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Summary

A generalization of the method for conical diffraction
mounting based on the rigorous differential formalism of
Chandezon et al. is presented for the case of planar
corrugated waveguides. The coupled mode equations are
derived {rom the phenomenological theory. A detailed
comparison between the numerical results and the results
of mode matching approach is given. It is shown that the

Brewster’s law analogy depends on the corrugation depth. -

1 Introduction

In the last twenty years mode interactions in planar
corrugated waveguides have been of continious interest
for both theoreticians and experimentalists [1-4], fed up
by the great importance of the mode coupling for passive
and active integrated optical devices. The earlier works of
Kogelnik [5] and Marcuse [6] deal with the approxXimate
ideal or local mode analysis which give accurate results for
the case normal to the grooves incidence,

Recently much attentiun has been devoted to the scatter-
ing on the surface corrugation in oblique to the grooves
propagation {7-13]. Stegeman et al {12] have proposed
a precise analysis of Bragg diffraction for an oblique
incidence, but the extension of the method to graded-

. index waveguides is not evident. In our previous papers-

{14, 15] we have derived explicit expressions of the
coupling coelficieats of obliquely incident modes of
graded-index waveguides on a grating with an arbitrary
groove profile. However, those formulae are valid for
shallow gratings only. As the corrugation depth is in-
creased, neither the plane wave expansion in the groove
remion, nor the aparoximate first arder theories remain

valid. This is quite important not only for the analysis of

Bragg diffraction of waveguide modes, but to a preal -

extent for grating couplers, where the groove depth can be
comparable to the grating period and waveguide thick-
- ness, therefore the application of rigorous electromagnetic

analysis becomes necessary. A theory for conical diffrac-

tion mounting has been proposed by Vincent et al. 6]
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The term conical diffraction mounting is used when the
incident wave vector les out of the plane normal to the
groves. The Bragg diffraction and the coupling of incident

wave-into waveguide modes can be represented as parti- ..

cular cases of conical diffraction mounting.

-

Recently we have applied another approach for conical
diffraction mounting [17] based on the rigorous different-
ial formalism of Chandezon et al. [183.

The aim of this paper is to present the extension of the
method in [17] for mode coupling treatment. It is
important to note that in contrast to the previous
considerations [19-21] applied to coated pratings, now
the. geometry of the system is changed - in planar
corrugated waveguides usually only one of the boundaries
is corrugated, so that the boundary conditions are
changed. In addition, for the analysis of the interaction
between the modes guided by the system a homogeneous
problem solution is necess2ry.

A detailed study of different TE-TE, TE-TM and TM-TM
mode coupling and a comparison with the results of mode
maiching method is given in Section 4.2.

Despite of numerous works [7, 3, 10, 11, 13] there is no
common opinion about the position of the angle of
Brewster's law analogy in Bragg diffraction regime. In
Section 4.3 we show that the angle is closed to 45° and
depends on the corrugation depth.

2 Extension of the theory of
conical diffraction mounting

Let us consider a multifayer waveguide represented in
Fig. | which upper boundary is a grating with a corru-
gation function y = f(x) of period d and depth h. From the

- medium | a plane wave with wavelength A and wavevec-

tor K ={x,, —hg, Bo) illuminates the structure.

If we denate with B F. F and H:- H H, the

o340 1355 °

components of the electic 'and magnetic H field vectors,
respectively, and with F, and F‘, the column vectors:
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‘ﬂ Ej, R, G,=R,G,. - ~ R (8
# o opo[Hy + I (x}H,] =12 ) (1) .
A —wppHy, ™ From the uniqueness of the solution in medium 2 a
| B 1FOR, connection between F,(1,) and F,(1,) can be found:
| B Faly=i, =0Q:$2()Grexp(iBon). - - (6)
B oty Hy, ‘9 M 5 . ‘
1 —wppH, J=4en M 2 In the calculation ol {6) the [ollowing correlations between
E ! the field components, obtained from (3) and the Maxwell

L Lo

the snlution of the Maxwell eguations in media | and 2

.can be searched in a matrix form:

