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Abstract

The recently developed fast Fourier factorization method resolves linear Maxwell equations in a truncated Fourier

basis using correct factorization rules. In nonlinear optics, Maxwell equations present a discontinuous product of two

simultaneously discontinuous functions for which no rule of factorization applies. Using an iterative method which

avoids such a type of factorization, we extend the fast Fourier factorization method to nonlinear optics. We demon-

strate the good convergence of the method by studying deep metallic gratings with grooves filled with a nonlinear mate-

rial, illuminated in TM polarization with a high intensity plane wave.

� 2004 Elsevier B.V. All rights reserved.

PACS: 42.79.D; 42.65
Keywords: Diffraction gratings optical; Nonlinear optics
1. Introduction

Numerical analysis of periodic media using the
differential method requires the projection of

Maxwell equations on a truncated basis. It is

now well known that the method of factorization

of a product of two functions in a truncated Fou-

rier basis [1,2] and more generally on any trun-
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cated basis of continuous functions (e.g. Bessel

functions [3]), depends on the continuity of the

functions and their product. The Laurent�s rule
gives the Fourier components of a product of

two functions in an infinite Fourier basis. As

soon as the Fourier basis is truncated, the Lau-

rent�s rule, then called ‘‘direct rule’’ presents a

bad convergence with respect to the number of

Fourier components involved, when the two func-

tions of the product are simultaneously discontin-

uous. If their product is continuous, it exists
another rule, called ‘‘inverse rule’’, which gives
ed.
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rapidly converging results. Established in 1996 in

a truncated Fourier basis by Li [1] and recently

extended in any truncated basis of continuous

functions [3], this rule enabled a new formulation

of the differential theory of diffraction by periodic
media [4]. The new method, called ‘‘fast Fourier

factorization’’ (FFF) [2,4] has drastically im-

proved the convergence of the differential method

when applied to metallic gratings in TM polariza-

tion [4]. However, when the two functions and

their product are simultaneously discontinuous,

no rule of factorization could enable a good con-

vergence [1], so that the results given by both the
direct and the inverse rule have a poor conver-

gence. This is the case in nonlinear optics, when

gratings consisting of optically nonlinear materi-

als are considered. In that case, the vector nonlin-

ear polarization can be expressed as the product

of a tensor of nonlinear susceptibility by the elec-

tric field vector taken at a given power. At the

grating surface, the three last functions are simul-
taneously discontinuous. In that case, the repre-

sentation of the Fourier components of the

product in terms of the two other function Fou-

rier components, using direct or inverse rule is

poorly converging. Thus, the factorization of

the discontinuous product of discontinuous func-

tions has to be avoided. This paper proposes a

method to deal with this problem. The nonlinear
problem is treated through an iterative process

with respect to the nonlinearity, solving a linear

diffraction problem at each iteration step. In the

linear diffraction problem, the use of the fast

Fourier factorization method allows for the spa-

tial reconstruction of the electric field. The deter-

mination of the dielectric permittivity for the next

iteration step, is done at any point of the coordi-
nate space from the spatial distribution of the

electric field and the nonlinear susceptibility, the

latter being zero outside the nonlinear domain

and constant inside it. The next iteration resolves

a linear diffraction problem with a new spatial

distribution of the dielectric permittivity and the

fast Fourier transform (FFT) algorithm is then

used to find its Fourier components. Such a proc-
ess, i.e. the calculation of the Fourier components

of the dielectric permittivity from its reconstruc-

tion in the coordinate space avoids the factoriza-
tion of a product of type (3) enounced by Li,

namely a discontinuous product of two discontin-

uous functions.

The paper is structured in the following manner.

In Section 2, we present the nonlinear Maxwell
equations (Section 2.1) from which we deduce the

relation between the nonlinear dielectric permittiv-

ity and the electric field. Once this relation obtained,

we present the iterative method with respect to the

nonlinear dielectric permittivity (Section 2.2). We

use the FFF method to calculate at each step the

Fourier components of the electric field using the

direct and the inverse rule (Section 2.3). We have
then to calculate for the next iteration the Fourier

components of the nonlinear dielectric permittivity.

