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Abstract

A new formulation of the Fourier modal method that applies fast Fourier factorization [J. Opt. Soc. Am. A 17 (2000)
1773] is presented for slanted lamellar gratings in conical mountings. A new eigenvalue problem in the grating region is
derived, and used to study metallic gratings. Comparison of the convergence speed of the numerical results given by the
conventional methods and the new one shows a spectacular improvement. The fast Fourier factorization method can be
also applied to various volume slanted-fringe gratings with discontinuous permittivity variations. © 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Recently, the differential theory of gratings was revised with fast Fourier factorization method (FFFM)
[1]. A strong improvement of the convergence was obtained for TM polarization. Developed in paper [1]
FFFM is applicable to any theory that requires the Fourier analysis of continuous products of discon-
tinuous periodic functions. This paper is aimed at improving the convergence of the Fourier modal method
(FMM) [2] for slanted lamellar gratings in conical mountings. In the FMM (also known as the modal
method by Fourier expansion [3-6], the rigorous coupled-wave method [7-13], and the rigorous charac-
teristic wave method [14,15]), both the electromagnetic fields and the permittivity function are expanded
into Fourier series. However in conventional formulation FMM slowly converges for metallic gratings in
TM polarization [9]. Recent papers [11,12] proposed a reformulation of the propagation equations and the
eigenvalue problem in the grating region, which constituted great progress for unslanted lamellar gratings.
The remarkable work of Li [16] provided mathematical foundation for a new formulation of the FMM.
Using three theorems of Fourier factorization, Li established the following extremely important conclusion:
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Although the equations of the original modal theory were exact — both those written in spatial variables and
those in discrete Fourier space — the latter ones become ill-suited when truncated by any numerical
treatment. Li proposed appropriate factorization rules to avoid this problem. In paper [1] these rules were
used to establish new propagation equations for the differential method that can be truncated without any
numerical problems. These equations were established for arbitrary profiles for TM polarization in planar
(nonconical) mountings.

In this paper for the general case of conical mountings, the FFFM is used for modal analysis of volume
and/or surface-relief slanted-fringe gratings with discontinuous permittivity variations. Numerical results
are given for most interesting particular case of metallic slanted lamellar diffraction gratings. A comparison
of the convergence speed of the numerical results given by the conventional methods and the FFFM based
method is made.

2. Modal solution in the grating region

The geometry of grating diffraction problem in conical mountings is depicted in Fig. 1 for the particular
case of surface-relief slanted lamellar diffraction grating.

In the present analysis, without any loss of generality, the following geometry is used: (1) grating vector
K is in the xz plane, (2) the boundary normal is in the z direction, (3) the plane of incidence, that is formed
by incident wave vector k; and the z-axis, makes an angle § with respect to the x-axis as shown in Fig. 1. A
linearly polarized electromagnetic wave is obliquely incident at an arbitrary angle 6 on a slanted-fringe
mixed amplitude and phase planar grating of slant angle o bounded by two different media. The super-
stratum and the substrate (regions 1 and 3) are homogeneous with relative permittivities ¢; and &, re-
spectively. In the grating region (region 2, 0 < z < b ) permittivity ¢ is modulated periodically along grating
vector K,
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Fig. 1. Geometry of a grating diffraction problem in conical mountings for the particular case of surface-relief slanted lamellar dif-
fraction grating.
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e(x,z) = Zem exp(imK - r), (1)
m

where ¢, is the mth Fourier component of the complex relative permittivity &,
K=Kx+K.z, K,=Kcoso, K, =—Ksino, K =2n/4,

X, ¥, Z are unit vectors, and A is the grating period.
In region 1, the incident normalized electric-field vector is

E) = aexp(—ik; - r), (2)
with

ki = kX+ kY +k.z, k.=ksin0cosd, k, =k sinfsing,

ki.=hkicosO, ki=kie, ky=2n/, (3)

A is the free-space wavelength, and u is the polarization unit vector given by

i=uX+uy+uiz wu =cosycoslcosd—sinysind, wu, = cosycoslsind+ sinycosd,
u, = —cosysin0, 4)

where ¥ is the angle between the polarization vector and the plane of incidence.

