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A new rigorous electromagnetic theory is developed for studying the second-harmonic generation process that
occurs when a high-power laser beam falls on a periodically corrugated waveguide. The waveguide can
consist of several layers with corrugated or plane boundaries, with at least one of the layers being filled
with a nonlinear lossless or lossy dielectric. The theory uses a nonorthogonal coordinate transformation,
which maps the corrugated interfaces onto planes. The Maxwell equations written in covariant form lead
to a set of first-order partial differential equations with nonconstant coefficients. Taking into account the
periodicity of the system, this set of equations could be transformed into a set of ordinary differential equations
with constant coefficients, which can be resolved by an eigenvalue-eigenvector technique, avoiding numerical
integration. The theory is developed for both TE and TM polarizations and for any groove geometry and
incidence; it can be used, in particular, when surface waves (guided modes or surface plasmon-polaritons)
are excited. It is a powerful tool for studying the enhancement of the second-harmonic generation resulting
from local field enhancement by electromagnetic resonances. In addition an approach based on the Rayleigh
hypothesis is developed. Both theoretical approaches are compared with previously developed differential
theory for gratings in nonlinear optics. A spectacular agreement is obtained between the three theories for
both TE and TM polarization. The new method is free of limitations concerning the waveguide thickness,
the groove depth, and the conductivity of the grating material. It is demonstrated that the limitations of the
Rayleigh hypothesis are stronger at the second-harmonic frequency.

1. INTRODUCTION

Second-harmonic generation by metals and dielectrics has
attracted a great deal of interest from both theoretical
and experimental viewpoints.1 9 The great sensitivity
of this phenomenon to submicroroughness makes it a
competitive candidate for nondestructive surface char-
acterization, whereas the discovery of new organic com-
ponents with high second-order nonlinear susceptibilities
opens the possibility of making frequency doublers of high
performance. The small thicknesses of optical wave-
guides lead to high power densities, which are required
for observing a significant second-harmonic signal. Such
power densities can be further increased by several orders
of magnitude if a surface wave is excited in the nonlinear
medium. It may be a guided mode, existing for both
TE or TM polarization, or a surface plasmon-polariton
that occurs for metallic substrates in the visible and the
near-infrared regions. The resonance excitation results
in a strong enhancement of the local field and thus of
the second-order nonlinear polarization, which acts as a
source for the signal at the doubled frequency.

This process can be achieved in a prism coupler
configuration, but in a planar geometry a grating coupler
(namely, a corrugated waveguide) must be used. The
planarity is not the only or the main consideration: the
grating permits phase matching to a resonance at the
second-harmonic frequency, which otherwise could hardly
be achieved owing to the dispersion of the medium and
the waveguide properties. We are then confronted with
the problem of second-harmonic generation in a grating

or, specifically, in a stack of layers with modulated and
flat interfaces. The diffraction of light in nonlinear
optics was previously studied with both the classical
differential" 0 and integral" formalisms for dielectric9

and metallic 0 'll surfaces. Metallic interfaces give rise
to the problem of writing the boundary conditions at
the signal frequency,1 which was solved in Ref. 12.
Dielectric gratings lead to simpler analyses to the degree
that the usual undepleted-pump approximation 3 can be
assumed. The idea of this approximation is that the
electric field of the incident and the diffracted waves at
the initial frequency co inside the nonlinear medium acts
as a source for field generation at 2w, and it is assumed
that the second-harmonic generation is so weak (it really
is) that its influence on the field at the initial frequency is
negligible. This hypothesis is valid in the predominant
number of cases, the only exception, to our knowledge,
being the radiation of a waveguide mode propagating
in a nonlinear corrugated waveguide when the radia-
tion is carried through diffraction orders only at the
second-harmonic frequency. Excluding the latter case,
the undepleted-pump approximation allows a decoupling
of the Maxwell equations at the two circular frequencies
co and 2co. It is then possible to define a three-step
analysis9 : first, the electromagnetic field at the pump
frequency is determined everywhere and, in particular,
inside the nonlinear medium by a rigorous method for
light diffraction by the corrugated system; second, these
results are used to determine the nonlinear polarization
at the second-harmonic frequency; and, third, the signal
generated by this source term at 2w is calculated, again
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by a rigorous method. Such a scheme was recently
extended to a guiding geometry.'3 The integral method,
at least at the present state of the art, is not suitable for
dealing with dielectrics in nonlinear optics, because there
are volume source terms to be taken into account. This
is why the theory developed in Ref. 13 uses the differen-
tial method. It is well suitable for TE polarization but
presents serious limitations concerning the groove depths
of metallic gratings used in TM polarization. On top of
that, if the thickness of the waveguide is large enough,
numerical instabilities are noticed because of the loss of
precision caused by the exponentially growing terms.

