
DOI 10.1007/s11082-006-0005-x
Optical and Quantum Electronics (2006) 38:217–230 © Springer 2006

A new differential method applied to the study of

arbitrary cross section microstructured optical fibers

p h i l i p p e b o y e r∗, g i l l e s r e n v e r s e z, e v g e n y p o p o v
a n d m i c h e l n e v i è r e
Institut Fresnel, Case 161, Unité Mixte de Recherche Associée au Centre National de la Recherche
Scientifique (UMR 6133), Université Paul Cézanne Aix-Marseille III et Université de Provence, Faculté
des Sciences et Techniques de St. Jérôme, Avenue Escadrille Normandie Niémen, 13397 Marseille Cedex
20, France
(∗author for correspondence: E-mail: philippe.boyer@fresnel.fr)

Received 29 September 2005; accepted 1 February 2006

Abstract. The present work adapts a recent grating theory called “Fast Fourier factorization” to cylin-
drical coordinates in order to study microstructured optical fibers (MOFs). Compared with the classical
differential method, this new differential method takes into account the truncation of Fourier series and
the discontinuities of the fields across the diffracting surface with the help of new factorization rules. The
main advantage of this method is that the directrix of the diffracting cylindrical surface is arbitrary and
permits anisotropic and inhomogeneous media although its numerical application needs longer compu-
tation time, compared with other well-known numerical methods. The S-propagation algorithm is used
to avoid numerical contaminations. The numerical results are validated and compared with the well-
established Multipole method in the case of a MOF with six circular cylinders. Further, a new cross-
sectional profile (with sectorial inclusions) that the Multipole method cannot consider is studied.

Key words: Differential methods, Fast Fourier Factorization method, Microstrucutred optical fibers, Mul-
tipole method, Arbitrary cross section

1. Introduction

The properties of the microstructured optical fibers (MOFs) have been well
studied with the numerical method called the Multipole Method (Kuhlmey
et al. 2002; White et al. 2002; Zolla et al. 2005). However, this method
has limitations: the inclusions must be disjoined circular cylinders and the
matrix must be homogeneous and isotropic. To this aim, we are inter-
ested in a new differential method called Fast Fourier Factorization (FFF)
adapted in cylindrical coordinates (Nevière et al. 2003; Boyer et al. 2004),
in order to consider more complex MOF shapes. However, we begin with
simpler cases when the media are homogeneous and isotropic. In the first
part, the main key points of the theory are treated and introduced in
matrix form. In fact the basic idea of the FFF is to use new factorization
rules (Li 1996a) in Fourier space to rewrite the constitutive relation between
the D vector and the electric field. Then, a new formulation of Maxwell
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equations in the truncated Fourier space is deduced. Finally, the present
boundary-value problem is changed into an initial value problem using a
shooting method. The use of the S-propagation algorithm (Li 1996b) avoids
numerical contaminations and leads to the S-matrix method. The effective
index of the mode thus becomes a zero of the determinant of the S-matrix.
The eigenvectors associated to null eigenvalues of the S-matrix attributed
to these effective indices describe the modal fields of the studied MOF. In
the second part, our first numerical results are shown: They include a MOF
with six circular cylinders which permits us to validate the FFF method by
comparison with the Multipole Method (MM) results. We also test the con-
vergence with respect to the development order (truncation of the series) in
order to illustrate the improvement of the FFF method compared to the
classical differential one (Vincent et al. 1972). Finally, new results concern-
ing a six sectorial cylinder MOF are presented.

2. The Fast Fourier Factorization method in cylindrical coordinates

2.1. presentation of the problem

We study a device described by a cylindrical surface S. Thus we are placed into
both a Cartesian coordinate system Oxyz with (ex, ey, ez) unit vectors and in
cylindrical coordinates r, θ , z with (er , eθ , ez) as unit vectors. The arbitrary direc-
trix of the surface (S) located in the cross-sectional plane (Oxy), is defined by the
equation f (r, θ)=0 or r =g(θ) (f and g are known functions) and either may
contain the origin as shown in Fig. 1 or may not (see Fig. 2). Generatrices are
straight lines parallel to the z-axis. Both regions separated by the surface S are
filled with linear, homogeneous, isotropic dielectric and non-magnetic media.
The interior medium, noted as (int), has a complex permittivity εint and the
exterior one, noted as (ext), has a real permittivity εext.

