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Rigorous electromagnetic theory is combined with a phenomenological approach to permit optimization of
grating-enhanced second-harmonic generation (SHG) in optical waveguides. Provided that the absorption
losses in the optically nonlinear layer are not high, maximum SHG is observed when phase matching occurs
between the incident wave at the pump frequency and guided waves at both the pump and the signal
frequencies. Different coupling mechanisms are considered, and a procedure for determining the optimal
groove depth and period of the grating is discussed. The phenomenological approach permits deeper physical
insight into the problem and a considerable saving of computation time. Direct phase matching is shown
to result in stronger SHG than indirect phase matching (performed through the grating vector), even if the
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second-harmonic generation in optical waveguides

former includes coupling between waveguide modes of different orders.

1. INTRODUCTION

Second-harmonic generation (SHG) in corrugated optical
waveguides have attracted a great deal of interest.! It
is expected that similar devices will perform many use-
ful functions in optical signal processing®3: light modu-
lation, SHG, and optical logic. The guiding geometry is
chosen because of its capability of concentrating energy.*®
Usually organic polymers are preferred as guiding lay-
ers because of their higher second-order susceptibility y?
(Refs. 6-8) and better transparency in the visible and
near-infrared regions. Their nonlinear properties seem
to change by less than 10% over a duration of 5 years, they
can endure high-power laser beams (up to 1 GW/cm?),
and they can easily be spin coated. The most promis-
ing materials are currently obtained by copolymerization
of a monomer (styrene, methylmetacrylate, or urethane).
It would be desirable to generate green and blue light by
doubling the frequency of near-infrared emitting diodes
by utilizing the nonlinear properties of these layers and
enhancing the light density through excitation of guided
waves. The technical and economical consequences of
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succeeding in this aim are obvious and explain the ef-
forts made in many laboratories. It is strongly believed
that phase matching between guided waves at the pump
(w1) and signal (wy) circular frequencies (i.e., simultane-
ous mode excitation at w; and wy) can sharply increase
SHG as the result of electromagnetic field compression in-
side the guiding layer. In our previous paper® we showed
that this is not always true: comparatively high absorp-
tion losses that could exist inside the optically nonlin-
ear layer can drastically modify the system response so
that instead of grating-enhanced SHG one can observe
grating-reduced SHG.!® In trying to avoid such cases it
is important that one know what the optimum conditions
are for obtaining maximum response. There are two
possible directions for optimization: varying the groove
parameters (profile form, depth, and period) or using
different ways of phase matching among the incident, the
radiated, and the guided waves. Carrying out such an in-
vestigation experimentally is a task of great difficulty that
requires large amounts of time and funds. Fortunately,
numerical modeling through rigorous methods can pro-
vide reliable information about the device’s performance.
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Such possibilities have been successfully exploited during
the past two decades for the study of diffraction gratings
in linear optics.

The main difficulty in optimizing corrugated waveg-
uides in both linear and nonlinear optics comes from the
great number of free parameters to be varied: groove
form, depth, and period; waveguide optical index and
thickness; substrate and cladding material. Our aim in
writing this paper is to combine rigorous electromagnetic
theory!! with the phenomenological approach!? to sig-
nificantly reduce the number of these free parameters.
Some reasonable assumptions concerning the system un-
der investigation include utilization of a silver substrate
and an organic nonlinear layer with fixed linear and non-
linear optical properties. For technological reasons the
corrugation is introduced only at the lower boundary, and
the upper waveguide—air interface is flat. Polarization
is TM, with magnetic field parallel to the grooves, be-
cause spin-coated organic layers have anisotropic nonlin-
ear susceptibility. Our aim was not to find an absolute
maximum of SHG for a given device, a task that needs
a much greater amount of research, but to try to find a
procedure to search for a local maximum, thereby signifi-
cantly reducing the computation time. To this aim we
use a phenomenological approach,'® well known in the lin-
ear grating studies. Section 2 presents a brief review of
this approach as applied to SHG, together with the proper
definitions. Sections 3 and 4 deal consecutively with di-
rect and indirect phase matching to give numerical ex-
amples and to compare the magnitude of maximum SHG
for several different cases.