For ¢ = 0° and y = 90°, the magnetic field vector and the electric field vector, respectively, are per-
pendicular to the plane of incidence.

In the grating region 2 (0 < z < b), Maxwell’s equations are expressed as

V x E = —iopH, V x H = iwge(r)E. (5)

The time dependence of all field quantities is assumed to be of the form exp(iwt), w is the angular frequency
of the incident electromagnetic plane wave; y, is the permeability of free space, which is assumed to be the
same in all regions.

From the phase matching conditions and the theory of sets of differential equations with periodic co-
efficients it follows that in the modulated region (region 2) the electric and magnetic fields may be expressed
as expansions in the terms of modes as

E,=> A4E, H,=) 4H, (6)
q q
E, = ZE/qiv H, = ZHﬁli? Ejy = Zenjq exp—i(kux + kyy — A ug2)],
e, )
Hj, = (e0/ 1) Z Pyjq @Xp[—i(kucx + kyy — A ug2)],
where mode numbers are ¢ = 1,2,3,..., mode amplitudes 4, are unknown constants to be determined
from boundary conditions, j (j = X, ¥,2) is the unit vector along the j-axis, n = 0,£1,4+2,+3,...,
ke =k, —nK,, A ., =P,K+nk, (8)

and P, are unknown parameters corresponding to the g particular solution of the Eq. (5). Note that, if the
total number of space harmonics retained in Rayleigh expansion in the superstratum region is (2N + 1) and
the same number is in the substrate region also, then (2N + 1) pseudo-Fourier harmonics have to be re-
tained in the field expansion (7) and n = 0,+1,+2,£3,... &N, ¢ =1,2,3,...,4(2N + 1).
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Throughout the paper, we use the subscripts i,/ as coordinate indices, and the subscripts ¢ as the par-
ticular solution of Eq. (5) indices. For convenience, ¢ subscripts will be henceforth suppressed unless
otherwise stated.

3. Reformulation of the eigenproblem with fast Fourier factorization method

In accordance with FFFM we consider the E, and E, components of the field in the grating region in
terms of tangential £t and the normal £y components

Er =E.sino+ E, cosa,

Ex =E cosa — E.sina, ©)
Inverting Eq. (9) leads to

E, =sE E

kst (o
where following abbreviations are used:

s=sino, ¢ =cosa.
The right-hand side of the second equation of Eq. (5) contains product ¢E with components

eE, = seET + ceEn, (11)

¢k, = ceEt — seEN. (12)

The E, and Er components are tangential to the surface of permittivity discontinuities in grating region
and, thus they are continuous functions. The product ¢E, and the first term on the right-hand side in Eqgs.
(11) and (12), ¢Et, include the product of the discontinuous function ¢ by continuous functions £, and Er,
respectively. Following conclusion 1 of Li [16], the Fourier components of the products ¢E, and ¢Et can be
found through the Laurent’s rule. Although ¢ and Ey are discontinuous, the product ¢Ey in Egs. (11) and
(12) is continuous (since it is proportional to the component of D normal to the surface of permittivity
discontinuities in grating region). Thus the calculation of the Fourier components of the product ¢Ey re-
quires the use of conclusion 2 of Li [16], i.e. the use of the inverse rule.

We then get
e = sletfer) + | ] e (13)
eer] = ] 19
e = eleler] |1 e (13

where [¢;] denotes the vector constructed with the pseudo-Fourier coefficients of E; such that its m entry is
emi> ||f|| denotes the Toeplitz matrix generated by the Fourier coefficients of f such that its (n,m) entry is
fnm, superscript —1 denotes the matrix inverse, and

2 (i), sk (16)
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Substituting Eq. (9) into Eqgs. (13) and (15), we find
[ee.] = Ale] + Ble.], (17)

%‘jhh (18)

ﬂ47B=WQM— 4) (19)

From Eq. (18), it follows that
[e:] = G([ze:] — Ble.]), (20)

[ce:] = Ble] + <02||8|| +s7

where

1

A:s2||s||—i—c2 .

