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Abstract

We present a new approach to study second harmonic generation at grating couplers where we take full advantage of the fact
that, in this type of second harmonic generation, there is a resonant excitation of normal modes of the grating coupler {guided
wave or surface plasmon ). Therefore the analysis reported here is developed in the framework of the coupled-mode formalism.
This allows us to show that the associated diffraction phenomenon, which occurs tn nonlinear optics, can be handled using the
linear theory of diffraction. The resulting simplicity, which arises from the simultanecus use of the coupled-mode and linear
diffraction theories, allows an easy physical insight in the process of second harmonic generation at grating couplers. Proceeding
along these lines, we derive not only the guided wave amplitude but also that of the radiated diffracted orders at the second
harmonic {requency.

The grating coupler behaves as an optical resonator
and the normal modes may be excited at the pump

1. Introduction

Second harmonic generation at grating couplers and/or the SH frequency.
usually makes use of the resonant excitation of nor- SHG at grating couplers has been studied rigor-
mal modes of the structure which are guided waves ously, i.e. in a non perturbative way with respect to
in x* nonlinear waveguides or surface plasmons along the groove depth of the grating, in Refs. [1-3]. In
an interface between a metal and a ¥ medium. The this theory {1-3] (referred to as method 1), no hy-
associated electromagnetic resonance gives rise to an pothesis is made regarding the y-dependence of the
enhancement of several orders of magnitude of the field map (the y-axis is perpendicular to the mean
second harmonic intensity as compared to the off- plane of the grating). The differential equations, de-

resonance situation. Here is the interest of this type
of geometry for second harmonic generation (SHG).

! On leave of the Institute of Solid State Physics, Bulgarian Acad-
emy of Sciences, 72 Trakia blvd, Sofia 1784, Bulgaria.

duced from Maxwell equations, which describe the
electromagnetic fields at the existing frequencies are
integrated along y. Thus method 1 applies regardless
to the fact that the resonant conditions are fulfilled
or not. As a result, this kind of theory is general. But
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this method has the two following disadvantages: (i)
it is computation time consuming and (ii) it only
works easily for plane waves. Point (it) is a serious
drawback when dealing with second harmonic gen-
eration in the presence of sharp resonances.

We propose here another way to study SHG at
grating couplers which takes into account the fact
these grating couplers in guided wave nonlinear op-
tics are used under the following conditions:

— it is possible o isolate a single resonance,

- the angle of incidence, 8, is chosen in such a way
1o excite an evanescent diffracted order resonantly,

- the angle of incidence, 8, remains close to its res-
onant value (9,,): i.e. the difference 6~6,, is of the
order of a few times the half-width at half-maximum
of the resonance curve,

Under these conditions, the coupled-mode formal-
ism [4,5] is particularly well suited for this kind of
study since it shows that the transverse field map, at
the second harmonic frequency, corresponds to the
one of the finear regime. Thus in the nonlinear case,
the transverse field map is k#own and it is no longer
necessary to integrate along y, as required in method
1. Hence an important simptification in the study of
SHG at gratings.

It is the aim of this paper to consider this new point
of view where one takes full advantage of the fact that
these grating couplers are used close to an isolated
FESOMANCE,

The paper is organized as follows; Sect. 2 is de-
voted to the theoretical analysis along with some gen-
eral considerations concerning the simultaneous use,
for the study of grating couplers in nonlinear optics,
of the coupled-mode formalism and of the finear dif-
fraction theory. The case of the undepleted pump
plane wave is considered in Sect. 3. The question of
phase matching, using space harmonics, is also treated
in this section. Numerical results, concerned with
guided wave and surface plasmon enhanced SHG at
grating couplers, are presented in Sect. 4 not only for
the guided wave intensity at the $H frequency but also
for the radiated diffracted orders at this frequency.
These results are compared with the corresponding
ones derived using the full numerical method !,

2, Theory

The system under consideration is depicted in Figs.
1. A pump beam of circutar frequency w is incident,
under incidence 8, on a coated grating with period-
icity d and groove depth 8. The coating layer is a y?
nonlinear medium. This grating coupler may support
gulded waves or surface plasmons: Fig. la corre-
sponds to an interaction between guided modes at the
pump () and at the SH (2w) circular frequencies,
whereas in Fig. 1b surface plasmons are involved at
these two frequencies.