Our aim here is to present a new theoretical approach
that does not suffer from these disadvantages. We
are staying within the undepleted-pump-approximation
scheme, and we use a rigorous method for analyzing light
diffraction by corrugated surfaces and a stack of lay-
ers. The initial starting point is the work of Chandezon
et al., further developed for cases in which only one
of the interfaces is corrugated.'6 The choice of method
was determined by its validity for deep and very deep
gratings with lossless or lossy dielectric media or highly
conducting materials, independent of the incident-wave
polarization.'7"8 The only noticed limitation of the
method concerns its inability to deal with profiles with
very steep slopes (namely, lamellar and quasi-lamellar
gratings).

Section 2 gives a detailed description of the formal-
ism. We have to repeat some details from papers that
have already been published, but this is necessary to in-
troduce the notation that is used below in determining
the nonlinear source term and to show how we are solv-
ing the problem with growing exponential functions. In
Section 3 we give explicitly the formulas obtained when
the Rayleigh hypothesis is applied to the problem under
investigation. The parallelism of the two formalisms was
previously pointed out,"7 but the main difference again
has to be emphasized: whereas the first method is rig-
orous, methods based on the Rayleigh hypothesis are, in
general, approximate. The validity of the latter meth-
ods has been extensively discussed,'9 and they give good
results for sinusoidal gratings but usually fail for other
profiles unless the groove depth is quite small. Never-
theless, it appears useful to have a code based on the
Rayleigh hypothesis, because it is quite simple to imple-
ment in a computer and can be used for testing the results
during the preparation of the code based on the rigorous
method. A comparison between the results of the rigor-
ous theory, presented in Section 2, with the results of the
Rayleigh method and of the method based on the classical
differential formalism is given in Section 4. The agree-
ment between the results of the three theories is very good
both for TE and TM polarization and for metallic or di-
electric substrates. Whereas the Rayleigh method gives
reliable results even for deep gratings (modulation depth
exceeding 40%) at the initial frequency (linear response),
at the nonlinear frequency it can diverge.

2. RIGOROUS THEORETICAL METHOD

A plane wave with wavelength A is incident upon
tilayered periodically corrugated system (Fig. 1).
of the notation used below is introduced in this

a mul-
Some

figure.

The plane of incidence is perpendicular to the grooves.
For simplicity it is assumed in what follows that the sys-
tem consists of two interfaces, one of them flat and the
other corrugated. All the media are lossless or lossy di-
electrics, and the intermediate layer has nonlinear prop-
erties that lead to second-harmonic generation.

In a general covariant form Maxwell's equations could
be written as

curl E = -X
at

curlH=-' (1)
at

where E and H denote electric- and magnetic-field vec-
tors. In the undepleted-pump approximation the field at
a circular frequency co does not depend on the field at 2W.
Then Eqs. (1) have different forms at the two frequencies:
at co,

curl E = ieou{,

curl X = -i6cE, (2)

and at co = 2,

curl E = iwuH,

curl H = -iweE - iwoeoP. (3)

Here P denotes the nonlinear polarization vector, which
could be expressed through the electric-field vector com-
ponents at a):

pi XijkEj Ek, (4)

where Xiik are the elements of the tensor of the nonlinear
polarization and there is a summation over the repeating
indices. Script characters and letters with tildes stand
for the characteristics at the initial frequency, whereas
roman or italic characters stand for the corresponding
values at 2w.

