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CONICAL DIFFRACTION MOUNTING

GENERALIZATION OF

A RIGOROUS DIFFERENTIAL METHOD

“E. POPOV, L. MASHEV

SUMMARY : A generulization of the method of Chandezon ef af,
is presented for conical diffraction mounting The applicabitity of
the invarisnce theorem for real metal and dielectriv gratings is dis-
cussed and the existence of some polarization effects is demonstrated,
A formalativn of the reciprocity theorem in conivai dilfruction
mouniiing s proposed, valid not only for the diffracted orders effi-
ciencies but for the amphitudes. too.

L — INTRODUCTION

In the x-ray and xuv region the efficiency of the

diffraction gratings is very small due to the low reflec-
tivity of metals [1]. Both experimental measure-

ments [2, 3} and theoretical calculations [4-6] show

that the efficiency can be improved if the grating is
used in the so-called conical diffraction mouating
when the incident wave vector lies out of the plane
normal to the grooves. As it has been pointed out by
Spencer and Murty [7] in this case the diffracted orders
directions lie on a cone with axis parallel to the grooves
and whose half-angle is closed between the zeroth
order and the ruling direction.

One of the strongest tools to treat the conical
diffraction mount is the invariance theorem established
by Maystre and Petit [8, 9]. It allows to predict the
efficiency of perfectly conducting gratings from the
grating efficiencies of in-plane T£ and T M polariza-
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tions. However, the invariance theorem is not valid for
real metal and dielectric gratings,

On the other hand during the last decade a great
interest has been shown to the differemt coupling
phenomena in corrugated waveguides in normal and
oblique with respect 16 the grooves incidence,

The difficulties follow from the fact that in the coni-
cal case neither the Maxwell equations nor the boun-
dary conditions can be devided into two independent
fundamental cases of polarization. Furthermore, a
linearly polarized incident wave generates. in general,
elliptically polarized diffracted waves. For the treat-
ment of all these problems rigorous electromagnetic
theories have to be used. Generalization of different
rigorous electromagnetic methods based on the inte-
gral [10] and differential [5] formalisms have been
reported. In particular it has been shown numerically
that the diffraction efficiency larger thun 40°, for
wavelengths less than 500 A can be achieved for holo-
graphic gratings [10).

In this paper we present a generalization of the
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rigorous differential formalism of Chandezon el al. {t1]
for the case of conical difiraction mounting. We have
chosen this method because it is applicable for a large
spectral region and for many types of gratings — per-

. fectly conducting, real metal. dielectric and (multi)
coated gratings (11, 12). The domain ofapplication and
the advantages of the method in comparison with the
Rayleigh-Fourier formalism for the in-plane case
have been discussed in [12].

2, — MATHEMATICAL PRESENTATION
OF THE CONICAL DIFFRACTION PROBLEM

Since our study deals with a generalization of the
differentia! formalism of Chandezon et al. it seems
natural to follow the presentation of the problem
“in {1 ‘

A cylindrically corrugated medium with a complex
refractive index n, and a corrugution period d is coated
with a system of M layers with complex refractive
indices n; and thicknesses thi =2 M(fig 1}). The
interfaces between the layers are defined by equations

FIG, |. — Geomigery of the grating strticture witdd the ineident wave
vecror K.

y = f(x) + /;and the origin of the coordinate system
is chosen so that f,, = 0. From air (ny . =1) a
linearly polarized vector wave with a wavevector
K = (g, hg. Bo). 23 + h} + B3 = K n3p. . illuminates
the structure. where k = 2 n// and 4 is the wavelength
of the incident wave. A time dependent factor exp(iw?)
is omitted throughout the paper. The polarization
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direction and the wave amplitudes are given through
the z-components of the electric E' and mignetic H
vectors | - '

El = g explik’ + 1)
— oy HE = ki KPexplik' - ). {n
where r = (x, 1. 2) and g is @ vacuum permittivity,
The propagating diffraction orders are. in genaral.

elliptically polarized vector waves with wavevectors
k! = (2, fa. Bo) where

4, = %5 + mK

K = 2 TC."d (2
b = O Ay = an = B

andm = 0, + 1. + 2.... so thath,, is real.
Above the grating surface (y > f(x)) the propagat-
ing diffraction orders can be represented in the form

of Rayleigh expunsion :
E!, =&, exp(ik] - 1)

— WHg H:.m = Kty . K. CXP(ikﬂ. tr).