Throughout this paper ¢/9z=0. Thus the solu-
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Fig. |, Geometry and notations for SHG at grating couplers: (a)
when guided modes are involved at w and at 2w, (b) when sur-
face plasmons are involved at w and at 2w. The specular dif-
fracted order at purnp frequency is called 0,; Oy, and + I, rep-
resent the 0 and + I diffracted orders at the SH frequency. With
the numerical values used in Figs. 3 and 4, these two diffracted
orders are radiated.
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tions at the i;)u mp and at the SH frequencies are either
TE or TM polarized and are characterized by &;(x,
y) and #;{x, ») respectively.

2.1. The requirements of the coupled-mode
SJormalism

In order to use the coupled mode formalism [4,5],
one has: .

{a) to define the unperturbed structure and to look
for its normal modes, :

(b} to specify the source terms,

(c) to write down the equations of evolution of the
normal modes amplitude at @ and at 2e.

In the case of SHG at grating couplers (Figs. 1),
the sttuation is the following:

Point a: the unperturbed structure and its normal
modes.

The unperturbed system is constituted by the grat-
ing coupler without any incident beam.

For a mode n1 at the SH frequency, let us define:

@, (2w, x, V)= Eamlx, ¥), inthe TE case,
=#y (%, y), inthe TMecase. (la)

It is convenient to consider first the associated smooth
structures i.¢., the ones which are deduced from those
in Figs. 1 by letting the groove depth & goes to zero.
In this case, @, has the following form

@, (20, X, ) = €2 Wam(¥) exP{iF2.mX) . (1b)

In Eq. (1b), ¢, is the amplitude of mode .

When the groove depth is different from zero, due
10 the periodicity along x, ¥, 1s no longer a function
of only the y-coordinate but becomes also x-depen-
dent with periodicity d. Thus w, ,,, can be expanded
in Fourier series and Eq. (1b) becomes

@, (20, X, )
=Com & P2mnal(y) XP[i(P2m THO)X], (1c)

where o=2n/d.

It is shown in Ref. [6] that outside the modulated
region ¢s,.,. has a known exponential dependence
with respect to y. Thus, in regions | and 3, &, can be
expressed as a Rayleigh expansion which writes

qu( 2&)1 X, .V) = CZ.m Z aq,z,m,rr
n

Kexp{i[ (yam THIIX T Cg2mn¥ ]} (1d)
with g=1, 3,

agl,m,n-{-(?Z,rn—l'ng)z:ké(zw): (EE)

(2w = /e, (2w) (2a/c),

€, is the relative permittivity of medium ¢, @420
Pa.m and &5, . are known from the solution of the
linear homogencous problem [6].

Inside the modulated region, no simple expression
exists for the y-dependence of the nth space har-
monic; the y-dependence of @, is obtained using the
rigorous theory of diffraction [6].

At circular frequency , for the quanlity $,(®, X,
) associated to mode p, one has to make the substi-
tution (2, m, n)—- (1, p, s)

Due to the existence of the grating, each mode isa
sum of an infinite number of space harmonics, or
equivalently, of diffracted orders with longitudinal

_wavevector componéent:

1?l.p.s =%1p +35a
for the space harmonic s of mode p at w,
f2.m,n =7m +no

for the space harmonic # of mode m at 2e.
Since the device is leaky [6], 1, and 72 ,, are com-
plex numbers even in the absence of dielectric losses.
Notice that the diffracted orders n, for which
Yo+ na<k, (2w), are radiated in the upper medium.

Point b: the source terms.