0

-1 (2)

\ X ifY +1 (2ao)

113

y =t2

n2

/ Y

y = f(x)

a'
Fig. 1. Schematic representation of the corrugated waveguide
under consideration.
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We assume that in the Cartesian coordinate system
that is initially connected with the corrugated structure
X has a diagonal (but not necessarily scalar) form, with
the only nonzero components being

XXX YYy XZZZ 0 ° (5)

In any curvilinear coordinate system the rotational op-
erator is defined through the Levi-Civita permutation
tensor eijk (Ref. 20),

(curl A)' = _jjk (6)

and e and L are tensors that are transformed like the
metric tensor g:

uij = li = Aogiijji/ =.eoh 9i

i j
6i = eOn 2 g. (7)

Let us now introduce a specific curvilinear coordinate
system, defined by

xi =X,

x2 = - ),
x3 =z. (8)

It is shown in Appendix A that Eqs. (2) and (3) take the
form

a E3 = f a aT3 i
ax2 1 + f2 aX+ 1 + f/2

a =k 2 n2 E3 + i 1 a T 3
W OO k X 1 + f2 X

(9a)

aH3 . k 2n2
_______ aH3

ax2 1+ f 2 1 + f2 axL
- ik2 1 (XXET2 + fEY 2),

1 + f/2

=~ i01iOH3 a El

kan2 axl +f2 a'i a a H30

a ~x~x T 2 - E2
_ 1 + f12 (lOb)

in TM polarization, where we have introduced the nota-
zzztion xX = yXXX, xy = xyyy, XZ = X .

There are two advantages of the new coordinate system
Eqs. (8). First, the equation for the corrugated boundary
becomes very simple (x2

= constant), and, second, the
field components tangential to this boundary are those
that directly participate in the equations: E 3 , HI or El,
H3 . Indeed, from the law of vector transformation, Ai =
axi/ax'kAk', we can easily obtain

= H. + f'(x)y n X Hf,

E,= x + f(x)Ey nXT. (11)

We can introduce a new vector Y, defined as

Y = E3

. Ao H, '[3

TE case,

TM case.

Among the entire set of solutions we search for the one
that corresponds to an incident wave with the horizontal
component of the wave vector equal to ao = (21r/A)sin Oj,
so vector F can be expanded in the form

F(x', x2 ) = Z exp(iamx')m(x 2), (13)
m

aE3 f' aE3 i= -- _+ ~ wpoHi,
ax2 1+f 1 2 d + 1+f12

- = ikn2 2E3 + i 1 a f )aX2 ax' + f12 a X'

+ ax(I1 + f2 OHl) + 2kzT 2

in TE polarization and

d a 3 .k 22 f _ H3
WA° dx2 1l+ f/2 sEl + 1 2 /.oC/ax2 +1+ [12 1+f

ax 2 a'LO3 ax' 1 + f2 /l
i__ - / 1 __d __3 

i a - aH3L)
k=h aX',1 +f12 a0 X'

(9b)

where

am = ao + m - m = O, ±1, ±2,..., (14)

and d stands for the period of the corrugation.
Then instead of the system of partial differential equa-

tions (9) and (10) we obtain a system of ordinary differ-
ential equations with constant coefficients, which can be
written in a matrix form:

dx2 = iT'(x 2 ), (15)

where the matrix T has a block form:

Tm r 2 cinm-nmn [ ( 2 l2t mn -amanCm-n)/q

with

(l0a) q = Ik2n2

qCm-n
anDm-n J

TE case
TM case
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and Cn and Dn are the Fourier components of the func-
tions 1/(1 + f/2) and f /(1 + f/2), respectively.

The solution of Eq. (15) is expressed in the form:

F = NM(x2)Fo, (18)

If the upper interface is flat, then the tangential compo-
nents of the field are Ez, Hx or Hz, Ex. They could easily
be expressed' 6 through a convolution of the components
of M with L (-Pm)

Umn = Lm-p(-Pn)Upn )

where !M is a matrix with columns equal to the eigen-
vectors of T and (24)

'mn = 38mn exp(ipmx 2 ) (19)

with Pm being the eigenvalues of T.
If the incident wave is coming from the substrate, then

the incident field and its normal derivative could be rep-
resented in the new coordinate system with the Fourier
components Lm(Po) and Xm(,fo), defined as