2. PHENOMENOLOGICAL APPROACH TO
GRATING-ENHANCED SECOND-HARMONIC
GENERATION IN OPTICAL WAVEGUIDES

A plane wave with wavelength A is incident from air at
an angle 6y onto a thin layer, spin coated onto a silver
grating so that the upper interface is flat and the lower
one is corrugated (Fig. 1). This layer is thick enough to
support waveguide modes, and it has nonlinear properties
characterized by its second-order nonlinear susceptibility
x- It is assumed that the nonzero components of the
third-rank tensor y are xixy = Xxyx = €0, Xyxx = €0, and
Xyyy = €, which correspond to polyurethane spin coated
under a strong electric field upon a metallic grating, €,
being the vacuum permittivity. The incident wave is TM
polarized, and its wavelength is 1 um. The absorption
losses inside the layer are low, the refractive indices at
pump and signal frequency being

na(wy) = 1.5785 + i4 X 1075,
ne(wse) = 1.6705 + 2.7 X 1072

The layer thickness is one of the free parameters to be
varied, the others being the groove depth and the grating
period. Depending on the period and the incident angle,
single or several diffracted orders at w; and wy could
propagate in the cladding; their number and direction are
given by the grating equation

w; . )\
nl(wj)sin GNj = nl(wl)sm 90 + Nj = ’ (1)
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where the index j = 1 or 2, depending on the frequency,
and 07\}5 is the angle of propagation of the Nth diffracted
order. In what follows, ni(w;) = ni(ws) = 1.

The conditions for excitation of a guided wave at w;
through the evanescent diffraction order with number N;
are easily derived from Eq. (1):

A

sin 01’ = Re(p,“,’lll) - N1 d

(2)
where p;! denotes the propagation constant of a mode
with number m; and 6; is the angle of incidence. It is
well known that the amplitude of the guided wave a,, has
a resonance at angle of incidence given by relation (2):
c
ag = L Y (3)
(sin 6o — pra;Lll + N1 —1)

d

where c; is the incoupling coefficient, which depends on
the geometrical and optical parameters of the system and
00 = Gi.

We are interested mainly in the case in which there
is phase matching between a guided wave at w; and an-
other guided wave at ws. Then we can assume, at least
in the phenomenological approach, that the main chan-
nel of coupling between the pump beam and the signal
is between these phase-matched modes. Rigorous com-
putations have proved this assumption,'? at least within
some limits discussed below with regard to the validity
of Eq. (4). Then the nonlinear polarization term, which
is proportional to the square of the electric field at w;,
acts as a source of the waveguide mode at ws, the latter
then being radiated in the cladding through diffraction
order N,. Taking all these considerations into account,
we can express the amplitude a™* of the propagation in
the cladding diffraction orders at wy in the form

@ ol
2
+ C1J12—202 ,
. A . A
<s1n 6o — P + N1 j) <sm 6o — ppz + N2 i)

57 +1(0,)

y=ty

X

PN LN N\ y=f

n3

Fig. 1. Schematic of a layer with nonlinear properties, deposited
upon a relief grating, together with the incident wave and the
propagating diffracted orders at w; and wg in the cladding (air).
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where co is the outcoupling coefficient at w,; and
J1-a—the overlap integral between the two modes at
w1 and ws. The first term, aﬁt, is the nonresonant
part; for the specular reflected order it corresponds to the
response of the system without corrugation.

Interpretation of Eq. (4) can easily be made from the
point of view of the phenomenological theory of resonance
anomalies in metallic gratings and corrugated waveg-
uides: Simultaneous excitation of modes at pump and
signal frequencies means that the amplitudes of the dif-
fracted orders at wy as a function of the angle of incidence
have three poles: a double one, corresponding to the
resonance at w;, and a single one, corresponding to the
mode at wg, which immediately give rise to Eq. (4).

In fact, life is never so simple, and there are many cases
in which the response is much more complicated. These
cases include higher (but quite reasonable) losses in-
side the nonlinear layer or the metallic substrate.” Then
the simple resonance behavior [second term of Eq. (4)] is
complicated by the existence of complex zeros of the am-
plitudes. These zeros always accompany the poles, but
for low-lossy structures their separation from the poles
is usually larger than the imaginary part of the poles,
so their influence on the resonance behavior is negli-
gible. Otherwise, when the zeros are close to the poles,
the resonances are much lower in amplitude and can even
be transformed into dips.” As far as the aim of this pa-
per is to optimize SHG, i.e., to search for maximal per-
formance, we should try to avoid the influence of the
zeros. In the examples chosen the complex zeros of the
amplitudes lie outside the resonance domain. Of course,
to check this we used a rigorous numerical method that
makes no assumptions with regard to the position and the
number of poles and zeros: the resonances appear auto-
matically when Maxwell equations and boundary condi-
tions are rigorously solved.