where
A
G= <cz||s|| + 57 8‘ ) , (21)
The product ¢E, can be obtained from Maxwell’s equations (5)
i (O0H, OH,
E,=—— | —2 - —= 22
¢ ey < ox Oy >’ (22)

Substituting expansions for E; and H; from Eq. (7) into Eq. (22), we find in the Fourier space
[ce.] = —k[h)] + Kyo[h], (23)

where k is a diagonal matrix, with diagonal elements &, /k, k,o = (’;—0) I, and I is the identity matrix.
Substituting Eq. (23) into Eq. (20), we find

le:] = G (kyo[s] — k[hy] — Ble.]). (24)
From Egs. (17) and (24), it follows that
[ee;] = (A — BGB)le,] + BGk,[,| — BGK[A,]. (25)

Substituting Egs. (7), (14), (24) and (25) into Maxwell’s equations (5) and eliminating e,. and %,. com-
ponents of the field, we obtain the set of algebraic equations in a matrix form:

(W—PI)g] =0, (26)
where
S —k,(GB —kyoGk  (k},G —1T) e,
ko 0 (S — kGB) (I-kGk)  kGky e
W="%| kok (A-BGB-L)) (S-BGk) 0 AL (27)
(K — [le]) kKo 0 S h,

In Eq. (27), each element of the column vector [g] is itself a column vector [e;] or [/,], and S is a diagonal
matrix, with the (n, n) element being equal to nK. /ko.

In order to solve the linear system equation (26) on a computer, we have to truncate the matrices.
Submatrices in the matrix W are (2N + 1) x (2N + 1) matrices, where (2N + 1) is the number of pseudo-
Fourier harmonics retained in the field expansion (7), with the nth row of the submatrix corresponding to
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the nth harmonic. Thus, the matrix W is 4 x (2N + 1) by 4 x (2N + 1) square matrix, and Eq. (26) has the
form of eigenvalue equation. A numerical solution of the eigenvalue problem, Eq. (26), gives 4 x (2N + 1)
eigenvalues P, and eigenvectors [g,]. According to Eq. (6) the fields in the grating region may be written as a
superposition of eigenmodes with unknown coefficients 4,, where ¢ = 1,2,3,...,4 x (2N + 1).

The diffracted fields outside the grating region may be expressed in the form of Rayleigh expansions. The
amplitudes of the diffracted fields together with A, are calculated by matching the tangential electric and
magnetic fields at the two boundaries of the modulated region (z = 0 and z = b).

4. Comparison with the previous formulations

In the conventional formulation [3-9] the Laurent’s rule is used

e = lelled,
] = |+ [ Ol ~ K1m), 29)
and
N 0 kaltk )L~
Wo-2| mﬂf%)ﬂ—zum K (29)
0 [a) Kk 0 s

A comparison of Eq. (28) with Egs. (17) and (24) shows that matrix W in conventional formulation (Eq.
(29)) may be obtained from Eq. (27), if

1

&

A=|el, B=0, G= (30)

In paper [10] the conventional formulation was revised and the matrix ||1/¢|| in Egs. (28) and (29) was
replaced by ||¢[|”'. However only insignificant improvement in convergence was obtained [13].

The new formulation for unslanted gratings was recently suggested [11,12] where in Eq. (28) ||1/¢|| " and
le| " are used instead of ||¢|| and ||1/¢||, respectively. It means that inverse rule [16] is used, and in our
notations in Eq. (27)

1

&

-1

A= , B=0, G=¢|". (31)

This new formulation significantly improved the convergence of the method for metallic unslanted (o = 0)
lamellar gratings for TM polarization. In this paper for slanted grating we will call formulation Egs. (27)
and (31) — “inverse” formulation.

Note that in formal way, Eq. (30) for the conventional formulation and Eq. (31) for the “inverse”
formulation may be obtained from Egs. (19) and (21) at s =1, ¢ = 0 and at s = 0, ¢ = 1, respectively.