The Fast Fourier Factorization method is a differential method which
uses a development of any opto-geometrical quantity as Fourier series with
respect to the angular variable θ , since the cylindrical coordinate system
naturally implies a 2π -periodicity with respect to θ . Moreover, we suppose
that the total electromagnetic field has a harmonic exp(−iωt) time depen-
dence and an exp(iβz) z-dependence, where β is the propagation constant.
Therefore we can express any opto-geometrical quantity as

u (r, θ, z, t)= exp [i (βz−ωt)]
+N∑

n=−N

un (r) exp
(
inθ

)
(1)

in which ω = 2π/λ0
√

µ0ε0. The truncation to the N th order of this devel-
opment is justified by the numerical application of the present method. In
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addition, the space is divided in three regions by the inscribed circular cyl-
inder of the surface S with directrix Cmin and the circumscribed circular
cylinder of the surface S with the directrix Cmax (see Fig. 1 and 2). The
purpose of the Fast Fourier Factorization is then to find the best formula-
tion of the Fourier developments of the fields taking into account the dis-
continuities of these fields through the surface S and the truncation of the
series, in the region included between both circular cylinders named “mod-
ulated area”.

int

Cmin

Cmax

Rmin

Rmax

z

r = g( )

0 x

ext

y

S

θ

ε
ε

Fig. 1. Cylindrical object including the origin and notations.
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Fig. 2. Cylindrical object centered outside the origin and notations.
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2.2. new formulation of the maxwell equations in the truncated
fourier space

At first, the linear constitutive relation between the D vector and the elec-
tric field is rewritten in the truncated Fourier space and in the modulated
area with the help of new factorization rules. Then we inject this new rela-
tion into Maxwell equations in order to derive a set of first-order differen-
tial equations suitable for numerical computations.

In the modulated area, the constitutive relation in which the permittiv-
ity can be described by a 2π -periodic with respect to θ function ε(r, θ), is
written as

D= ε(r, θ)E (2)

The Fourier development of the D vector is then expressed according to
the product of the Fourier developments of the ε(r, θ) function and the
electric field. While the classical differential method (Vincent et al. 1972)
uses Laurent’s rule (initially set for infinite Fourier developments, resulting
in Fourier series) to write this constitutive relation in the truncated Fou-
rier space, the Fast Fourier factorization method applies new factorization
rules established by L. Li (Li 1966a) taking into account the truncation
and the discontinuities of the ε(r, θ) function and the electric field. In the
linear formulation of the present electromagnetic theory, we use a matrix
notation in the truncated Fourier space: the column vector containing the
Fourier components f̃n(n ∈ [−N,+N ]) of a function f̃ (x) is noted as [f̃ ].
The factorization rules apply to Fourier components h̃n of the product h̃ (x)

of two periodic, piecewise-smooth, bounded functions f̃ (x) and g̃ (x). The
first rule states that Laurent’s rule is only valid in the truncated Fourier
space when f̃ (x) and g̃ (x) are not simultaneously discontinuous at the
same value of x:

[
f̃ g̃

]
=

[[
f̃

]]
[g̃] (3)

where [[f̃ ]] is the Toeplitz matrix of the function f defined by ([[f̃ ]])n,m =
f̃n−m. The second rule states that a product of two piecewise-smooth,
bounded, periodic functions that have only pairwise-complementary jump
discontinuities (i.e. that have a continuous product) cannot be factorized by
Laurent’s rule, but can be factorized by the inverse rule:

[
f̃ g̃

]
=

[[
1

f̃

]]−1

[g̃] (4)

And finally, when a product of two piecewise-smooth, bounded, periodic
functions have discontinuities at the same value of x with non-complemen-
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tary jump discontinuities, such a product can be correctly factorized neither
by Laurent’s rule, nor by the inverse rule. In the relation (2), the electric
field is split into its normal component EN and its tangential component
ET. The first factorization rule is applied to the tangential component DT
of D since ET is continuous across (S). The second factorization rule is
applied to the normal component DN of D since EN is discontinuous across
(S) with DN continuous across (S). The relation (2) rewrites [D]= [[ε]][ET]+
[[ 1

ε
]]−1[EN]. Expressing the ET and the EN components through the electric

field and the normal vector N to the surface (S) ones, we finally obtain:

[D]=Qε (r) [E] (5)

where the Qε(r) matrix is a 3×3 block matrix such as:

Qε =



Qε,rr Qε,rθ 0
Qε,θr Qε,θθ 0

0 0 Qε,zz



 (6)

with Qε,rr = [[ε]][[N2
θ ]] + [[ 1

ε
]]−1[[N2

r ]], Qε,θθ = [[ε]][[N2
r ]] + [[ 1

ε
]]−1[[N2

θ ]], Qε,rθ =
Qε,θr =−([[ε]]− [[ 1

ε
]]−1)[[NrNθ ]] and Qε,zz = [[ε]]. Since the matrix Qε contains

the Toeplitz matrices [[N2
r ]], [[N2

θ ]] and [[NrNθ ]] deduced from the normal
vector components defined only on the surface S, we have to extend their
definition in the entire modulated area (Rmin < r < Rmax) by introducing a
new vector continuous across the diffracting surface S and defined by: ∀r ∈
[Rmin,Rmax], N (r, θ)= grad(f )

|grad(f )| . Moreover, we may notice that the classical
differential method which only applies Laurent’s rule gives [D]= [[ε]] [E].