3

We have to emphasize on the statement in [I1] that
this formalism should not be confused with the Ray-
leigh hypothesis because the expansion (3) is taken
only for the rropagating orders and not for the whole
diffracted fi.id ' .

Similar (0 Eqs. (2) and (3) expressions can be.
written for the propagating orders in the lower
medium, However., for the sake of clearness further on
we shall deu! only with the propagating orders in air.

Erom (1) und (3) the diffraction efficiency of the
m-th order can be expressed in a simple and conve-
nient form :

. I 8ra-; ll + l'}cm ll hm

o Lom m ! B 1
o S TEE [ KE i

To be able to obtuin the unknown coefficients &, and
X, we need an electromagnetic field representation,
satisfying the Maxwell equations. the boundury con-
ditioned at the corrugated interfaces and the outgoing
wave conditions. Following {l1]} a transformation of
the coordinate system is introduced. defined by :

=
U o=

< "

¥ flx) (5

"

W=

The boundary conditions in the new Ouvw coordi-
nate system are applied on plane interfaces v = [
but the Maxwell equations become much more com-
plicated. After tedious routine calculations the Max-
well equations in each medium j can be written in the
following form
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& 1 ¢ {CH, ¢H,
—_ = - + C H, + — = - ==
= B ) iwp, (H)I: KT n? ow ( aw i )]
&H, ) l ¢ cE, OF,
- CH, | ¢ [PE, CE (6
Wity i—~ w.uo‘i%ﬂ) —— ~ ik nf Cu) [E + s L(r——" - w):l
gy cu nj CW Y OW ] ci

CE, ¢

X =-—[]‘Nu)E} - l(uuo{H -

dv au

where

1
L [l
Introducing the colurmm vector

E

w

Cluw) = D) = f'(u) Clw) .

e B
| | - A 0

£,

and tzking into accdast (1:;3 ceriadcity in w the solu-
tion of (6) can be expreziyt in the'bom
. F*m. tow) = TP entiiy a e By wy].

=L+ (8
In this equation w1 — «.x )} However. for nume-

rical treatmem & trupgation f m i necessary
m s [— N, N Denoting oy, aaiumn vector

x
i =l g3 |-

whete

4G )
m-.lua...[;!;_RJ%’ (9)
where
| 7 1
<f Bl il
A :B %, 0

R/ = ot \pJ 8 kn Qf (10)

P 0 F Ka B

o .2 ki D’
- ey % -

k*
| i ¢H, H,
— f—[e(u)( s )]}
K n; du ow cu

The elements of the submatrices of R/ are ;

AL, =2,D,_,
B,.f, . (k* nf - B4 (_.,mw/kz nf \
Cl,=0p, kn —a,2,C

Ii

m.p
(11}
Di’{! 2 = am ‘I)m—p .
P,f,._P =B, 2, € p,’kn
I{[.P = IBO '1m em pl’lkn
where
¢, =1/d r C{x) exp{imKx) dx,
Q
(1)
D, =14d r Dlx) exp(imKx) dx,
o
1s a Kronecker :ymbo! andj=1,..,. M+ L

r"i,l"hx: solution of {(9) is seurched for in the form :
G, =T g0y,
where
Php(v) = exp(ir], v) 8, -

Here TV is & square matrix of size (8 N + 4) x
(8 N + 4) whose columns are the eigenvectors of R/,
rl are the correspondmU eigenvalues of R/ and o’ is a
column vector of unknown amplitudf's ar.