Lm(1n) = d d-im d-xld '

X(p)= I fJ (xl)exp[iI3nf(xl) - im d x

(20)

with /32 = k2 n2 - an 2, so that the incident field from the
substrate is

Y, = L [otm(flo)- ao7m(fo)]q j (21)

If the incidence is from the cladding, the tangential com-
ponents of the incident field are

3,r Ez
OJ3, Ht/~x

or .H, 1 _ rm 1
or -EX] L Smofoq 

It is necessary to separate the eigenvalues into positive
(p') and negative (p-) ones, depending on the sign of
their imaginary part (or real part, if they are real). There
are at least two reasons. First, in the upper medium the
diffracted field contains only positive terms, whereas the
negative terms represent the incident field; of course, in
the lowest media the situation is the opposite. Second,
inside the middle layer some precautions must be taken to
avoid loss of precision because of the exponentially grow-
ing terms. There are several ways to do this. Probably
the best is the so-called R-matrix method,21 22 but we are
using another, more direct solution: we keep in the list
of unknowns not only the diffracted amplitudes in the out-
ermost media but also the amplitudes in the middle layer.
This doubles the size of the matrix but reduces the num-
ber of matrix operations and gives directly the amplitude
inside the layer, which are necessary below. Of course,
if the system consists of more than three media the best
way is to use the R-matrix algorithm.

In each medium matrix NM must also be ordered in
the same way so that each eigenvector corresponds to its
eigenvalue:

I], (23)

where U and L denote the upper and the lower subma-
trices of !M.

We are now ready to write the final system of equations
for the unknown amplitudes inside the middle layer (b2 )
and in the outermost media (b,- and b3 +):

U1- U2+ U2 -e(+) 0 bi-

Li- L2+ L2-e(+) 0 b2+ 1 A

0 U2+e(+) U 2 U3 b2 e&)

L0 L2+e(+) L 2 - L3 + _ b3+
(25)

where the incident-field components are given by Eq. (21)
or (22). Depending on the type of system (with a single or
with double corrugated interfaces), either the set of U, L,
or U, L is used. With e(+), we denote a diagonal matrix
with the following components:

em-n = e5mn exp(±ipm +t2) (26)

where t2 is the layer thickness, defined in Fig. 1.
In fact in Eq. (25) a substitution of the unknowns is

made with respect to the components in the middle layer
that could have growing exponential terms so that in the
coefficient matrix on the left-hand side of Eq. (25) only ex-
ponentials with negative imaginary parts remain; in this
way, independent of the layer thickness t2 and the num-
ber of evanescent orders, there are no exponentially in-
creasing terms. Moreover, for highly evanescent orders
for which Im(pt 2 ) is very large in magnitude, the scatter-
ing on each of the interfaces becomes independent of the
scattering on the other interfaces.

After Eq. (25) is solved, the components of the electric
field at c, which act as a source for the field at the
frequency 2wo, are easily obtained:

T. = E3(xl, x2 ) = _ exp(iamx')U2,mn exp(ipx 2)b2 ,.
m,n

(27)

or

E(X', X2) =-_1 2 exp(iamx')U2,mn exp(ipx 2 )pnb2,n ,

Ey(x', 2) = k2 -2 exp(itmX)U2,mfn exp(ipnX2)

X [a,,m- '(x)pn]b 2 ,. - (28)

It directly follows that the source term at W2 has the form

k 2
XXY'Z Ex y z2(x X2 )

= Yi exp(imx1)PmnnX.Yz exp[i(pn + p.w)x2], (29)
m,n,n'

where

(30)

and PmnntX'Yiz can easily be obtained from Eq. (27) or
Eqs. (28). Equation (29) implies that the source term is

E. Popov and M. Nevibre
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periodic with respect to the x' axis with the grating period
d, so that the solution of Eqs. (9b) or (lOb) can be found
in the form