Differentiating the Fourier developments given by equation (1) with
respect to t , θ and z, Maxwell equations written in cylindrical coordinates
are combined with Equation (5) in order to obtain the following set of first-
order differential equations:

d [F (r)]
dr

= iM (r) [F ] (7)

with the vector [F ] defined by

[F ]=





[Eθ ]
[Ez]
[Hθ ]
[Hz]



 (8)
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and

M(r)=





− 1
r
αQε,rr

−1Qε,rθ + i
r
Id 0 β

ωr
αQε,rr

−1 ωµ0Id − α
ωr2 Qε,rr

−1α

−βQε,rr
−1Qε,rθ 0 β2

ω
Qε,rr

−1 −ωµ0Id − β

rω
Qε,rr

−1α

− β

µ0ωr
α α2

ωµ0r2 +ωQε,zz
i
r
Id 0

ω
(
Qε,θθ −Qε,θrQε,rr

−1Qε,rθ

)− β2

µ0ω
Id

β

µ0ωr
α Qε,θrQε,rr

−1β −Qε,θrQε,rr
−1 α

r





(9)

in which α is a diagonal matrix such that (α)nm =nδnm and Id is the iden-
tity matrix. It’s worth noticing that the M(r) matrix depends only on the
r-coordinate and that its size is 4(2N + 1)× 4(2N + 1). The radial compo-
nents of the electric and magnetic fields can be deduced from the other
components by

[Er ]=Qε,rr
−1

(
β

ω
[Hθ ]− α

rω
[Hz]−Qε,rθ [Eθ ]

)
(10)

and

[Hr ]= 1
µ0ω

(α

r
[Ez]−β [Eθ ]

)
(11)

2.3. resolution of the boundary-value problem

The differential set given by the Equation (7) and Equations (10) and (11)
describes the behaviour of the electromagnetic fields in the modulated area.
Concerning the homogeneous and isotropic regions (int) and (ext), Max-
well equations reduce to a set of independent Bessel equations (second
order differential equations) for the z-components of the electromagnetic
fields (Ez and Hz). Their explicit solutions, from which we deduced the
expressions of the other components of the electromagnetic fields, contain
linear combinations of Bessel functions (Jn) and Hankel functions (H+

n ).
Introducing the vector [V(j)(r)] containing the components A

(j)
e,nJn

(
ktj r

)
,

A
(j)

h,nJn

(
ktj r

)
, B

(j)
e,nH

+
n

(
ktj r

)
and B

(j)

h,nH
+
n

(
ktj r

)
with j = int or ext, we obtain

in a matrix form

[F ]=	(j) (r)
[
V (j)

]
(12)

with the matrix 	(j)(r) defined by



THE STUDY OF ARBITRARY CROSS SECTION MOF 223

	(j) (r)=





1
r
p(j) q

(j)
e

1
r
p(j) q

(j)

h

Id 0 Id 0
− εj

µ0
q

(j)
e

1
r
p(j) − εj

µ0
q

(j)

h
1
r
p(j)

0 Id 0 Id



 (13)

in which (p(j))nm =− β

k2
tj

nδnm,
(
q

(j)
e

)

nm
=− iωµ0

k2
tj

[
n
r
−ktj

Jn+1(ktj r)
Jn(ktj r)

]
δnm,

(
q

(j)

h

)

nm

=− iωµ0

k2
tj

[
n
r
−ktj

H+
n+1(ktj r)

H+
n (ktj r)