3. OPTIMIZATION ALGORITHM

After the optical properties of the media have been chosen,
several degrees of freedom remain for optimization:

1. Depending on the thickness, the waveguide layer
can support several modes at w; and almost twice that
number at wy, so phase matching between different modes
can be used.

2. The phase matching can be direct, which means
that the real parts of the mode propagation constants are
equal:

Re(pp;) = Re(p;2), (5a)

or indirect, when the modes are coupled through, say, the
Nth grating order:

Az,

Re(p;}) = Re(p,2) + N 4

(5b)

3. For a given type of mode coupling the amplitude of
the SHG depends on the groove shape, period, and depth.
The incoupling and outcoupling can be performed through
either the first or higher diffraction orders, leading to a
great variety in the amplitudes of the coupling coefficients
c1 and co.
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In the first example we show the algorithm that is ini-
tially used for groove depth optimization. At first we
consider direct coupling between the fundamental (first)
mode at w; and the second mode at ws. For this aim
the dispersion characteristics of the planar (without cor-
rugation) waveguide are drawn as a function of the mid-
dle layer thickness, so the desired thickness is chosen to
correspond to the intersection point of the first mode at
w1 and the second mode at ws. Then we determine the
diffraction orders through which these modes are coupled
in and out of the waveguide. For a shallow sinusoidal
corrugation the coupling strength is closely proportional
to AN, where h is the groove depth and N is the num-
ber of the order in relation (2). Because of this power
dependence it is better to use coupling through the 1st
order, rather than through the higher ones, at least for
shallow gratings. Numerical results confirm this conclu-
sion, as shown below in Fig. 2. A change of the groove
depth slightly modifies the mode propagation constants,
so that for each given h it is necessary to determine
p©(h) and p“2(h), which one can do by using a numerical
code for gratings in linear optics. Then it is necessary to
modify the layer thickness ¢y slightly to fulfill the phase-
matching conditions [Eq. 5(a)]. The angular dependence
of the second-harmonic amplitudes of the propagating or-
ders are obtained by use of a numerical code for nonlinear
grating studies, and the maximum values are determined.
Increase of the groove depth requires new mode determi-
nation, etc.

A typical example is presented in Fig. 2 of the interac-
tion between the first mode at w; and the second mode at
ws. The initial layer thickness 3 at A = 0 is 0.843 um,
and the grating period d is 0.47 um. The real part of the
mode propagation constants is 1.392, so under these con-
ditions an angle of incidence 6y = —47.4° will correspond
to mode excitation through the +1st diffraction order at
w1. At ws there are two diffraction orders that propagate
in air: Oth and +1st (note that the angle of incidence is
negative). The Oth order is coupled to the mode at wy
through two Ay/d ratios, and the 1st order through only
one, which explains the difference in their maximal am-
plitudes (Fig. 2).

4x107°

3x107°
2
o 2x107°
1x107°
0x10°
0.00 0.02 0.04 0.06 0.08
h (um)

Fig. 2. Groove depth dependence of the absolute values of
the amplitudes of the diffracted Oth (dashed curve) and
+1st (solid curve) orders at wg in the cladding. Sinusoidal
grating with d = 0.47 um, ng(w1) = 15785 + i4 X 1079,
na(wg) = 1.6705 + i2.7 X 107%, nz(w1) = 0.129 + i6.83,
ns3(w2) = 0.05 + i2.87, t2 = 0.838 mm, A = 1 um, and TM
polarization. Direct coupling 1-2 (i.e., between the first
waveguide mode at w; and the second one at wg).
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The fact that maximal SHG is obtained at shallow
corrugations enables us to extend the phenomenological
approach further to save considerable computation time.