There are two sOurce Lerms:

- one of them, called 2% (., y) in what {ollows, de-
scribes the in-coupling of the pump beam,

— the other ones account for the nonlinear polart-
zation at @ and at 2w and will respectively be de-
noted by 2Nt (e, x, ) and 2V (2w, x, y). When the
undepieted pump approximation applies, the nonlin-
ear polarization at w is neglected.

According to Ref. [7], the nonlinearity of the metal
(Fig. 1b) is small as compared to the one of the die-
lectric which coats the grating. Thus in the case of
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Fig. | b, only the nonlinearity of the dielectric is taken
into account,

Point c: the equations of evolution.

It is shown in Refs. {4,5] that the existence of
source terms leads to x-dependent mode amplitudes.
A brief demonstration of the equation obeyed by these
amplitudes is given in the appendix.

Throughout this paper, it is assumed that the elec-
tromagnetic (EM) fields at circular frequencies & and
2w are such that a space harmonic 5o of mode p at @
and a space harmonic 1, of mode m at 2w are excited
close to resonance. This means that the phase-maich-
ing condition is nearly fulfilied (nearly: within the
width of the resonance curves respectively at 2 and
at 2e), This is the most interesting situation. These
two space harmonics are the dominant ones in the
EM field expansion Eq. {1¢). Thus in the equations
of evolution of the mode amplitudes, only these res-
onant, i.e. phase-matched, space harmonics are
retained.

2.2, Amplitude of the diffracted orders

2.2.1. The guided wave

From Eg. (A7) of the appendix, the following
equations are obtained

— at the pump frequency for the mode amplitude

¢ H(x):

de .
Nipm 52 = =0 (B pn(0) 2™ (@, %, 7))
Xexp(if} psx)

— i E (1) 2 (X p)) exp(ifinX)  (23)

— at the SH frequency for the mode amplitude
CZ.m(x):

de; . .
Nz‘m,ngﬁ = —120¢ EY o (1) 2T (20, X, 1) )
XexXp (% mn0¥) {2b)
In Eqs. (2):

(i) E; o and Hy ., ., represent the y-dependence
of the electric and magnetic fields corresponding to
the space harmonic (m,n),

(ii} the superscript t denotes the adjoint structure
deduced from the original one by transposition of the

dielectric permittivity and the magnetic permeability
matrices {4]; the quantity 75 .., ., fulfills:

}7‘2ms,no + ?2,m,no =0. (38-)

For the space harmonic {(p, 55) at circular frequency
¢, one has to make the substitution: (2, m, #p)—(1,
P, 50).

(iti} The brackets including the nonlinear polari-
zation 2V x, ¥) account for the nonlinear effect in
the guiding layer {or which:

P, x, V) =ein i (w=20—0)

X Es onn0i () ETpso i (¥)02m{x) €T p{x}

X exp[i(Fomma—Flpeo)X] (3b)
P20, x, p) =totija (R =w+w) B0 (1)

X E) ponly)et () exp(i27,50%) - (3¢)

In Egs. {(3b) and (3c¢), a summation over the re-
peated cartesian indices /, j, # is understood. The other
bracket at circular frequency @ in Eq. (2a) describes
the incoupling of the pump beam. The corresponding
source polarization 2-(x, y) takes into account the
finite widih of the pump beam. No incident beam is
assumed at the SH frequency.

According to Egs. (3b) and (3c), Egs. (2) can be
rewritten as:

%*’— = — 1w {X) CamClp

Xexp[ —i{Fi 0+ 7150 — F2mng ) X]

—ige(x) expli(Bo +ro0—Fipadx], (4a)
dcs N i .
ar ~12w&{x) ci, exp {271 50— Frmna)X] -

(4b)

In Egs. (4)

- the quantity «/(x) represents the x-dependence
of the finite-width pump beam;

- o=k {w)sin 6,

— ro is the integer which labels the resonantly ex-
cited evanescent diffracted order at the pump fre-
quency; the labelling of the space harmonics at ¢ir-
cular frequency w is such that it is the space harmonic
so="0 which is associated to this diffracted order rg;

