eðrÞJnðkprÞJn0 ðkmrÞr dr: ð11Þ

The first subscript denotes the argument of the

Bessel function with integer order written as the

first superscript. m denotes the argument of

the (n 0)th Bessel function and the tilda on n 0 indi-
cates the presence of the term kmDkm in Eq. (11).

Eq. (8) applied to Eq. (7) then leads to

km bHn;m � cHn;m
h i

¼ �ix
XMax

m0¼1

e½ �n;~nm;m0Ez;n;m0 : ð12Þ
Using matrix inversion, Eq. (12) gives the expres-

sion of Ez,n,m 0 which can be substituted into Eq.

(5) to lead to the following expression:

Ez;n ¼
XMax

m¼1

ikm
x

DkmJnðkmrÞ

�
XMax

m0¼1

e½ �n;~n
� ��1

m;m0km0 bHn;m0 � cHn;m0

h i
: ð13Þ

Differentiating Eqs. (3) and (4) gives

d

dz
ðEh;n � iEr;nÞ ¼

XMax

m¼1

2kmDkm
dbEn;m
dz

Jnþ1ðkmrÞ ð14Þ

and Maxwell equations lead to

d

dz
ðEh;n � iEr;nÞ ¼ �ixl0Hr;n � i

oEz;n

or
þ xl0H h;n:

ð15Þ
By replacing all field components by their Fourier

series, using the differentiation relations of Bessel

functions, multiplying both members by Jn + 1(k
0
mr)

and integrating from to 0 to 1, we obtain, due to

the orthogonality of Bessel functions

d~b
E

n;m

dz
¼ xl0

~b
H

n;m � km
2x

�
XMax

m0¼1

e½ �~n;n
� ��1

m;m0km0 ~b
H

n;m0 � ~cHn;m0

h i
; ð16Þ

where ~b
E

n;m ¼ kmb
E
n;m;

~b
H

n;m0 ¼ km0bHn;m0 ;~cHn;m0 ¼ km0cHn;m0 .

The term d~b
H

n;m=dz is calculated in a similar way,
except that since it involves the continuous prod-

uct e(r)Er,n(r,z) of discontinuous functions, the

inverse rule stated in [6] has to be used.

Finally, we also derive d~cEn;m=dz and d~cHn;m=dz
along the previous lines, so that Maxwell equa-

tions are written as a set of (2N + 1) first-order dif-

ferential equations, which can be written in matrix

form

dFnðzÞ
dz

¼ MnFnðzÞ; ð17Þ

with n 2 [�N,N]. In this equation, each Fn is a col-

umn-vector made of four blocks containing the

Bessel components ~b
E

n;m, ~c
E
n;m,

~b
H

n;m, ~c
H
n;m which means

that Fn has 4(Max + 1) components; Mn are
4(Max + 1) · 4(Max + 1) square matrices whose
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elements are obtained by Eq. (16) and similar

equations for ~cEn;m; ~b
H

n;m; and ~cHn;m, not written here.

For any value of n, the Mn-matrix can be repre-

sented in a block form:

Mn ¼
Mn;11 Mn;12

Mn;21 Mn;22

� �
; ð18Þ

where blocks Mn,ij are given by:
Mn;11¼0;

Mn;12¼
� 1

2xK e~n;n½ ��1Kþxl0I � 1
2xK e~n;n½ ��1K

� 1
2xK e~n;n½ ��1K 1

2xK e~n;n½ ��1K�xl0I

 !
;

Mn;21¼

K2

2xl0
I�x

2
1
e

fnþ1 ;nþ1

� ��1

þ efnþ1;nþ1

� � !
� K2

2xl0
Iþx

2
W½ �fnþ1 ;n�1 1

e

fn�1;n�1

� ��1

� efnþ1;n�1

� � !

K2

2xl0
I�x

2
W½ �fn�1;nþ1 1

e

fnþ1 ;nþ1

� ��1

� efn�1;nþ1

� � !
� K2

2xl0
Iþx

2
1
e

fn�1;n�1

� ��1

þ efn�1;n�1

� � !
0BBBBB@

1CCCCCA;

Mn;22¼0;

ð19Þ
with

W½ �fn�1;nþ1

m;m00 ¼ kmDkm

Z 1

r¼0

Jn�1ðkmrÞJnþ1ðkm00rÞr dr:

ð20Þ

As in Eq. (11), m denotes the argument of the

(n � 1) Bessel function, and the tilda on (n � 1)

indicates the presence of kmDkm in Eq. (20). The

integration of Eq. (17) is done using the eigen-

value–eigenvector technique since e is assumed to
be z-independent. The resolution of the boundary-

value problem through a shooting method pro-

vides the field everywhere, once the field incident

from one side in the surrounding homogeneous

media z ! ±1 is given.
3. Numerical calculation: light coupling and propa-
gation in a glass fiber

In order to demonstrate the possibilities of the

method, we have chosen a numerical example
involving several physical phenomena and intro-

ducing difficulties for the modelization by study-

ing a system that has both metallic and

dielectric parts (Fig. 2). It consists on a metallic

(silver) screen with a circular hole in it. The line-
arly polarized incident plane wave falls with unit

amplitude normally on the screen from the super-

strate made of air with refractive index n = 1. A
glass fiber (refractive index 1.5) is stuck in the

hole and continues in the air below the screen.