5. Numerical results
On the basis of the above presented theory a computer code was built. The computer code was written to

accommodate the new FFFM based formulation and the conventional and “inverse” formulations also.
The numerical results obtained from the code were compared with the results that are available in the
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present literature for particular case of unslanted gratings in conical mountings [11,17] and with the results
obtained by differential method [1] for slanted grating for TM polarization. Unfortunately, to our
knowledge, for metallic slanted grating in conical mountings exact results are not available. Here we are
therefore forced to use the “saturated” parts of the convergence curves to judge the convergence of various
numerical implementations.

In order to investigate the convergence of the FFFM based modal method for metallic gratings, we
consider an arbitrarily chosen gold lamellar grating etched on gold substrate with complex refractive index
0.22 —16.71. Linearly polarized plane wave is incident at an angle of incidence § = 30° and at an azimuthal
angle 6 = 30° (Fig. 1). The incident medium is air. The electric-field vector is in the plane of incidence, so
that angle = 0. The grooves of the lamellar grating are slanted at angle « = —45°, the fill-in ratio (the
duty cycle) of the grating is 0.5. The grating has a thickness » = 0.3 pm. The incident (vacuum) wavelength
is 2 = 0.8 pm, and the grating period is 4 = 0.7071 pm.

Figs. 2 and 3 show the convergence of the diffraction efficiencies as N increases, where 2N + 1 denotes
the total number of space harmonics retained in Rayleigh expansions. The integer N is henceforth called the
truncation order. We present two figures for the same grating in order to show in details the convergence
curves frequently oscillating at N < 30. Fig. 2 shows the convergence of the zero-order diffraction effi-
ciencies computed by modal method with the FFFM based formulation (filled circles and solid curve), with
the conventional formulation (filled triangles and dash-dotted curve), and with the “inverse” formulation
(crosses and dotted curve) as N increasing from 2 until 30.

The numerical results for the convergence of the zero-order and first-order diffraction efficiencies are
shown in Fig. 3 for N increases from 2 to 100.

For both diffracted orders, the efficiencies computed with the FFFM based formulation converge re-
markably quickly as N increases. For the conventional and “inverse” formulations the results of calcula-
tions oscillate and converge very slowly; in fact, they do not begin converging until N > 60. We may see
from Table 1 and Fig. 3 that the FFFM formulation with N =9 (19 retained orders) provides more ac-
curate results than the conventional and “inverse” formulations with N = 100 (201 retained orders).
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Fig. 2. Convergence of the zero-order diffraction efficiencies computed by modal method with the FFFM based formulation (filled
circles and solid curve), with the conventional formulation (filled triangles and dash—dotted curve), and with the “inverse” formulation
(crosses and dotted curve).
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Fig. 3. Convergence of the zero-order and first-order diffraction efficiencies computed by modal method with the FFFM based for-

mulation (—), with the conventional formulation (— - — - —-), and with the “inverse” formulation (- - ).
Table 1
Numerical values of the first-order diffraction efficiencies (%) computed by modal method with different formulations
N FFFM based formulation “Inverse” formulation Conventional formulation
9 56.366 71.091 36.557
40 57.777 50.043 47.865
50 57.831 53.060 43.922
60 58.049 47.950 46.128
70 58.187 49.434 48.930
80 58.324 51.450 50.928
90 58.411 52.968 52.328
100 58.491 54.039 53.351

In this table, NV is the truncation order. The grating is etched on metallic substrate with complex refractive index 0.22 — i6.71. The
grooves of the lamellar grating are slanted at angle o = —45°, the fill-in ratio of the grating is 0.5, the grating period is 4 = 0.7071 pm
and the thickness » = 0.3 um. Linearly polarized plane wave is incident at an angle of incidence 6 = 30° and at an azimuthal angle
0 = 30°, the incident (vacuum) wavelength is A = 0.8 pm. The electric-field vector is in the plane of incidence, so that angle y = 0.

6. Conclusion

A new formulation of the FMM that applies the rules of FFFM for slanted-fringe gratings in conical
mountings has been presented. The new formulation leads to a convergence everywhere, and although the
FFFM based formulation, the conventional and “inverse” formulations are rigorous at the limit of infinite
series, a great difference appears at the numerical implementation level. The numerical results have con-
vincingly shown that the FFFM based formulation of the eigenproblem provides highly improved con-
vergence rates for metallic slanted gratings in the planar and conical mountings.
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