Let us return to Eq. (4). For a sinusoidal shallow grat-
ing several assumptions are valid:

1. The real part of the propagation constant of the
modes does not change significantly with %, and the imagi-
nary part grows as h%2. One can easily understand the
latter dependence by taking into account that the sign of
h plays no role in the radiations losses. Then

priy = 1; + i(8; + y;h?), (6)

with j = 1, 2. This assumption can easily be proved by
approximate theories, which are valid for shallow grat-
ings. This means that the real part of p,, is practically
independent of the groove depth and is equal to the real
part r; of the propagation constant for a plane waveguide
and that the imaginary part grows as a square of the
groove depth with the coefficient of proportionality ;.
This dependence reflects the fact that the imaginary part
of p,, does not depend on the sign of 4. §; denotes the
imaginary part of p,, at A = 0. Rigorous numerical con-
firmation is presented in Fig. 3 for the case given in Fig. 2.

2. The incoupling and outcoupling coefficients ¢; and

co are proportional to AN:

c;=¢hRNi,  j=1,2, (7
where N; is the number of the diffraction order that
is responsible for the coupling [see relation (2)]. In the
example presented in Fig. 2 the coupling at w; is made
through the 1st order. The coupling at ws to the +1st
order is also made through the 1st order, and the coupling
to the Oth diffracted order through the 2nd order.

3. For the direct mode coupling (r; = ry) the coupling
(overlap) integral J;_, does not depend on the groove
depth. When the coupling is indirect, an assumption
similar to Eq. (7) could be made for J:

J =JhrY, (8)

where the direct coupling is included in Eq. (8) with
N =0.

4. If the groove shape is not sinusoidal, it is possible
to make input and output coupling and mode coupling
through higher Fourier harmonics of the profile. This
possibility can easily be expressed in Egs. (7) and (8) by
substitution of the value of the amplitude of the Fourier
harmonic responsible for the corresponding coupling for
the groove depth h.

All these hypotheses can easily be checked numerically,
as far as rigorous codes are available for both linear and
nonlinear grating response. We stress the fact that, fur-
ther on, assumptions 1-4 are used only to save computa-
tion time and facilitate optimization, the results always
being compared with those obtained from the rigorous
theory.

A. Simplest Case: Direct Coupling
Direct coupling was used when we plotted the +1st
diffraction order at ws in Fig. 2. We chose to couple
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the incident wave to the first waveguide mode at w;
through the first evanescent order, as well as between
the second mode at wy and the radiated +1st order. The
coupling between the modes is direct. All this enables
us to write Eq. (4) in the following form:

é269J h3
(61 + y1h?)2(62 + y2h?)

9

Max laXF(A)| = [aF(0) + i

because N13 = 1 in Eq. (7), N = 0 in Eq. (8), Eq. (5a) is
fulfilled (r; = ry), and the maximum of |aN| as a function
of 6y occurs when sin g = r; — A1/d. The flat case term
in Eq. (9) is zero, but it is included there for generality.

The zero derivative with respect to A of Eq. (9) results
in a doubly square equation for the groove depth /., that
corresponds to a local maximum of aN':

hz
y1y2h* — 3(5172 — 82y1) — 6162 =0. (10)

It is interesting to note that Eq. (10) (and thus Ayax) de-
pends not on the coupling constants and the coupling in-
tegral but only on the initial losses of the modes without
corrugation (812) and on the rate of the growth of radia-
tion losses with groove depth (y;12). This fact signifi-
cantly facilitates the numerical optimization because it
is necessary neither to calculate the coupling coefficients
nor to have precise phase matching to determine A, and
ManO |aNL(hmax)|-

These results enable us to propose the following simple
algorithm, summarized in Fig. 4:

1. At first the groove period d and the shape are cho-
sen; then the layer thickness is determined to be close to
the thickness required for direct phase matching between
the modes at the two frequencies. Then mode propaga-
tion constants at A = 0 and at some small nonzero value
hs of h are obtained by one of the various numerical meth-
ods for gratings in linear optics. Then relation (6) is used
to determine 619, y12, and r1 2. These values of r; and r

0,030 .
0.025-] /_1.5
0020 oiimomzznnm oot "

£ 0015} e

B o
0.010-] M
0.005-] »
N

000 002 004 006 008 010
h (um)

Fig. 3. Real (thick curves) and imaginary (thin curves) parts
of the mode propagation constants at wj (solid curves) and wq
(dashed curves) as a function of the groove depth, obtained by a
rigorous electromagnetic theory. The parameters are the same
as in Fig. 2.
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r. = 6

[Nonlinear calculation at®, = 82,7 fromeq.lﬂ

h,, fromeq.10

eq.9 = Ivgax[am(h,m)

New value of d

Fig. 4. Flow chart of the optimization process.

are used to determine the angle of incidence that is close
to the optimum one.