(Elp0 PM(x,9))
Nl,p,U ’
(4c)

ted(x) expli(fo+rpo)x]=w
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thus t; denotes the in-coupling coefficient associated
to the resonanily excited diffracted order rp at the
pump circular frequency @;

- the star ***” means the complex conjugate;

&i{x)=6
X (Xh.l',j(w: X, .V) Eli,p,o,h(y) EZ.m.r:u,!(y) ET,p,O.j(}’))
Nl.p,ﬂ ’
(4d)
LHix) =6

X (;{U,h(zw, X, y) Ea,m,nn.i(y) El.p,ﬁ‘j(y) El.p,().h ()’) >

N2,m,n0
(4e)

Egs. (4d) and (de) show that the quantities &, {x)
and &(x) are nonlinear coefficients directly related
to the overlap integral [4,5]. The existence ofa mod-
ulated region in the grating coupler explains the (x,
¥} dependence of the elements of the nonlinear sus-
ceptibility tensor {x] and thus the x-dependence of
& (x) and &(x).

According to the fact that the transverse ficld maps
(along ¥) at the pump and at the SH frequencies are
known and correspond to the one of the linear re-
gime, the calculation of the in-coupling coefficient 7;
and of the nonlinear coefficients &) (x) and &(x) is
achieved using the linear theory of diffraction devel-
oped in Ref. [6].

Tt is worth noticing that the value of 1, & (x) and
& (x) depends neither on the shape of the input beam
nor on the fact that the undepleted pump approxi-
mation is made or not. Thus the in-coupling coeffi-
cient 1 is calculated assuming an undepleted pump
plane wave and the determination of & (x) and &(x)
only requires the knowledge of the normal modes at
wand 2. '

The simplification introduced by this modal anal-
ysis, where the diffraction phenomenon is accounted
for using only the rigorous finear theory of diffrac-
tion, can be better appreciated by comparing with the
rigorous theory of diffraction in nonlinear optics de-
veloped in Ref, {1]: instead of the complicated flow
chart Fig. 5 of Ref. [1] which is given here for the
sake of conveniency (Fig. 2), the SH amplitude ¢3,,,
is deduced from Eqs. (4). As already stated, the only
computations correspond to a /inear diffraction study

at w and 2 in order to get the numerical values of 1,
&i(x) and & (x).

When solved, Eqgs. (4) yield the guided wave am-
plitude at the pump and at the SH frequencies. But
these equations tell nothing concerning the radiated
diffracted orders which are directly accessible to ex-
periments. It is the object of the next section to deter-
mine their amplitudes.

2.2.2. The diffracted orders

The diffracted SH amplitude is obtained by noting
that once ¢; ,,(x) is known, Eq. {1d) gives the am-
plitude of a diffracted order # in medium q (g==1, 3
in Fig. 1) at the ordinate y. Let us call this amplitude
By mnl¥, ¥). Eq. (1d) shows that % ,,,..{x, ) is given
by the following expression:

gz.rn,n(x» Y)=cz.m{X) dg,2,mn exP(ian.m.ny) . (5)

In Eq. (5), # isan integer, equal or different from ng,
which labels the space harmonics.

The quantity @y m €Xp (102 m .y} is known from
the solution of the /inear homogeneous problem of
diffraction at 2ew developed in Ref. [6] and ¢, (X}
is obtained by resolving Eqgs. (4). Thus Eq. (5) leads
to the x-dependence of the amplitude of any dif-
fracted order at the SH frequency in medium g. Eq.
{5) provides the link between the resonanily excited
evanescent diffracted order and the amplitudes of the
diffracted orders at the SH frequency whatever their
nature may be; evanescent or radiated.

3. An example of solution: the undepleted pump plane
wave case

3.1. The calculation

Let us derive the modes amplitude ¢ ,(x) and
C2.,{x) assuming that the incident field is a plane
wave and that the undepleted pump approximation
holds.