The components of &, represent the tangential
components of electric and magnetic field. The “boun-
dary conditions applied to the each of the interfaces
(which are flat surfaces in Ouvw coordinate system)
yield

Tigi)ad = TIF /() al™t, (13)

From (13} we derivé a connection between the field
amplitudes in the upper and the lower media :

TM+J. aM+l = TTl ¢l(11)al , (14)

where

T = TY ¢Mt, ) (T L T2 () (TH 1

In the lower medium only the orders whose ampli-
tudesrvanish in infinity or are propagating downwards
must be taken into consideration, i.e. in the right hand
side of (14) the terms with Im(z}) < Qor Im (r}) = 0
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and Re(rl) < 0 must be kept. Since the propagaling
orders in air are given by expansion (3) in the left hand
side of (14) only the terms with Im (#; 7'} > 0 should
remain. The incident and the propagating orders
terms G, ; given by (1) and (3) must be added in (19
egsrcssgd in the Ouvw coordinate system : Gy, =
T.

*1 [ where :
o]
. R 0
F= by CFMEL Koty oy R% knyoy Ri" ‘
H_x 0 kg R
. ~ RH® R
Ly k (15)
with
ern.p = Em-p(hp)
kny .y
Rop = m th € plhts) — % Kot 1
PN S—" SRR SN P

(16)

and

L. = l,ideexp {i[f() y + mKx) }dx,
0 .

Ky = !/dr Fieo exp {i{f(x) y + mKx] } dx.
0

The inhomogeneous part of the linear algebraic
system of Egs. (14)-(16) represents the incident
wave field whose amplitudes can be obtained [rom (13)
replacing all of the elements of F with zero except for
&, = & and J¢, = J¢'. As can be expected this forma-
lism coincides with the method of Chandezon et al. [11]
if g, = 0.

In order to obtain the unknown amplitudes §,, K.
aM* 1 and g}, a computer code was performed to solve
the system of Egs. (14)-(16). The eigenvalue and the
eigenvector problems were wreated by a standard QR
method for complex non-symmetrical matrices, using
EISPACK. The matrix inversion was performed by
Gauss-Jordan scheme. Numerical tests, such as energy
preservation law (in lossless media), reciprocity theo-
rem and invariance theorem (for perfectly conducting
gratings), as well as a comparison with the results
obtained by other numerical codes {12] for in-plane
diffraction were carried out. The main difference
between the presented here formalism and that of
Chandezon et af. (11] for in-plane case is that the
solution of conical diffraction problem needs four
times greater memory requirements, but on the other
hand, applied to the in-plane case the generalized code
gives the diffraction orders efficiencies for TEand T
polarization simultaneously. One of the pgreatest
advantages for both in-plane and conical methods is
that the computer codes work fairly well for both
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lossless and lossy dielectric, perfectly conducting and
real metallic gratings and coated gratings with very
large ratio Aijd > 1. Moreover they are not so sophisti-
cated from a mathematical point of view. Another
merit is that the convergence rate with respect to
truncation parameter N in the case of conical diffrac-
tion mounting remains the same as in the in-plane
diffraction.

As an example, in figure 2 the dependence of the
convergence rate on the angie between the incident
beam and the plane perpendicular to the grooves is
given. For different values of the angle the convergence
is achieved for practically one and the same truncation
parameter N. In the calculation the projection of the
incident wave vector on the plane perpeadicular to the
grooves is kept constant, thus 1 is varied, and in addi-
tion the incident electric field vector remains perpen-
dicular to the grooves.
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Fig, 2. — Convergence rate Tor @ = 00 {solid curve} and O = 607

{dashed curve). The grating parameters are d = 0.6 pm. h = 0.6 pm.

For @ = 300 the results coincide with the curve for = 00, For the in-
plane case i = 0.6 pm.

- 3. — RECIPROCITY THEOREM

+

“Let us consider an incident wave with a wavevector
ki and an electric field vector E{ which illuminates a
grating and generates a diffracted wave with a wave-
vector k? and an electric field vector Ef. The recipro-
cical case is when an incident wave has a wavevector
ki = — ki and k§ = — ki. The invariant formula-
tion of the reciprocity theorem is given by [13] :

hEP-Ey =HEF-E, (D

where the asterisks means complex conjugation.
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For each of the waves we introduce a plane of pro-
pagation L which is parallel to the corresponding
wavevector and is perpendicutar to the grating plane.
Each one of the ¢lectric field vectors can be represented
as a sum gf a component E, perpendicular to the cor-
responding plane of propagation, and a component E,
parallel to this plane.