F(x', x2) = E exp(itmx')Fm(x2), (31)
m

and we are able to obtain a system of ordinary differential
equations similar to Eq. (15). In contrast to the case at
w1 , this system now is inhomogeneous:

d F(x2 ) = iTF(x2 ) + iP(x 2 ), (32)
dX2

where the nonhomogeneous part is equal to

The resulting algebraic system for the unknown ampli-
tudes B1 is identical to Eq. (25). The left-hand side has
exactly the same form, except that all the quantities are
evaluated at W2. The right-hand side (source term) is
changed and becomes equal to

F~pn(0)
I.P42

(41)

If one of the boundaries is flat (namely, the upper), the
changes introduced in matrix M are the same as those
in matrix N1 [Eq. (24)]. The first set of components of
source term (41), {Fm(0)}, is not changed. At the flat
boundary the tangential components of the field are

Pm(X2 ) = Y Pm., exp[i(pn + P.,)X 2],
nn'

with

[01Pmnn = L Tn ' TE case,

(33)

(34a)

Cm-p CPpnn + Dm-pPpnn/ I

P _ en2 {m(Cm-pTpnn/Y - Dm-ppnnx

TM case. (34b)

It is well known that the solution of Eq. (32) could be
represented as a sum of the general solution FG of the
homogeneous equation and a particular FP solution of the
inhomogeneous equation. The general solution exists in
the form of Eq. (18), where all the elements are calculated
at (02 We should preserve the same notation, omitting
tildes and using roman or italic instead of script letters:

FG (x2) = McD(X2), (Dmn = mn exp(irmx2). (35)

We should search for a particular solution, represented as
a product of the general solution and a vector of unknown
functions:

Fp(x 2 ) = FG(X 2)tp(X2 ). (36)

Substitution of Eq. (36) into Eq. (32) leads to a set of
ordinary differential equations for 4':

FG(X2 )pI(x2 ) = p(X 2 ). (37)

This system could be integrated directly, taking into ac-
count Eqs. (33) and (34). Then the particular solution
FP takes the form

F.P(x2) = I Qmn/ exp[i(pn + p.,)x 2], (38)
n,n'

with

Qmnn' = l MmpMpp' Ppnn/ 1 + (39)
P'P' ~~i(Pn1 + Pn' - r)

and the total solution of Eq. (32) becomes equal to

Fm(X2 ) = ZMmn exp(irnx2)Bn + FP(x2). (40)
n

The boundary conditions at the corrugated boundary re-
quire that the components of F are continuous there.

E2 -- E3 , couoHx = i E3' TE case, (42a)

H. H3, -EX = T2 j(-i9O g 3 + iXEX2)
TM case. (42b)

All these vectors must be evaluated on the flat boundary
y = t2 , which imposes the following changes in {Fm(t2)}:

FP(t2) = I Lm-p-Pn -Pn)Qp/ exp[i(p. + Pn;)t2],
p,n,n'

(43)

where matrix Q is constructed from the upper part Qu
of matrix Q:

Qm nP= pQ U TE

| Q~mnp
QmnP (Pn + PP) I

k2n2 mnp k2 n2 mnp

case, (44a)

TM case.

(44b)

After the unknown amplitudes of the diffracted field
are obtained in the cladding and in the substrate, it is
easy to evaluate the diffraction efficiencies at both c and
2w. If the upper interface is flat, then it is necessary just
to notice that the diffracted field amplitudes b3 ' (at wo)
and B 3 ' (at 2w) are the well-known Rayleigh coefficients
in the plane-wave field expansion, so the efficiencies are
equal to

?73m(Wt)) = 1b3m12 3m (q3

73m() =B3.m2/ ) (45)

where

#Ppm2 = k2hP2- a 2

m= k2nP2 - 2 p = 1, 3, (46)

and index j in Eqs. (45) is equal to 1 or 3, depending on
whether the incident wave is coming from the substrate or
the cladding. The coefficient q is given by Eq. (17) and is
equal to 1 for TE polarization and to 1/k2n2 (or to 1/k2 h2 )
in the TM case.

E. Popov and M. Nevibre
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To evaluate the diffraction efficiencies in the substrate,
it is necessary to transform the field components in the
substrate back into the Cartesian coordinate system.
This leads us to the following expressions:

and the M matrix has a block-diagonal form, representing
the fact that solutions with both positive and negative
signs of Gm are possible:

(47)

where the matrix U is determined from Eqs. (24) and
the upper index R stands for the Rayleigh amplitudes.
After this step Eqs. (45) can be applied with the index 3
replaced with 1.