In this case, & (x) =0 and Eq. (4a) becomes:

dfl.p
dx

Thus:

= —ite expli(fy +roo-Fi0)x} . (6a)

1o (x)=Cyexpli{fo+roo—Fip0)x],
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Fig. 2. Flow chart of the theory of SHG at grating couplers according to Ref. [[}. In this reference, the general case of an interaction of

the type: (@, 01) 3= e + o), is considered.

with

[

C = — o
° Bot+roo—7 0

(6b)
In general, the nonlinear medium includes a modu-
lated region and a homogeneous one, Thus &{x) is
the sum of two terms, one for each region:

H(x) =g (x) +&, (7a)

where the first term of the right hand side of Eq. (7a)
refers to the modulated region of thickness d. Accord-
ing to the periodicity of the grating, £§'){x) can be
expanded in Fourier series;

&)= ) &I explilox) . (7b)
!

Use of Egs. (7a) and (4b) shows that:

Comz=cihhtesdh, (8a)

with:

effl= 204} &)
[

2

T
X (Bo+roo—Frp0)? 1200+ (20 + D) o= T )
X exp{i[2fo+ (2r + o= Fr ] X}, (8b)

e =204

15
X (ﬁO -l_r()o-_fl.,p,ﬂ)2 [2 {ﬁO + rOU) - ?Z,m,no}

Xexp{i[2(ﬁ0+r00')—}73,,,,m].\'} . (SC)

3.2. Phase-matching

Let n g and n g > be the complex effective indices
respectively for the mode (p, 0) at @ and for the mode
(1, ng) at 2.

Eq. (8b) shows that phase matching occurs for the
pairs {ng, 1) satisfying:

Re{tora} —Relneg }= (1—no)A/2d (%)

Rel...}: real part of {...}.

This means that when Eq. (9) is satisfied, reso-
nance takes place for c§}) both at the pump fre-
quency for the evanescent diffracted order r and at
the SH frequency for the space harmonic ng of mode
m. According to Eq. (9), ny depends on /2 ng=mp([).

But all the pairs {1, [} satisfying Eq. {9) do not
play the same role. First of all, let us notice that for
the pairs {1y, [#0) the overlap integral has to be cal-
culated over the thickness of the modulated region
only since c§} is non resonant. The simultaneous
resonance of ¢§') and ¢§2), occurs for the pair (1, 0),




o

R. Reinisch et al. 7 Optics Communications 112 {1994) 339-348 345

i.e. involving the fundamental {=0 Fourier-compo-
nent of the nonlinear susceptibility. For this pair,
there is phase-matching not only for ¢}!) but also for
2. Thus the overlap integral is to be carried out
over afl the thickness of the nonlinear medium, i.e.
inciuding in addition to the modulated region, as for
the pairs (ng, ##90), the homogeneous part of the
nonlinear waveguide {region 2 of Fig. 1). Therefore
the couple (1, 0) is of special interest in view of ef-
ficient SH processes.

Such a phase matching scheme, based on the use of
space harmonics, has already been pointed out in Ref.
[8]. But it was in a geometry where resonance at the
pump frequency is not possible contrary to the situ-
ation considered in this paper.

We remind the reader that the calculation of 4%

is achieved using the rigorous theory of difiraction in
linear optics 6] at @ and 2w,

4. Numerical results and comparison with method 1

Calculations have been performed in the unde-
pleted pump plane wave case considering two differ-
ent types of interactions:

{1} between TE; modes at the pump and the sec-
ond harmonic frequencies (Fig. 1a),

(ii} between surface plasmons al the pump and the
second harmonic frequencies (Fig. 1b),

Figs. 3 and 4 respectively represent the interac-
tions (i) and (ii}. Each of these figures is a plot of
the amplitude of the guided wave (case i) or surface