Once the theoretical method is presented, we

show numerical experiments on deep metallic grat-

ings made of nonlinear media illuminated in TM

polarization (Section 3.1). Such a configuration re-

quires the use of the FFF method in linear optics.

First, we show the convergence of the presented
method as a function of the number of Fourier

components as it was done in linear optics with

the FFF method and the classical differential

method (Section 3.2). Then, we study the conver-

gence of the method with respect to the number

of iterations (Section 3.3). Then, once the conver-

gence of the method is proved, we study nonlinear

effects in metallic gratings illuminated by a plane
wave with a high amplitude to obtain large nonlin-

ear effects (Section 3.4).
2. Resolution of nonlinear Maxwell equations using

the factorization rules in a truncated Fourier basis

2.1. Maxwell equations in nonlinear optics

Formally, Maxwell equations are the same in

linear and nonlinear optic

curlEðr; tÞ ¼ � oBðr; tÞ
ot

; ð1Þ

curlHðr; tÞ ¼ oDðr; tÞ
ot

; ð2Þ

but a nonlinearity will arise from the behaviour of

the medium. We consider in this study media with-
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out magnetic properties (l(r) = l0) and time-inde-

pendent properties, so that

Bðr; tÞ ¼ l0Hðr; tÞ; ð3Þ

Dðr; tÞ ¼ e0Eðr; tÞ þ Pðr; tÞ: ð4Þ

The particularity of nonlinear optics is the fact

that the polarization vector P(r, t) is split into a lin-

ear PL(r, t) and a nonlinear PNL(r, t) part. In the

case of a third-order optical Kerr effect, consider-

ing a exp(�ixt) time dependence and a local re-
sponse, the nonlinear polarization vector can be

written as

PNLðr; tÞ ¼ e0

Z þ1

�1
dx3

Z þ1

�1
dx2

Z þ1

�1
vker rx1;x2;x3

ðrÞEx1
ðrÞEx2

ðrÞEx3
ðrÞ

� expð�iðx1 þ x2 þ x3ÞtÞdx1; ð5Þ

where vker rx1;x2;x3
is a fourth-rank tensor, and

Ex;jðrÞ ¼ 1
2p

Rþ1
�1 Eðr; tÞ expðixjtÞdt; j ¼ 1 : 3. In

the same way, we define

PxðrÞ ¼
1

2p

Z þ1

�1
Pðr; tÞ expðixtÞdt: ð6Þ

The optical Kerr effect is a third-order effect which

assumes: x1 = x3 = �x2, which leads to

PNL
x ðrÞ ¼ e0v

Kerr
x ExðrÞExðrÞExðrÞ; ð7Þ

with the notation vKerr
x ¼ vker rx;x;x and where ExðrÞ is

the complex conjugate of Ex(r). In Kerr media,

Dx(r) is written as

DxðrÞ ¼ e0ExðrÞ þ PxðrÞ
¼ e0ExðrÞ þ PL

xðrÞ þ PNL
x ðrÞ

¼ e0ExðrÞ þ e0v
1
xðrÞExðrÞ

þ e0v
Kerr
x ðrÞExðrÞExðrÞExðrÞ; ð8Þ

DxðrÞ ¼ e0ð1þ v1xðrÞ þ e0v
Kerr
x ðrÞExðrÞExðrÞÞExðrÞ:

ð9Þ
Finally, we can write

DxðrÞ ¼ exðrÞExðrÞ; ð10Þ

and the dielectric tensor e(r) is split into a linear

part eL(r) and a nonlinear part eNL(r)
DxðrÞ ¼ eLxEðrÞ þ eNL
x EðrÞ; ð11Þ

with

eLxðrÞ ¼ e0ð1þ v1xðrÞÞ; ð12Þ
and

eNL
x ðrÞ ¼ e0v

Kerr
x ðrÞExðrÞExðrÞ: ð13Þ

If the dielectric permittivity were known in Eq.