Fy=QR;§; [y — ()] G, exp(iBy2), )

where

Qo= 8 explia, x),

equations are used:

aHy")/ (k*n} — ﬁé),

$},mp() =8, e:xp(u"j VR @ where k=2n/A and ny is the refractive indéx of the
o, =to+ mK, =0, +1, £2,... medium j. The explicit form of the matrix Q, is expressed
K= 2n/d, through the components of the matrix R,:

lmp“ZRZ qp q-m(rl.p)i

mp=§(k’n§r2_PR'z_qp+Boa A N e N T

Zme=2 R

2 mp = Z (1'2 QRZ qp 6Dam Rlz.qp)

Here G, is a column vector of the unknown diffraction

. ordersamplitudes g; ; (both evanescent and propagating),

®is anangular frequency, p, s a vacuum permittivity, 8,
is the Kronecker symbol and r;, and R,; are the
eigenvalues and the eigenvectors, respectwery, of the
matiix of coefficients obtained by substitution of {3) in the
Maxwell equations. The boundary conditions apllied at
‘the corrugated surface F\},. = Flyugy result in:

Y £ (X)
Y
R N - /
. ..:\ _ Il
i \ ;
4 :
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p ._""_‘L{ d X 2 11 s
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Fig. 1: Schematic representation of multilayer waveguide with
corrugated surface
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-mlT2. p)/(k2 nj — B3).

Here Q5™ and R‘ ;Y are submatrices of Q, and R,
respectively:

R - (0} 3 SR s
’ RIZI : izl - - -~ ;
Ry= gt | Q=1 qm| .- R
3]
RY v
and

£,(u) ;é } expliuf(x) + ipK x]dx. (10

Below the groove region the field components- can be.
Vdevcloped in Rayle:gh seﬂes

Lo

E,=Y aj, exp[i(amx+h,-my+l3c,z)], ' an
—opgH =} kﬂ; 2, exp[i{dn X + hjny + Boz)],

where h} =k*nf—~ol —~p3. Using (7), F; can be ex-

pressed asy
=QP;¢;(y)A; exp(iBo2), (12)
where
A= Eaip ’
ajp
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¢j.mp(y)= 6mp cxp{ihj.py)i : (13)
D} 0

- Dll Dlll

Py== ! -
0 kn, D)

—DiYkn; Di/kn,

and
Di.mp = amp' . .
D}[_m,,=8mpk2n,’ h, J(k*n} — &), (14)

DU, = 8p Ky Bo 0,/ nf — B).

From (5),(6)and{12)a con_nection between G, and A; can

- be found:

R, Gy =R, 87 1)Q7 ' Prdal)As . (15)

The boundary conditions applied at the plane interfaces
13, vey Iy~ require the continuity of F, L.e. from (12) it
follows that:

. Pj¢j(ij)Aj=Pj+i¢j+lﬂ])Aj+l’j=2’ o M—1 (16)

Therefore, from (16} and (15) we obtain:

RyG =Ry 371 (11)Q7 P, (1) Ts . Tu-1 Pudully-1)Aus
- where ’ ’

T]=P1¢j(tj)Pj—l, j=3, ceny M—"l- (18)

T_he relation (17) gives a connection between the field
amplitudes in the upper and the lower medium, Using the

- out-going wave conditions, the amplitudes in the outer

medium 1 and M can be devided into incident G} and A},
and diffracted G¢ and Ag field amplitudes. Regrouping
the terms in (17) and introducing the vectors =~

Gé - [G
C [Ag‘]andc [Ah]

a linear algebraic system of equations (17) can be repre-
sented in a more convenient form:

SCi=Cl,- L (19)

where S is the matrix of coefficients, obtained [rom (17).

3 Pheno;nenological apﬁfoach and

roenlad mn

a annatinng
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It is well known that at certain discrete values of the wave-
vector modulus o + B2 =7 the waveguide can support
modes without incident wave, From a mathematical point
of view the existence of non-zero solutions of the homo-

_ geneous part of (19) requires the determinant of S to be

equal to zero, or with other words, S~ ! must have a pole.
Tn this cace the rank of the matriv S is with a nnity less
than its order, so that the amplitude of the m-th diffracted
order afy ., = a. depends linearly on the resonance ampli-
tude afy o =a,. -

For planar waveguides the pole of S~ lis real and equal to

the waveguide mode propagation constant ¥s. At the

1 ®
‘ ap(x) =§—E “jco AV(K)

presence of corrugation the pole becomes complex, but
away from mode interaction its imaginery part remains
quite small for shallow gratings. If there exists an integer
m such that o2, + B2 =¥} {at fixed v,) an intcraction of the
waveguide modes with propagation constants ¥, and ¥
appears at a given value of the grating vector KP -

Two approaches are possible to determine the coupling
parameters: .