2. One single calculation of the nonlinear grating re-
sponse at that angle of incidence and & = A, enables the
product of ¢2é. to be determined by use of the more gen-
eral form of Eq. (9), derived from Eq. (4):
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For physical insight, however, it is interesting to de-
termine the dependence of the different terms in the
numerator of Eq. (4), (9), or (11) on the grating and wave-
guide parameters. This knowledge can be used success-
fully for the initial choice of the type of coupling between
the incident and diffracted waves and waveguide modes.
To this aim it is possible during step 1 in Subsection 3.A
to determine ¢é; o numerically by calculating the ratio be-
tween the incident wave amplitude and the evanescent
order that corresponds to the excited waveguide mode.
The mode overlap integral J cannot be obtained directly
from the linear grating study, but it can be evaluated
indirectly after the product é%ézj and the values of ¢12
are known.

In the case of direct mode coupling the overlap integral
is almost independent of the grating parameters (groove
form, depth, and period), at least for shallow grooves
and far from the mode cutoff. This can be intuitively
expected and is confirmed by rigorous numerical study.
Figure 6 presents the rigorous numerical results for the

aljjf(hs) = N
1

infy —r +—
|:SlI10 ri d

2

o ”hz)} sin 0y = ry + % =8y + yzhfj

(11)

d

3. hmax 1s determined from Eq.(10) and then
Maxy, |a™(Amay)| is determined from Eq. (9).

4. The entire process is repeated as a function of the
grating period, for different mode interactions, etc. For
several cases a full set of rigorous calculations of the true
nonlinear response is made to check the results. The rig-
orous calculations are made easier when the approximate
value of A, is known.

The validity of this approach is demonstrated in
Fig. 5, which represents the dependence of A, and
Maxg, [a™* (hmay)| as a function of the grating period for
the same case as in Fig. 2. The comparison between rig-
orous results (circles and asterisks) and the phenomeno-
logical algorithm (curves) shows very good agreement.
The anomaly at d = 0.74 um is due to a parasitic mode
excitation at ws and is discussed at the end of this section.

B. Other Cases

The same approach can be applied for indirect cou-
pling, coupling through higher diffraction orders, or high
Fourier harmonics of the profile. These possibilities
have already been discussed with respect to Egs. (5),
(7), and (8). A different value of the power dependence
of & in the numerator of Eq. (9) [and Eq. (11)] will lead
to another polynomial instead of to Eq. (10), but the
optimization procedure based on these phenomenologi-
cal equations will be the same as the one discussed in
Subsection 3.A.

C. Behavior of Coupling Coefficients

As we already discussed in Subsection 3.A, for the phe-
nomenological optimization algorithm it is not necessary
to know a priori the behavior of the coupling coefficients,
except for some hypothesis on their groove depth depen-
dence. Of course, when rigorous nonlinear investigation
is carried out, even this hypothesis is not required, but
then the computation time grows significantly.

coupling coefficients ¢é;5 as well as for the entire coef-
ficient é2é,J as a function of the groove period for the
cases of Figs. 2, 3, and 5. As can be expected, the period
dependence é2é5d is completely determined by the depen-
dence of the product of the incoupling and outcoupling co-
efficients é2¢,, pointing to the independence of the overlap
integral.

The abrupt change of behavior of ¢; in Fig. 6(a) at
d =~ 1.3 um is due to the fact that for longer periods
the +1st order at ws does not propagate, i.e., this is a
Rayleigh-type (passing-off) anomaly. Of course, it can
also be seen in the product ¢3¢, and 6284d in Fig. 6(b).

D. Some Limitations and Precautions

The main limitations are due to the assumptions that led
us to Eq. (4), relation (6), and Egs. (7)—(11). They are
not valid when the groove depth increases, a fact that is

610 .
-3.5x10
_Er—:. - N -2 O
o 4x107° S E3.0x107° N
x 8
(o)
= =
i 25410
—2.0x107*
0x10° r T T T |

Fig. 5. Maximum values of the amplitude Ialjll‘l of the +1st
diffracted cladding order (solid curve and circles) as a function
of the grating period and the corresponding groove depth Amax
(dashed curve and asterisks) at which these maxima occur. The
parameters are the same as in Fig. 2. The curves are obtained
according to the phenomenological approach, and the markers
by rigorous theory.
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Fig. 6. (a) Input (é;) and output (é2) coupling coefficients
calculated by a code for gratings in linear optics, corresponding to
Figs. 2—4. (b) Comparison between the values of é7éad1-2
(squares) as obtained by use of Eq. (10) and the rigorous results
with the nonlinear code and the product é7ég, calculated from
the data presented in (a) (solid curve).

well known in the linear optical study of gratings. Each
case then requires rigorous numerical investigations.