(10), it would be possible to rigorously resolve

Maxwell equations using the factorization rules.

This is done through an iterative method which

calculates at each step the electric field, from which

we deduce the dielectric permittivity from Eq. (13).
2.2. Iterative method

One way to rigorously resolve the nonlinear

Maxwell equations is to make iterations with re-

spect to the nonlinear permittivity, resolving a lin-

ear diffraction problem at each step. The first

iteration corresponds to the linear case. The non-
linear effect lies in the change of the dielectric per-

mittivity tensor e(r). The second iteration is made

replacing the linear dielectric permittivity of the

grating media with the new one calculated with

Eq. (13) where the electric field is the one calcu-

lated during the preceding iteration step.

Due to the periodicity of the device, we project

Maxwell equations onto a pseudo-Fourier basis.
In view of solving numerically the equations, we

must truncate the basis to 2N + 1 unknown Fou-

rier components of the electric and magnetic field.

These components are put into columns vectors

denoted [E] and [H]. Eq. (13) contains product of

functions so that a factorization must be made,

using suitable factorization rules. It will be done

in the same way as the one used in the FFF meth-
od, the difference lying in the fact that iterations

have to be considered. In view of linearizing Max-

well equations (Eqs. (1) and (2)), we rewrite Eq.

(10), at the {j}th iteration step, as

D
fjg
x;NL ¼ efj�1g

x;NLE
fjg
x;NL; ð14Þ

so that the new set of linearized Maxwell equations

reads

curlE
fjg
x;NL ¼ ixl0H

fjg
x;NL; ð15Þ
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curlH
fjg
x;NL ¼ �ixefj�1g

x;NLE
fjg
x;NL: ð16Þ

In Eq. (14), the product efj�1g
x;NLE

fjg
x;NL ¼ D

fjg
x;NL is a

discontinuous product of discontinuous functions.