The introduction of this decomposition seems quite

. convenient because :

(i) Intheclassical optics the polarization parameters
of the electromagnetic vector wave are usually defined
in the coordinate system connected with the plane of
reflection and transmission and the two fundamental
TE and TAM polarizations are defined with respect to
this plane. ' :

(i} The invariance theorem is valid not only for the
total diffracted in the given order energy [13], but for
the amplitudes &) and &, of E, and E respectively.

Taking into account that the longitudinal field
~omponents are equal to zero and that ki = — k¢
and Ky = — ki (L} = L3, L) = L) Eq. (17) can be
represented as
hi (B 82y + B 83) = AT(BH & + S E(). (18)
The connection between the different fundamental
cases{# and L)areshown in table 1.

Tanes [
Reciprocity theorem relations for L and 2 cases.

Direct
Reciprocat - By =0 g, =0
Cuse
By =0 Bl g, = R, Al 5‘;'u = hi By,
&5, = M &, =B EYy BB, = hELL

4. — NUMERICAL RESULTS

As it has been pointed out in [14] the invariance
theorem can be used, within some limits, even for real
metal gratings. ‘Its application, however, must be
performed most carefully. Let us define an angle y
between the electric field vector Ef and the vector u
lying in the Oxy plane and perpendicular to k. Accord-
ing to the invariance theorem if the projection of k!
on Oxy plane and y are kept constant the diffracted
efficiency remains one and the same varying 8. The
dependence of the diffracted energy in 1st order on the
groovedepth is given in figure 3 for an aluminium
grating The parameters # = 300, A = 0.5765 um,
¥ = 3520 and y = 0° correspond to the T/ Littrow
in-plane mount with A = 0.6 um. The difference
between the numerical results for § = 0° and 8 = 300
is less than 1 %, For larger angles, however, this diffe-
rence is enlarged and reaches a value of 5% for
6.=60° and A/d = | {fig. 2). Even whén the effi-
ciency is approximately constant with 8, some polari-
zation effects may occur that can not be predicted by
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Fi. 3. — The first order diffraction efficiency (dashed curvey and
total diffracted energy (solid curve) of an aluminium grating with the
satie parameters as in figure 2. 0 = 30

the invariance theorem. For infinite conducting grat-
ings and y = 0° or y = 90° a linearly polarized inci-
dent wave is diffracted into a linearly polarized wave,
too. This is no more true when the finite conductivity
of the metal is taken into account The calculated
phase shift between &, and &, (fig. 4/ is not a multiple
of n therefore the diffracted wave is ellipticalty pola-
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FIG. 4. — Phase shift between 8, and & for the case of figure 3.

rized. The variation of the diffraction efficiency with 8
is stronger for dielectric gratings, The angular depen-
dence of the Ist transmitted order efficiency is given
in figure 5. Like in the previous calculations, the pro-
jection of the wavevector k' on Oxy plane and the
angle y are corresponding to the in-plane T M Littrow
mount with 4 = 0.6 pm. Increasing § up to 50° the
efficiency grows up with more than 25 %, For greater
angles Wood anomalies exist due to the appearance
of new diffracted orders in the substrate. Although
the projections on the Oxy plane of the incident and
diffracted in air wave vectors are constant, the projec-
tion of the diffracted in the substrate wave vectors are
changing with 8, thus new transmitted orders can
appear.

Therefore, for noan-perfectly conducting gratings
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FiG. 5. — First order efficiency as a functivn of 0 of a transmission
grating with parametersry = 166, 1, = 1,d = 0.4 ym and hjd = 1.

in conical diffraction mounting rigorous electroma-
- gnetic methods have to be used in the calculation of
 the diffraction efficiency behaviour,
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