The other obvious limitation occurs when several
guided waves are simultaneously excited at w; or ws.
Then several different resonant terms must be intro-
duced into Egs. (4), (9), and (11), a fact also well known
for gratings in linear optics. Because of the coupling
between these multiple guided waves, however, the poles
are repelled farther in the complex plane, so simple rules
such as relation (6) and Eqgs. (7) and (8) cannot be found.
Moreover, because of this interaction the effective losses
of the modes increase and the nonlinear effect decreases,
as shown in Section 4. The conclusion is that parasitic
mode excitation has to be avoided if large SHG is the
object. As already mentioned, the dip near d = 0.74 um
in Fig. 5 is due to simultaneous excitation of two different
waveguide modes at ws, which can easily be confirmed by
the sharp maximum of the imaginary part of the mode
propagation constant at ws in Fig. 7. Interaction be-
tween different waveguide modes at the same frequency,
which can easily be carried out by the grating under
suitable phase matching, leads to an increase in the ef-
fective losses because of the energy transfer from one of
the modes to the other.

4. NUMERICAL EXAMPLES

By varying the thickness of the waveguide it is pos-
sible to obtain direct coupling between the fundamental
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mode at w; and different modes at ws. A detailed analy-
sis of the direct interaction of modes 1 and 2 has already
been presented in Subsection 3.A. Because of the posi-
tive dispersion of the waveguide layer, it is not possible
to have direct coupling between the fundamental modes
(interaction of two modes 1) at the two frequencies, but
for completeness we have investigated this case, choos-
ing some arbitrary value of ns(wy) = 1.56415 greater than
ng(wi). Figures 8—11 correspond to Fig. 5, except that
direct coupling between different modes is used. As it
can be expected, the largest SHG is observed for coupling
of two fundamental modes because of the largest over-
lap between the mode fields inside the optically nonlinear
layer. Unfortunately, this case is almost impossible, be-
cause it requires negative dispersion.

As already discussed, the dip of the groove depth de-
pendence for coupling of modes 1 and 2 is due to a para-
sitic mode excitation, so that SHG is higher for interaction
of modes 1 and 3. This is also due to the larger overlap
of mode 1 at w; with mode 3 at ws than with the second
mode, the first two having almost symmetrical field maps
and the last an antisymmetrical map.

The last example investigated covers the case of indi-
rect coupling between the fundamental modes at the two
frequencies. The media parameters are the same as in
Figs. 2—-7, except for the layer thickness ¢t = 1.88 um,
which was chosen to be outside the region of parasitic
mode excitations. To reduce the diffraction losses, there
are no dispersive reflected orders at i, which requires
fine pitch grating. Choosing 0.47-um groove spacing
together with ¢ = 1.88 um ensures coupling between
the fundamental modes at w; and we propagating in
opposite directions. A grating with a much larger pe-
riod (e.g., d = 2.28 um) can couple the fundamental
modes propagating in parallel, but, mainly because of
the great number of diffraction orders in the cladding
at w; and wg, the radiation losses become high so the
system response at ws is much weaker than for a fine
pitch grating.

A sinusoidal grating can ensure backward mode cou-
pling at wy only through the third diffraction order
(Fig. 12). If we go back to Eqgs. (7)—(9), because of the
first-order input and output coupling (Fig. 12) N1 =1
in Eq. (7) but because of the third-order mode inter-

<107+

8x107°—

6107

(p)

Im

41071

2x107°

0<10° T | T T |
0.4 0.5 0.6 0.7 0.8 0.9 1.0
d (um)

Fig. 7. Imaginary part of p5? as a function of the grating period.
The data correspond to those in Fig. 2, except for 2 = 0.02 um.
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Fig. 8. Same as Fig. 4 except for the direct mode interaction
1-1. ng(wgz) = 1.56415 + i2.7 X 107° and ¢3 = 1.505 um.
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Fig. 9. Same as Fig. 4 except for the direct mode interaction
1-3. ¢2 = 1.513 pum.
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Fig. 10. Same as Fig. 4 except for the direct mode interaction
1-4. ¢ = 2.066 pum.
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Fig. 11. Same as Fig. 4 except for the direct mode interaction
2-4. ty = 1.13 um.

action N =3 in Eq. (8), so the groove depth depen-
dence of the numerator in Eq. (9) will be proportional
to h® and the effect of SHG will become very weak

Popov et al.