To do its factorization, we introduce a continuous
vector F

fjg
e;x;NL defined by

F
fjg
e;x;NL ¼

Efjg
x;NL;T1

Dfjg
x;NL;N

Efjg
x;NL;T2

0
BB@

1
CCA; ð17Þ

where T1, T2 are two tangential vectors to the grat-

ing surface, N is its normal vector, and E
fjg
x;NL;T1

¼
E

fjg
x;NL � T1. This continuous vector F

fjg
e;x;NL is related

to the discontinuous electric field vector by the
relation

E
fjg
x;NL ¼ Cfj�1g

e;x;NLF
fjg
e;x;NL; ð18Þ

where Cfj�1g
e;x;NL is a 3(2N + 1) · 3(2N + 1) matrix, so

that Eq. (14) becomes

D
fjg
x;NL ¼ efj�1g

x;NLC
fj�1g
e;x;NLF

fjg
e;x;NL: ð19Þ

F
fjg
e;NL being continuous, the factorization is done

using the direct rule

D
fjg
x;NL

h i
¼ sefj�1g

x;NLC
fj�1g
e;x;NLt F

fjg
e;x;NL

h i
; ð20Þ

where sfb is the Toeplitz matrix whose (n,m) entry

is fn�m. In a second step, we have to do the factor-

ization of the continuous product

F
fjg
e;x;NL ¼ Cfj�1g

e;x

� ��1

E
fjg
x;NL: ð21Þ

This is done using the inverse rule

F
fjg
e;x;NL

h i
¼ sCfj�1g

e;x;NLt
�1

E
fjg
x;NL

h i
: ð22Þ

We thus obtain

D
fjg
x;NL

h i
¼ sefj�1g

x;NLC
fj�1g
e;x;NLt F

fjg
x;NL

h i

¼ sefj�1g
x;NLC

fj�1g
e;x;NLtsC

fj�1g
e;x;NLt

�1
E

fjg
x;NL

h i
: ð23Þ

Introducing a matrix Qfj�1g
e;x;NL defined by

Qfj�1g
e;x;NL ¼ sefj�1g

x;NLC
fj�1g
e;x;NLtsC

fj�1g
e;x;NLt

�1
; ð24Þ

the factorization of the product in Eq. (14) finally

reads
D
fjg
x;NL

h i
¼ Qfj�1g

e;x;NL E
fjg
x;NL

h i
: ð25Þ

This shows that the Toeplitz matrix sefj�1g
x;NL t which

would have been introduced by the Laurent�s rule
applied to Eq. (14) has indeed to be replaced by
the more complicated matrix Qfj�1g

e;x;NL. It is then pos-

sible, as was done in the FFF method [2–4], to ex-

press the M matrix defined by

d

dy

Efjg
x;x;NL

h i

Efjg
z;x;NL

h i

H fjg
x;x;NL

h i

H fjg
z;x;NL

h i

0
BBBBBBBB@

1
CCCCCCCCA

¼ M
fj�1g
x;NL

Efjg
x;x;NL

h i

Efjg
z;x;NL

h i

H fjg
x;x;NL

h i

H fjg
z;x;NL

h i

0
BBBBBBBB@

1
CCCCCCCCA
: ð26Þ

Solving the nonlinear Maxwell equations requires
the calculation of the matrix M

fj�1g
x;NL with the val-

ues of the nonlinear dielectric permittivity calcu-

lated at the end of the preceding iteration. We

thus need to calculate the Fourier components

of the nonlinear dielectric permittivity defined by

Eqs. (12) and (13). Let us examine the continuity

of the different functions in view of making the

factorization of Eq. (13). The term eNL
x ðrÞ vanishes

outside the nonlinear medium, so that the product

in Eq. (13) is always discontinuous across the

boundary of a nonlinear medium. If the electric

field components are discontinuous, this product

corresponds to the case 3 enounced by Li [1] for

which no factorization rule can be applied. Never-

theless, it is possible to calculate its Fourier com-

ponents using the FFT algorithm if the
dependence of efj�1g

NL ðrÞ with respect to r is known.

This can be made using Eq. (13), but it requires

the knowledge of the electric field map in the

coordinate space.

2.3. Electric field map reconstruction and calcula-

tion of the Fourier components of the dielectric

permittivity

At the end of the {j � 1}th iteration, in view of

calculating the electromagnetic field map, we lay

out the Fourier components ½Efj�1g
x;x;NL�; ½E

fj�1g
z;x;NL�;

½H fj�1g
x;x;NL�; and ½H fj�1g

z;x;NL�. We deduce at an any ordi-

nate yi the Fourier components ½Efj�1g
y;x;NL� from

Maxwell equations which result in
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Fig. 1. Schematic representation of the grating. The substrate

and the pillars are denoted 1 with a relative permittivity

er1 = �182.4 + i43.52 the superstrate is denoted M with erM = 1

and the grooves are denoted 2, with er2 = 12.04 nm. v = 10�6

esu, h = 494 nm, d = 2e =1000 nm.
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E jf g
y;x;NL

h i
¼ � Qfj�1g

e;yy

� ��1

x�1
NL c0 H jf g

x;x;NL

h i�n

� aNL H jf g
z;x;NL

h i�
þQfj�1g

e;yx E jf g
x;x;NL

h i

þ Qfj�1g
e;yz E jf g

z;x;NL

h io
: ð27Þ

But, because of the discontinuities of E
j�1
x;NLðrÞ, its

reconstruction from its Fourier components will

lead to Gibbs phenomenon. We thus have to
reconstruct a continuous vector, namely F

ðj�1Þ
e;x;NL de-

fined by Eq. (22). Once the components ½Efj�1g
x;y;z;x;NL�

are known, one can calculate the Fourier compo-
nents of the field vector ½Ffj�1g

e;x;NL� using Eq. (22):

½Ffj�1g
e;x;NL� ¼ sCfj�2g

e;x t
�1½Efj�1g

x;NL �. The summation of

the truncated Fourier series

F
fj�1g
e;x;NLðrÞ ¼

XN
m¼�N

F
fj�1g
e;x;NL

h i
mn

� exp½iaNL;mxþ ic0z�; 8 yi; ð28Þ
in view of obtaining F

fj�1g
e;x;NLðrÞ does not introduce

any Gibbs phenomenon, because F
fj�1g
e;x;NLðrÞ is a

continuous function of the spatial coordinates.