]
δnm, k2

tj =k2
j −β2 and k2

j =ω2µ0εj . We observe that

the size of vectors [F ] and [V (j)] is 4(2N + 1). The amplitudes A
(j)
e,n, A

(j)
e,n,

A
(j)
e,n and A

(j)
e,n for both homogeneous and isotropic regions (j = int or ext)

are the unknown quantities to be determined.
Unfortunately, the differential set described by the Equation (7) has no

explicit solutions. We can’t apply the boundary-value problem at the cir-
cular circle Cmin and Cmax. To this aim, the differential set is resolved
with a shooting method which changes the present boundary-value prob-
lem into an initial-value problem. At the end of the integration from r =
Rmin to r =Rmax starting with the 	(j)(r) matrix as a set of initial indepen-
dent vectors, the numerical results give the transmission matrix or T -matrix
of the device which links the field at Rmin with the field at Rmax. How-
ever, numerical contaminations can occur during the integration process
which makes the T -matrix ill-conditioned. In order to avoid such prob-
lems, we use the S-propagation algorithm (Li 1996b) which involves split-
ting the modulated area into several slices and in normalizing the T -matrix
of each layer using a well-conditioned S-matrix. The S-matrix links the
diffracted fields in the interior and the exterior regions with the source
waves:





...

B(ext)
e,n H+

n

(
kt,extRmax

)

...

B
(ext)
h,n H+

n

(
kt,extRmax

)

...

A(int)
e,n Jn

(
kt,intRmin

)

...

A
(int)
h,n Jn

(
kt,intRmin

)

...





=S





...

B(int)
e,n H+

n

(
kt,intRmin

)

...

B
(int)
h,n H+

n

(
kt,intRmin

)

...

A(ext)
e,n Jn

(
kt,extRmax

)

...

A
(ext)
h,n Jn

(
kt,extRmax

)

...





(14)

Knowing that the modes describe the field without sources, we search the
amplitudes A(int)

e,n , A
(int)
h,n and B(ext)

e,n , B
(ext)
h,n ∀n being solutions of the following

homogeneous set of equations deriving from Equation (14):
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S−1





...

B(ext)
e,n H+

n

(
kt,extRmax

)

...

B
(ext)
h,n H+

n

(
kt,extRmax

)

...

A(int)
e,n Jn

(
kt,intRmin

)

...

A
(int)
h,n Jn

(
kt,intRmin

)

...





=





...

0
...

0
...

0
...

0
...





(15)

Consequently, we search the effective index which nullifies the determinant
of the inverse of the S-matrix. We can notice that the modal fields corre-
spond to the eigenvectors with the null eigenvalues of the S-matrix existing
at these values of the effective index.

2.4. devices with sub-periodicity according to θ

Most of MOFs studied by well-established numerical methods have shapes
periodic with respect to θ . In the Fourier space, this property implies the
widening of the function spectrum. In fact, if we consider the Fourier com-
ponents f̃ ′

n of a function f̃ calculated on a sub-period T of 2π (such that
NTT = 2π where NT is the number of sub-periodicity), then the Fourier
components f̃n of the same function but calculated on the 2π period are
deduced from f̃ ′

n by the following relation if n = kNT (∀k ∈ N) then f̃n =
f̃ ′

k and f̃n = 0 else. Consequently, the Toeplitz matrix of the function f̃ is
made of non-null diagonals regularly separated by NT − 1 null diagonals
and becomes block-diagonalizable. Since this matrix structure is preserved
when such a matrix is inverted or when two such matrices are multiplied
as occurs in the Qε(r) matrix and then in the M(r) matrix, the differen-
tial set given by (7) is split into NT independent differential sub-sets. Gen-
erally, the integration computation time depends on the cube of the matrix
integration size. Consequently, the time of a successive integration of each
differential sub-set is N2

T times faster than the global integration one.

3. Numerical applications

3.1. validation studies

In order to validate our numerical code using the FFF method, we com-
pare its results with a well-established method, the Multipole Method
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(Kuhlmey et al. 2002; White et al. 2002; Zolla et al. 2005). The MM
requires MOF inclusions to be included using non-overlapping circular cyl-
inders, that is why we first chose to study a MOF composed of six identi-
cal circular cylinders with a diameter d =1µm located at the same distance
from the origin (pitch) 
 = 2.3µm (see Fig. 3). Concerning the sub-peri-
odicity of the device for the FFF method, we note that the number of
sub-periodicity is NT = 6, i.e. the device contains one circular inclusion in
the sub-period T = π/3. Moreover, this fiber follows the C6v symmetries.
In addition, we know that the fundamental mode is doubly degenerate. Its
field component Ez belong to the C3/4 symmetry classes: one has the C4
symmetry (symmetric according to the Y -axis: u(π − θ) = u(θ) and anti-
symmetric according to the X-axis: u(−θ)=−u(θ)) and the other one has
the C3 symmetry (anti-symmetric according to the Y -axis and symmetric
according to the X-axis) (Kuhlmey et al. 2002; White et al. 2002; Zolla
et al. 2005).