(@M < 1078). That is why we have chosen a lamellar
grating with a filling ratio 0.5, for which the ratio be-
tween the third (F¥) and the first (F{’) Fourier compo-
nents of the profile function is highest (1/3) and there
is no second-order Fourier component. Then the in-
teraction between the fundamental modes carried out
through the third Fourier harmonic is much stronger than
through the third diffraction order of the first Fourier har-
monic, the first being proportional to AFY and the latter
to h3FE.

With the lamellar profile, the numerator of Eq. (9) be-
comes proportional to A* so Eq. (10) takes a different
form, and it predicts that a maximum of ¢ will occur
at hpax = 0.0318 um. This is fully confirmed by rigor-
ous numerical study, and the result is ladt] = 8.2 x 1077,
much lower than in the case of a direct coupling. This
can easily be explained by the stronger (magnitude 4)
power dependence of the numerator of Eq. (9) on the
groove depth for indirect coupling than for direct coupling
and by the fact that maximal SHG is obtained for very
shallow gratings.

It is impossible to vary the grating period indepen-
dently as we have done for direct coupling, because in-
direct coupling is carried through the grating and, once
the mode propagation constants are fixed by the layer
thickness, their difference (or sum) determines the groove
period. A typical angular dependence of the resonance
curve for this case is presented in Fig. 13.

Kout =2p/d
Kooup= 344 =32K
A
Y
'139
Py
} E t >
sin 6

» A
P 2 [

I Ky =M/

Fig. 12. Schematic representation of wave interaction in the
indirect 1-1 coupling. The incident wave number (sin 6;) is
coupled through Kj, to the mode at wj, which is then coupled
to the mode at wg through the third Fourier harmonic of the
profile function K¢oup. The mode at wg is radiated through the
first Fourier harmonic of the profile Kgy¢.

4x1077
1-1
Indirect
3x107"
Zo
9 2x107+
x107
0x10° , , |
—35.50 —35.45 ~35.40

Angle of incidence (deg)

Fig. 13. Angular dependence of aONL, corresponding to the cou-
pling of Fig. 11. The refractive indices of the media are the
same as in Fig. 2, to = 1.88 um, d = 0.47 um, and the groove is
characterized by two (1 and 3) Fourier harmonics with ampli-
tudes A1 = 0.03183 um and h3 = h1/3.
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5. CONCLUSION

A simple algorithm is proposed for numerical optimiza-
tion of second-harmonic generation in corrugated waveg-
uides. It combines the phenomenology of SHG based on
the knowledge of complex poles of the scattering opera-
tor with the asymptotic low-modulation dependence of the
input and output coupling coefficients and mode overlap
integral. This algorithm is capable of dealing with di-
rect and indirect phase matching and coupling through
different diffraction orders and Fourier components with
different profiles. A direct comparison with numerical
results of a rigorous nonlinear study confirms its validity,
at least for shallow corrugations.

The study shows that direct phase matching leads
to a higher second-harmonic signal, even if it involves
waveguide modes of different orders. For example, a
waveguide with thickness 1.513 um and sinusoidal cor-
rugation with period 0.7 um and groove depth 0.02 um
is able, at least theoretically, to achieve a diffracted wave
at the second-harmonic frequency with an amplitude ap-
proaching 107° (Fig. 9). Given the experimentally avail-
able laser powers of approximately 40 kW over an area of
0.5 mm X 0.5 mm, the maximum conversion rate of 30%
is found between the pump and the second-harmonic sig-
nal, which is most encouraging, considering that the de-
vice parameters have not been optimized with respect to
the waveguide and substrate material properties.

However, this high efficiency value also points out the
limits of the theories (e.g., Ref. 11) developed in the frame
of the undepleted-pump approximation. At such high
conversion factors the depletion of the pump should be
included in the theory, which is much more difficult but
is expected to give rise to cascading SHG, which lies out-
side the scope of this study but can lead to unexpectedly
interesting behavior.!4
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