Using the matrix Cfj�2g
e;x ðrÞ enables us to calculate

E
fj�1g
x;NL ðrÞ

E
fj�1g
x;NL ðrÞ ¼ Cfj�2g

e;x;NLðrÞF
fj�1g
e;x;NLðrÞ: ð29Þ

We thus obtain the nonlinear part of the dielectric

tensor

eKerrfj�1g
x ðrÞ ¼ e0vxðrÞE

fj�1g
x;NL ðrÞE

fj�1g
x;NL ðrÞ: ð30Þ

The programming is then the same as in the linear

case. It just requires to store the matrices Qfj�1g
e;x;NL in

order to calculate matrix Mfj�1g
e;x;NL, to store sCfj�1g

e;x;NLt

to calculate ½Ffjg
e;x;NL�, and to store Cfj�1g

e;x;NLðrÞ to cal-

culate E
fjg
x;NLðrÞ and efjgNLðrÞ. When M is y depend-

ent, a numerical integration is necessary to

resolve Eq. (26). In a lamellar grating, the M ma-

trix is y independent in the first iteration but due to

the nonlinearity, from the second iteration, the

map of the dielectric permittivity is y dependent,
and as a consequence, the M matrix is y dependent

and a numerical integration process is also

necessary.

The next numerical study lying on metallic grat-

ings where the nonlinear medium is inside the

grooves, a large groove depth will be considered

in order to obtain a significant nonlinear effect.
As a consequence, numerical problems will arise

when integrating Eq. (26). That is the reason

why we use the S-matrix propagation algorithm

[4,5] which avoids numerical problems when inte-

grating in deep metallic gratings.
3. Convergence of the method

3.1. Optogeometrical parameters of the numerical

study

The device under study is chosen in such a way
that, in the linear case, the classical differential

method will not be convergent. That is the reason

why we choose a metallic grating illuminated in

TM polarization. Moreover, we want the factori-

zation of the product eKerrfj�1g
x ðrÞ ¼ e0vKerr

x ðrÞ
Efj�1g

x ðrÞEfj�1g
x ðrÞ to be not convergent using in-

verse or direct rule, i.e. when the electric field

and the nonlinear susceptibility are simultaneously
discontinuous. This is the case when the nonlinear

media is inside the groove.

In order to obtain a significant nonlinear effect,

we have to choose deep grooves, and the optogeo-

metrical parameters are chosen to obtain a reso-

nance inside the groove. A cavity resonance may

lead to a significant increase of the electric field in-

side the groove, which contains the nonlinear
media. We consider in a first time a lamellar metal-

lic grating as illustrated in Fig. 1. It is illuminated
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Fig. 2. Reflected efficiency as a function of the incident

wavelength with the optogeometrical parameters of Fig. 1.

Presence of a resonance at a wavelength around 1500 nm.
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in normal incidence and in TM polarization. The

incident wavelength is k = 1500 nm. The substrate

is made of the same metal as in the pillars, and the

superstrate is air. With such parameters, the zeroth
Fig. 3. |E| electric field reconstruction in the grating with k = 1500

phenomenon; N = 22.
reflected order is the only propagative one.