We are first interested in the fundamental mode for which the MM gives
an effective index equal to neff = 1.42078454 + i7.20952 × 10−4 for λ0 =
1.56µm. The FFF method algorithm finds the minima (associated with
the fundamental mode) in the map of the determinant of the S−1-matrix
and then uses a complex regression algorithm to better locate this effec-
tive index. For N =60, the searching algorithm in the FFF method numer-
ical code computes the determinant map illustrated in Fig. 4 and finds the
value neff = 1.42078315 + 7.20465 × 10−4. The relative discrepancy of the
FFF method |neff | value compared with the MM is of the order 10−4. The
corresponding normalized |Ez| maps for the two degenerate fields calcu-
lated from the eigenvectors of the S−1 matrix evaluated at this neff value
are shown in Figs. 5 and 6.

d

nintnint

nint

nint

nint

nint

z

next

x

y

0

Fig. 3. Cross section of six circular cylinders with d = 1µm, 
= 2.3µm, nint = 1 and next = 1.4439, and
notations.
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Fig. 4. Determinant map according to the effective index of the fundamental mode.
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Fig. 5. Normalized |Ez| field map for the degenerate fundamental mode, symmetry class C3.

-4 -2 0 2 4

-4

-2

0

2

4

0

0.1250

0.2500

0.3750

0.5000

0.6250

0.7500

0.8750

1.000

X Axis 

Y
 A

xi
s 

Fig. 6. Normalized |Ez| field map for the degenerate fundamental mode, symmetry class C4.
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In order to evaluate the accuracy and the interest of the FFF method, we
test the convergence with respect to the development order N. Fig. 7 shows
that the effective index calculated by the FFF method converges to the
MM value faster than when using the classical differential method (Vincent
et al. 1972). The relative discrepancy of the |neff | value for the FFF method
compared with the MM reaches the value of 5.10−6 for N =90.

In addition, the FFF method may be used with other geometrical sym-
metries. For instance, we consider a MOF with a C2v symmetry. The device
remains the same as shown previously (λ0 = 1.56µm) but the diameters of
both circles on the x-axis (1.4 µm) is larger than the other ones (1µm).
In this case, the number of sub-periodicity NT becomes equal to 2 and
the sub-period T is equal to π/2. The C3 and C4 symmetry class fields
become non-degenerate modes. For the C3 symmetry class with N = 60,
the FFF method finds the value neff = 1.41792219 + 5.11104.10−4 while the
MM value is neff = 1.4179230 + 5.114651.10−4. For the C4 symmetry class,
the FFF method numerical program finds neff = 1.41845587 + 5.27516.10−4

while the MM value is neff = 1.4184564 + 5.2785301.10−4. Figs. 8 and 9
illustrate the normalized |Ez| maps respectively for the C3 and C4 symme-
try classes.

3.2. a mof with six sectorial cylinders

The FFF method is well-adapted for arbitrary cross section device. One of
the simpliest inclusion that this method can consider consists of a secto-
rial inclusion because the Toeplitz matrices [[N2

r ]], [[N2
θ ]] and [[NrNθ ]] are easy

Fig. 7. Convergence test of the effective index according to N for the FFF method and the Classical
method compared with the Multipole Method value.
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Fig. 8. Normalized |Ez| field map for the mode belonging to the symmetry class C3.
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Fig. 9. Normalized |Ez| field map for the mode belonging to the symmetry class C4.

to determine in this case. For a first computation, we are interested in a
six sectorial cylinder MOF defined in the same way than the previous six
circular cylinder MOF : the cross section filling ratio is identical for both
sectorial and circular cylinders (R0 = 1.8µm, L = 1µm and θm = 9.7826◦,
see figure 10 for notations). For N =60, the effective index of the degener-
ate fundamental mode is neff =1.4205064+7.63909.10−4. The corresponding
normalized |Ez| field map belonging to the C3 symmetry class is illustrated
in the Fig. 11.

4. CONCLUSION

We conclude that the Fast Fourier Factorization method provides faster
convergence than the classical differential method for numerical solutions
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Fig. 10. Cross section of six circular cylinders with R0 = 1.8µm, L = 1µm, θm = 9.7826◦, nint = 1 and
next =1.4439, and notations.
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Fig. 11. Normalized |Ez| field map for the degenerate fundamental mode, symmetry class C3 for a C6v

sectorial MOF.

of Maxwell’s equations in a truncated space. For reasonable values of the
Fourier development truncation order, the FFF method produces highly
accurate predictions of the effective indices. In addition, the FFF method
is not limited to profiles of circular-cylinder MOFs that have already been
well studied with the Multipole Method. In future works, we plan to estab-
lish the dispersion properties of these new structures.
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