Near the interaction point the poles v, and ¥, correspond-
ing to the two modes are shifted in the complex plane and
varying the grating period the maximum of the imaginary
part of the pole is equal to the coupling coeflicient [22].

We have chosen the phenomenogical approach used in
the theory of grating anomalies {23]. I the grating period
is varied, in the exitatiori point of the second pole the

amplitude a, has a pole Kf, o = KP and can berepresented 77 7

in the form:
C,
2= (20)

Further on a connection between C,, and the coupling
coeflicients would be obtained.

Compared to the first one, this approach has two main
advantages:

(n

i — it needs less numericat steps for thé determination of
the coupling cocificicnts,

ii —it enables to derive the coupled mode gquations
directly from the phenomenological formulae.

Let us suppose that the grating region is extended from”
x =0to X = L, where L > d. The mode amplitudes can be

~ represented in the following way: -

1 = .
a,(x)= o —'L A (K) exp(iKx)dK,
1 = .
av(x}=g —j‘m A, (K) exp(iKx)dK,

21

where A, (K) are the Fourier components corresponding
to the fixed grating vector K. Using (20) the response of
the grating to the set of amplitudes A (K) is:

C.
K-K3

exp(iKx)dK. (22)

After diffarantiation of (37)in x and taking into account

that C,, = const. we found:

da(x) .Cup % K - .
=i “‘[m AV(K)K_KEexp(st)dK
=iK2a,(x) +iC,,a,{x}.

introducing another set of Imude ampiliedes
b, () =2, (x) exp(—iK]x)

and repeating the same procedure for the v-th.mode, the

* well known system of coupled mode equation is obtained: '

.‘
\

.
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. db“(x) = iC,,vbv(x) exp(isuv X),

i v
B i o esp(-i5, 0,

where 8, = K& — K&.

4 Numerical results

4.1 Cemputer code
A computer code based on the theoretical considerations

in the pievious sectivin was constiucted. The cigenvalue
and the eigenvector problem was solved using a standard
EISPACK routines and a Gauss-Jordan scheme was
applied for matrix inversion. The numerical advantages
and restrictions of the method were discussed in [17, 20}
The phenomenological parameters C,, and KP in {20)
were obtained by a least-square {it. A comparison between
the amplitudes of the diffracted wave calculated numeri-
cally and from {20) is shown in Fig.2. A very good
agreement is achieved for a large domain of K except for a
slight vicinity of the pole interaction point. The mode
coupling provokes a shift of the propagation constant v,
in the complex plane hence the equation det|S(y)j=01s
not satisfied for real values of y. This is illustrated in Fig. 3
where with crosses the relative deviation of the numerical
resuits from (20) is depmed It is obvious that the region
where (20) is not valid is negligible,

Forrelative error tess than 1% usually 4- 5 calculations at
different prating periods are necessary to determine the
parameters C,, and KF by least-square fit. However, the
-calculations must be performed out of the domain of K
where v, has a great imaginery part. This requirement is
fulfilled When the determinant of S is approx:mate!y equal
to zero.

r;uf e va pr: Vuv =

4.2 Comparison with mode matching method

In our previous papers [ i4, 157 we have derived analytical
formulae for coupling coefficients in a first-order in
groove depth approximation. The expressions for TE-TE,
TE-TM and TM-TM counling cocfficients can be unificd
in the following way:

hF,, wgyln3—ni
T A 0503~ i) & 0 {0, 24
uy 8 COSOH ( ) 2. ) ( )
whereggis a vacuum permeability, is the m-th Fourier
component o!'!he grating function f(x), correspondmﬂ to

thon

lll\- bu\-l*.lllllb, U}.I i.) L}l\- unb-\. UI }Jluyubuilvll \Jf LETA S ,—l Lh
mode with respect to the positive x-axis. &, ;(y) is the
electric field vector in the j-th medium, which for the two
fundamental cases of polarization is equal to:

-

&I =(—-8,,sin0,,0,8,, cos8,), 25
b ( Lcos8,, &, €, sinb,),
where:
B 1 dx#,
7 jwepn} dy
S
BY e, njz sz

and &,, and 5, are transverse TE and TM mode fields.
Usmg (25) it can easily be shown that (24) is equava]ent
with {8)-{10} of [15], except for the factor 2 in the

" denominator of {10} in [15] which has been omitted due to

authors techtmal mistake.