The amplitude of the incident field is equal to

106 V/m in order to increase the nonlinear effects.

The nonlinear dielectric medium chosen is silicon

and is isotropic, so that [6]

vKerr
x

� �
i;j;k;l

¼ vðdi;jdk;l þ di;kdj;l þ di;ldj;kÞ: ð31Þ

Different unity systems exist, so following our

notations, we express v in the SI system [6]:

ðvÞSI ¼ ðvÞesu
4p

ð3� 104Þ2
� ½V�2 m2�: ð32Þ

In view of testing the good convergence of the the-

ory when strong nonlinear effects occur, we choose

v = 10�6 esu in silicon, which is 2 orders of magni-

tude larger than the one used in [7]. The groove
depth is chosen equal to h = 494 nm, a value for

which we obtain a resonance process. Fig. 2 repre-

sents the reflected efficiency as a function of the

wavelength. For a wavelength close to 1500 nm,

we obtain a minimum of the reflectivity. This al-

most total absorption of the light by the grating
nm using the correct reconstruction method avoiding Gibbs
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is linked with the local field enhancement which

occurs at resonance.

3.2. Field map reconstruction and Gibbs

phenomenon

To determinate the type of resonance occurring

around k = 1500 nm, we have to visualize the elec-

tric field inside the grating when the reflectivity is

minimized. We only consider the first iteration

step, which corresponds to the linear case. We
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Fig. 4. Reconstruction of the |Ex| electric field component as a functio

Gibbs phenomenon, (b) without Gibbs phenomenon. Number of Fou
apply the fast Fourier factorization method to cal-

culate at each ordinate inside the modulated re-

gion the Fourier components of the electric field.

To obtain the electric field map reconstruction,

as explained in Section 2.3, we can calculate the
electric field in the space coordinates directly from

its Fourier components, which may lead to Gibbs

oscillations, or from the reconstruction of the con-

tinuous vector Fe,x,NL, using Eqs. (29) and (30).

We plot in Fig. 3, the electric field-map reconstruc-

tion inside a grating groove without Gibbs phe-
600 800 1000

se in nm

600 800 1000

cisse in nm

n of the x variable calculated at ordinate yi = 300 nm: (a) with

rier components: N = 22; k = 1500 nm.
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nomenon. As it was expected, we can observe in

the nonlinear media the presence of three areas

where the electric field amplitude is high. In these

areas the nonlinear effects will be the strongest.

We denote ‘‘cavity resonance’’ this type of
resonance.

In order to visualize the difference between the

two field reconstruction methods, we plot in Fig.
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Fig. 5. Convergence of the both classical differential (a) and fast Fo

reflected efficiency as a function of the number N of Fourier compone

the reflected efficiency leading to a better visualization of the conver

corresponding to the cavity resonance: k = 1555 nm.
4 the discontinuous Ex electric field component

calculated at an ordinate yi (yi = 300 nm) as a

function of the x variable. In Fig. 4(a), when the

field is reconstructed directly from its Fourier com-

ponents, we can observe the presence of oscilla-
tions, which is a characteristic of the Gibbs

phenomenon. In Fig. 4(b), the electric field is de-

rived from the reconstruction of the continuous
10 15 20

 (1-st) iteration
 (5-th) iteration

r components

10 15 20

 (1-st) iteration
 (5-th) iteration

ourier components

urier factorization (b) methods in TM polarization: plot of the

nts in linear and nonlinear case. In order to get larger values of

gence, the wavelength is chosen slighty different from the one
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vector Fe,x,NL(r): there is no Gibbs phenomenon.

That is the reason why the reconstruction of the

electric field in the coordinate space will be made

systematically from the reconstruction of the con-

tinuous vector Fe,x,NL(r).
3.3. Necessity of the fast Fourier factorization

method, in linear and nonlinear optics

The classical differential method uses only the

direct rule to calculate the Fourier components

of the product in Eq. (14). In Fig. 5(a) is plotted

the reflected efficiency as a function of the number
of Fourier components using the classical differen-

tial method, and as was expected, we can observe

the poor convergence of the method. The full line

corresponds to the first iteration (linear case) while

the dotted line corresponds to the fifth iteration

(nonlinear case). As it will be seen in the next sec-

tion, the fifth iteration is sufficient to take into ac-

count the nonlinear effect (Fig. 6). The same plots
are then reported in Fig. 5(b) using the FFF meth-

od. We see the good improvement of the conver-

gence. Moreover, we can observe that the

convergence is slightly slower in the nonlinear

case. This phenomenon was expected due to the
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Fig. 6. Representation of the reflected efficiency calculated at

different iteration steps. The dielectric permittivity is calculated

through Eq. (30) (full line) and Eq. (33) (full line + squares);

k = 1480 nm, N = 20.
necessity of the field reconstruction in the nonlin-

ear case.