3.510-8‘ H ! 3 5‘010'94 ...... T PN | —— 1..b._
e at 3 ¥
30 10°° 3 4010°] o
2510° 4 2 . ] ]
] = .9 -
=20 10°] : £30 10 [
o = [
= .83 N [
1510° 2 20t0° -
10 10° . ] .
50 1079 : 10107 7 F
OA T T : 0 A T T T :
-48.5 .48 -47.5 .47 -48.5 48 -47.5 47
o 8
-9 [ | N
2.0 10°° ol
151071 N
=
<
2 .9
1.0 1077 r
5010'° -
0 T e T T T
-48.5 48 47.5 -47

ai

Fig. 3. Second harmonic generation at the grating coupler Fig. la coated by a ¥ puiding layer. All the numerical values correspoad to
fictitious media. The refractive indices of the different layers of the grating coupter have been chosen in such a way that phase matching
occurs for the TE, modes at w and at 2es, Solid curves: simplified theory presented here. Crosses: full numerical method [t-3]. Pump
wavelength 1.06 um. Grating profile: sinusoidal, periodicity o= 0.4 um, groove depth §=0.12 pm. 2% waveguide: thickness: e=0.58 pm,
the only nonzero 2 element is ¥,.. =& refractive indices of the different media: {i) at the pump frequency: subsirate 1.7, x* waveguide
2+i0.0005; upper medium 1, (ii) at the second harmonic frequency: substrate 1.7; 7 waveguide 1.94175+10.0005; upper medium 1.
{a} Absolute value of the guided wave amplitude, {11 at y=0, at 2was a function of the angle of incidence of the pump field. (b) Same
as (1) but for the absolute value, | by =1 %, (¥=0+e)| of the amplitude of the + 1 radiated diffracted order at 2. {¢) Same as (a)
but for the absolute value, | boa] = | %amol(y=3+¢)| of the amplitude of the zero radiated diffracted order at 2e.
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Fig. 4. Second harmonic generation at the grating coupler Fig. Ib coated by a ? layer. All the numerical values correspond to fictitious
media. The refractive indices the different layers of the grating coupler have been chosen in such a way that phase matching occurs for
the surface plasmons at w and at 2, Metal: silver. Solid curves: simplified theory presented here. Crosses: full numetical method [1-3].
Pump wavelength .06 pm. Grating profile: sinusoidal, periodicity d=0.4 um, groove depth 60,0154 pm. x? layer: thickness e=0.01
pm, the only nonzero x? element is Xyzp=to. Refractive indices of the different media: (i) at the pump frequency: substrate 0.3 +i9.5; z2
waveguide 1.334; upper medium 1.534, (ii) at the second harmonic frequency: substrate 0.05+i3.14; 1? waveguide [.39184; upper
medium 1.39184. (a) Absolute value of the surface plasmon amplitude, |f1,] at y=0, at 22 as a function of the angle of incidence of the
pump field. {b) Same as (a) but for the absolute value, 1010] = | a1 (¥=d+e)}] of the amplitude of the + | radiated diffracted order

at 2, {¢) Same as (a) but for the absolute value, |hyy | = [ B (37

plasmons (case ii) and of the 41 and zero radiated
diffracted orders at the second harmonic frequency
as a function of the angle of incidence of the pump
field:

~ the solid curves correspond to the new method
presented here. The set of Eqs, (8b) and (8¢) vield
the guided wave or surface plasmon amplitude
whereas Eq. (5) was used to derive the amplitude of
the + 1 and zero radiated diffracted orders,

- the crosses are obtained from the full numerical
theory [1-3].

The agreement between both methods can be con-
sidered as excellent when guided modes are in-
volved, Other results, not reported here, with a TE,
pump mode and a TE, SH mode show the same type
of agreement as for Figs. 3.

d+e)| of the amplitude of the zero radiated diffracted order a 2e.