The wavelength is k = 0.5 lm. When the incident

light hits the screen (having 0.2 lm thickness), it
is reflected back and the transmission through the

screen can be neglected. Due to the hole with a

fiber end in it, a part of the incident light is cou-

pled through the hole into the fiber. The fiber ra-

dius is small enough (R = 0.125 lm) to cut off all

the fiber modes except the fundamental mode

HE11 [5]. Due to that fact, far enough below

the screen, all transition fields due to the diffrac-
tion by the upper and lower boundaries of the hole

are attenuated and one can expect to observe only

the propagating mode. And indeed, Fig. 3 shows

that almost all the energy of the electric field is

concentrated inside the fiber. There is practically

no difference in the field distribution and ampli-

tude when the distance h between the screen and

the measuring point is, say, 50k or 100k, as shown
in the figure. The sharp peaks at the surface of the

fiber are due to the discontinuity of the radial com-

ponent of the electric field, as discussed further in

the text.
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Fig. 2. Glass fiber stuck into metallic screen hole illuminated in normal incidence from above by an linearly polarized plane wave

(electric field vector parallel to the x-axis), with unit amplitude.
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The results given in Fig. 3 were obtained by

truncating the sums in Eqs. (3)–(7) to Max = 700

and using Dkm = 0.0007 nm�1. The main problem

in the numerical modeling of diffraction is the con-

vergence of the method with respect to the number

of equations and its precision stability when
replacing the integral representation by finite

sums. Fig. 4 shows the convergence of the method

with respect to the maximum wavenumber

kr,Max = Dkm · Max along the r-axis, i.e. the trun-

cation of the basis, normalized with respect to the
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Fig. 3. Squared modulus of the electric field at a distance h = 25

lm (squares) and 50 lm (full line) from the metallic screen,

representing the fundamental mode excited by the incident

plane wave and propagating inside the fiber (R = 0.125 lm).
incident wavenumber k0. As can be observed,

without correctly applying the direct and the in-

verse factorization rules, the amplitude of the

guided mode fluctuates strongly when kr,Max is

varied, while the correct application of the rules

(with the FNF method) gives reliable result for
kr,Max/k0 P 20, which, for numerical applications,

corresponds to a quite reasonable value of

Max = 180 when Dkm = 0.0007 nm�1. The latter

value is small enough to observe no change when
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Fig. 4. Convergence of the value of |E|2, calculated on the axis

of the fiber at a distance h = 50 lm after the screen, as a

function of the truncation of the radial wavenumber component

in the Fourier–Bessel representation. Squares, with FNF,

triangles, without FNF.
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Fig. 5. Variation of the radial component of the electric field

along the x-axis for two different values of Dkm given in the
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Fig. 6. Radial variation of the longitudinal electric field

component for h = 50 lm.
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Dkm = 0.0007 nm�1 is reduced further by keeping

kr,Max/k0 fixed. This fact is demonstrated in Fig.

5, where the electric field component perpendicular
to the fiber surface presents a sharp discontinuity,

contrary to the longitudinal component Ez, which

is continuous across the fiber boundaries (Fig. 6).
500 1000 1500 2000 2500
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Fig. 7. Normalized intensity of the x-component of the field

0:5ðjExj2 � 0:02jEincidentj2Þ=
ffiffiffi
x

p
, see the text for details. Squares,

data scanned from Fig. 2 of [7], solid line, our results.
4. Comparison with other results: light diffraction by

a single hole

Unfortunately, in the literature there are not

many quantitative results for the distribution of
the field through a single circular aperture to be

used in order to directly compare with our method.

We have chosen a recently published paper by

Yin et al. [7]. The authors compare experimental

and theoretical results of the field diffracted by a
hole with a radius 100 nm pierced in a 100 nm

Au film deposited on a fused quartz substrate for

532 nm wavelength of linearly polarized light inci-

dent from the substrate side. They find that the

major contribution in the x-component of the dif-

fracted field comes from a plasmon-like surface

wave propagating away from the hole. The meas-

ured field intensity at a distance 5 nm above the
film surface has a well-pronounced quasiperiodicy

with a period approximately equal to 471 nm. The

results taken from Fig. 2 of [7] at normal incidence

are shown with squares in Fig. 7. We have made

the same calculations with Au complex refractive

index equal to 0.33 + i2.05. This index value corre-

sponds to a plasmon surface wave propagating on

air–Au interface with a normalized propagation
constant ~ag � kr=k0 � 1:1275þ i0:0528. At 532

nm this constant corresponds to a wave with a per-

iod D ¼ k=Reð~agÞ � 571:8 nm. The results of our

method are plotted with a solid line. They repre-

sent the normalized intensity calculated according

to the formula c jExj2 � I0
	 


=
ffiffiffi
x

p
, used in [7], where

I0 is the value measured far away from the hole

(equal to 0.02 times the incident field intensity in
our results) and c = 0.5 in order to fit the two
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curves (the results in [7] are in arbitrary units). The

comparison starts at about half a wavelength from

the hole boundaries, because at nearer vicinity the

field fluctuations have much larger amplitude. As

one can observe, our results present the same type
of quasiperiodicy having the same period as in [7]

(471 nm) and approximately equal to the expecta-

tions from the simple model based on plasmon

wave excitation.
5. Conclusions

A new rigorous electromagnetic method is

developed, which extends the differential formal-

ism well known for modeling light diffraction by

periodic systems to model finite-length cylindrical

objects having rotational symmetry. The method

is suitable for studying light diffraction by dielec-

tric or metallic cylinders with finite length, by cir-

cular single or structured hole. It can be
successfully applied to fiber coupling and fiber-
end diffraction. The convergence of the method

with respect to the number of radial wave compo-

nents is ensured by applying specific factorization

rules valid in a truncated basis of continuous

functions.
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