After a proper normalization of the mode ﬁelc_i% with
respect to the cnergy flux through the cross-section, the
connection butween T, and C, is given by:

8.2y~ 1)/6,ally-y) for TE-TE
H!/i& Ko lly-)nyé,(ly-y) for TETM - (26)
0

Hoalhw 1 Y ly~y) for TM-TM

0+— r - - -
Ay 41.707 41.709 (AN I A WA
O -6 Kipm!) ——e
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Fig.2: Ratio a]%/al® calcwlated numerically (with solid line)
and  from (20) (with  crosses Cj, =0.0201pm™,
K} =417107um™ ") as a function of K for a waveguide with
ni—f, np =23, ny= 16, t; =03 pm, h=0.004 um, A =0.6pm;
angle of incidence @ = 30°
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Fig. 3: Relative error dependence of the determinant of S (with
%—d line) and the “phenomenologicai” d:ITractcd wave amphi-
tude {with crosses) on K for the case of Fig. 2



4.3 Multilayer waveguides ;
The study of corrugated multilayer waveguides is

. prompted by two facts. First, multilayer waveguides are

subject of continuous interest in integrated optics because
of their application in modulatars, heterostructures,
directional couplers, etc. Some interesting effects, such as
splitting of TE-TE and TM-TM modes and TE-TM
degeneration are observed {241 Second, a waveguide
with an arbitrary relractive index profile can be appro-
ximated with a stack of layers with slightly diflerent
refractive indices.

The numerical and the analytical results are compared in
Table 2 for a five layer waveguide. Again a very good
coincidence between [, and v,,C,, is observed.

Table 2: Calculated coupling coeflicients for sinusoidally cor-
rugated multifayer waveguide with ny =1, ny = 1.54, ny = .53,
n, =152, n;=151, t;=06um, tJmO.Bp.m, ty=0.1pum,

| = 0,002 pem, A =0.6 um; angle of incidence 6, = 30
mm~! TM™} TES
LS o IR

4.4 Brewster’s law analogy

One of the greatest advantages of the rigorous theory isits
ability to deal with deep gratings. In [14, 15] we have
shown that at an angle of diffraction 8, —8, equal to 50°
the TE, ~TE, coupling vanishes. However, this is valid
anly in the first-arder apnroximation in the groove depth.
It is interesting to study what happens when the corru-
gation depth is comparable to the waveguide thickness
and groove spacing. A- monomode waveguide is consi-
dered in order to avoid the influence of the other types of
coupling. The numerical results are shown inFig.4. Asthe
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The calculated from (24) and (26) values of the coupling
coellicients for a step refractive index waveguide with a
symmetrical triangular’ corrugation are presented in
Table L. Itis worth noting that the angular dependeces of 1708
the coupling coefficients councide with the same 4540 ;
precision.
45.3°
Table 1; Comparison between the results of rigorous theory 1.710 1
(T,) and the mede matching method (T,); the parameters of the {5.2¢ -
waveguide and the prating are: n;= L, n,=23, ny=156 @ ~.
t, = 0.3 pm, h=0.004 um, A = 0.6 um; angle of incidence 8; = 30° @ >~
mm=!  TM¢  TM$  TE} TES oo
IE! T, 10.74 6.084 4931 2952
cate LT 10.67 6.121 . 5003 2970 : S R -I-
TE! T 17.98 10.73 11.56 B H.71S
t I, 17.99 10.81 11.46 LS“O o 062 0b3 Obt.
o I, 0.993 2.080 § - - h
™, 1 1010 2034 h (pm) —
i T, 3.363
T™ L 3 o)
il 3.398 222 Joumal of Optical Communicaticng

Fig.4: Dependence of the Brewster's angle and the mode
effective refeactive index on the corrugation depth for a wavegu-
ide with n, = 1, i = 2.3, iy == L6, t; =0.07 pm, A =06 pem and a
sinusoidal grating

corrugation depth is increased, both the eflective refrac-

tive index and the angle of diffraction are changing,
agproximaleiy proporctional to h?, because, since 6y and
15 does not depend on the sign of the groove depth, the

“even members in their expansion in h must be equal to .
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