3.4. Convergence of the iterative method

Let us now study the convergence of the FFF

method as a function of the iteration step number.

In Fig. 6 is plotted the zeroth-order reflected effi-

ciency calculated at a wavelength equal to 1500

nm as a function of the number of iteration steps.

The nonlinear effect is taken into account from the

second iteration and the value of the reflected effi-

ciency converges toward the final result, oscillating
around it. From this observation, we can submit a

method improving the convergence. The nonlinear

dielectric permittivity map calculated at the

{j � 1}th iteration step is averaged with the one

calculated at the {j � 2}th iteration step

efj�1g
x ðrÞ ¼ 1

2
eKerr j�2f g
x;NL ðrÞ

�

þe0v
Kerr
x E

fj�1g
x;NL ðrÞE

fj�1g
x ðrÞ

�
: ð33Þ

The reflected efficiency calculated with the new
method (Eq. (33)) is superimposed to the clasical

one (Eq. (30)) in Fig. 6; we can observe the nice

improvement of the convergence. Indeed, when

averaging two successively obtained dielectric per-

mittivity maps, five iterations are sufficient to ob-

tain the convergent result.

3.5. Nonlinear effects in a lamellar metallic grating

The convergence of the method shown in the

previous section enables us to study the nonlinear

effects on the grating. Using Eq. (33), we plot in

Fig. 7 the reflected efficiency as a function of both

the number of iterations and the wavelength. The

nonlinearity shifts the wavelength of resonance to-

wards larger values. As a consequence, the proper-
ties of the grating are modified due to nonlinear

effects. This problem is crucial in the design of

gratings for high-power lasers. Indeed gratings at

these energies may have properties significantly

different from those calculated with a linear model.

Moreover, our numerical calculations involve a

lamellar grating, the differential theory is able to

resolve Maxwell equations in many other geome-
tries (sinusoidal, trapezoidal, etc.).



Fig. 7. Representation of the reflected efficiency as a function of both the iteration step amplitude and the wavelength. Visualization of

the nonlinear Kerr effect: shift of the wavelength of resonance; N = 15. The dielectric permittivity is calculated through Eq. (33).
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4. Conclusion

Despite the absence of factorization rule of

Maxwell equations in nonlinear periodic media,
we have extended the fast Fourier factorization

method in nonlinear optics. The iterative method

requires the reconstruction of the electric field

map inside the grating and the use of the FFT

algorithm. The convergence of the method in non-

linear optics with respect to the number of Fourier

components is as good as the one obtained with

the FFF method in linear optics. The small differ-
ence is fully explained by the necessity in the non-

linear case to reconstruct near-field in the

nonlinear media, which requires a number of Fou-

rier components larger than the one needed in the

calculation of the efficiencies and thus, of the far

field. The convergence of the method with respect

to the number of iterations with high nonlinear ef-

fects is shown, and a method is proposed to in-
crease the convergence speed. It is possible to

study strong nonlinear effects in metallic gratings

illuminated by plane waves with high amplitude.

Devices aimed by this work are gratings used in
ultrahigh intensity lasers. Indeed, these lasers use

a chirped pulse amplification where a first grating

stretches the impulsion, and after amplification

of the impulsion energy, a second grating com-
presses the impulsion. Energies are so high, that

Kerr effect in air or in dielectrics may play a non-

negligible role in the reflected efficiency value.

Such a method is useful to design gratings for

high-power lasers.
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