In the case of a surface plasmon-surface plasmon
interaction (Fig. 1b), there is a small discrepancy (of
the order of 10%) between the modal theory devel-
oped here and method 1. Moreover, calculations have
shown that this discrepancy increases with the losses
of silver. To understand this result, one has to re-
member that, according to Ea. (4e), in the calcula-
tion of the nonlinear coefficient & only the resonant
space harmonics at & and 2w are retained. But the
higher the losses and the refractive index steps be-
tween the different media constituting the grating
coupler, the more important the contribution of the
other space harmonics #. Thus the nonlinear quan-
tity &, is underevaluated. This explains the fact that
the modal method yields lower values than method |
and that the agreement is much better for the “low
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loss full dielectric” grating considered in Figs. 3 than
with the lossy metallic coated grating of Figs. 4.

5. Conclusion

It has been shown that the simultaneous use of the
coupled mode formalism and of the rigorous theory
of diffraction in linear optics provides a very conve-
nient mean to study second harmonic generation at
grating couplers. Eqs. (4) and {5) are important. In-

deed they constitute the basic set of nonlinear equa-

tions for SHG at a grating coupler on a * guiding
structure supporting surface plasmon or guided
waves, These equations describe the diffraction pro-
cess in nonlinear optics at the pump and at the SH
frequencies taking into account both the depletion
and the finite width of the pump beam: Egs. (4) and
(5) respectively account for the angular dependence
and spatial evolution of the guided wave and of all
the other diffracted orders at 2w whatever their type
may be: evanescent or radiated. The fact that a prob-
lem of diffraction in nonlinear optics, namely at the
second harmonic frequency, is studied using only the
linear diffraction theory [6] is worth noticing. This
possibility arises because these grating couplers are
used close to resonance. In the case of stationary plane
wave studies, aralvtical expressions are obtained
whereas the full numerical theory [1-3] requires
heavy computer calculations. In addition to the sim-
plification, the obvious advantage is that an easy
physical insight is gained. It is worth noticing that the
existence of a phase matching scheme where the
overlap integral involves the whole ¥* guiding struc-
ture has been demonstrated. Finally, the simplicity
of this method not only allows the investigation of
new solutions arising from the finite width and the
depletion of the pump beam but also the optimisa-
tion of second harmonic generators. Thus this theory
constitutes a powerful tool for the study of second
harmonic generation at grating couplers.
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A ST L

Appendix

The derivation of the equation of evolution of the
mode amplitude closely follows the method of Ref.
{4].

In the presence of a source term, 27, the electric
and magnetic fields (respectively & and o) satisfy
the following Maxwell equations at a frequency w (an
exp( — ient) time dependence is assumed ).

rot S=iwfu] A, (A1)
rol = —iw[e]E~iw? , (A.2)

{e] and [¢] being respectively the dielectric permit-
tivity and the magnetic permeability matrices whose
elements may depend on the transverse coordinates.

Besides, let us introduce the adjoint structure de-
duced from the original one by transposition of the
dielectric permittivity and magnetic permeability
matrices. The electric and magnetic fields &%, and
J% of the adjoint mode » (that is to say the nth mode
of the adjoint structure without the source term 2}
satisfy:

rot &4 =i [u]HY, (A3}
ot Y= —iw'feld),. {A.d)
From Egs. (A.1)-(A.4), we get:

div (EX AL —EL XA ) = — &2 (A.5)

Integrating Eq. (A.5) over a cross-section plane and
keeping in mind that the mode » (guided wave or
surface plasmon ) vanishes at infinity yields:

(d/dx) Cu- (EX AL — EY XAy = — 1w &Y P
(A.6)

where:
(i) ¢..) stands for an integral in the cross-section
plane:

+oo +oo

(Y= J I .. dy dzin the most general case,

—0n —

(ii) u is the unit vector along the x-axis.

Let ¢, be the mode amplitude, use of the orthogo-
nality relation [4] allows to write Eq. (A.6) under
the following form:
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N,,S‘{i =i E Py . {ATY
dy
InEq. (A7), Nys Qe (8, X L = 6L XA Y.
Eq. (A.7) is the desired resuli. In order to go from
this eqquation to Eqs. (2}, one has:
(i) 1o use the fact that § (x, ¥) =E{y) exp(ixv),
(it} to write down the expression of the source
term: 2 = PNV4 AT
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