3. RAYLEIGH-FOURIER METHOD
APPLIED TO SECOND-HARMONIC
GENERATION
The starting equations (3), presented in the original
Cartesian coordinate system, are

aE, = ioluoH.,
ay

- =, - _ ico y,
ax

aHy _ aHx = _ 2 Ez- ieoXzTz 2

ax ay ioo ~eXE
for TE polarization and

a i = - iweoTxE,2,

(48)

ax= iweOn2EX + ieoTyyEy,

aEy _ aEx = i H (49)
ax ay

for TM polarization. In the linear case (at w) Eqs. (48)
and (49) have the same form without the nonlinear
source term.

It is well known that, according to the Rayleigh hy-
pothesis, the solution of these equations is represented as
a sum of plane waves:

F(x, y) = _ exp(iemx + imy)BmR ,
m

(50)

with ,B given by Eqs. (46). We can use the same notation
as in Section 2. The horizontal field vector components
can be written as

F- = f(x)M4D(y)Bo,

where and CD are diagonal matrices:

e(X)mn = 3mn exp(itmx),

(Y)mn= mn exp(iflmy),

(51)

M=[ q -Pq ] (53)

In Eq. (53) I is the unit matrix; q is a switch, defined by
Eq. (17), that depends on the polarization (17); and is
a diagonal matrix with elements equal to Plm.

At y = f(x) the tangential components can be repre-
sented in a similar way through a matrix denoted SI:

1 =U U
M= L+ L , (54a)

with

Umn± = m-n(+}3n))

Lmn+ = q[±/31 1 m-n(±/3n) - mXm-n(±J3n)]. (54b)

After applying the boundary conditions at y = f(x) and
y = t2 , we can write a simple system of linear algebraic
equations for the unknown field amplitudes:

U1r U2 +
Lr- L2 +

0 U2+e(+)

L2+e(+)

0 B 1- -up -
0 B 2+ II I

U3 + B2e(-) LFu.
L 3 + JL B3+ FLP

(55)

If we are dealing with the linear case, then the source
term simply represents the incident-wave components of
Eq. (21) or (22), depending on whether the wave is inci-
dent upon the flat or the corrugated boundary. The com-
ponents of the electric-field vector that act as a source for
second-harmonic generation can be explicitly expressed
through the amplitudes bmR of the Rayleigh expansion
inside the nonlinear layer,

Ez = Y exp(iamx)exp(±i 2 ,my)b2 ,mR±
m,_

or

EX(x, y) =-k
2 i-2 Y exp(iamx)exp(±i2,my)

X (± 2,m)b2,m ,

(56)

Ey(x, y) = 2A2 Y exp(iamx)exp(±i2,mY)amb2m +

(57)

where the summation for each am is carried out for the
positive and the negative values of 4m.

After tedious but trivial calculations the particular so-
lution at the double frequency, which acts as a source
term on the right-hand side of Eq. (55), can be written in

(52) the following form, taking into account Eqs. (56) and (57):

bim' = R Um())bi.,
n

BimR = I Um1n(2wj)Bin 
n

E. Popov and M. Nevibre
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[FL] +, X C m[ + n±]
(58a)

It is possible to obtain the same expressions when the
tensor of nonlinear polarization has nondiagonal terms
different from zero. Let us remain with the case without
polarization transfer:

Fm=+n+p [ P]

TM case,

= Xz E Cmn[
+ + I

+ 4n±)
(4mi + 4n+)Lp(4m± + in±) - m+nXp(pm+ + pn+)

F Cmn+ L xxfi:-:n( jm- + n±) -XYCamClnem+n
m + /mn 2 -y(iS + _n+) 5em+n

-X g__#__ ~2 xyamanwfim' i' k 2n2

Y Cmn±(Lp(#m± + FL

+ Xp(pm + n -
toxxm -

XxIfm ±n±W(m± + an±) - Xamanfm+n
xxp +pne 13 22 -eY~nmn4-m + ) kmn

XX/m±/n±k
2 n 2 -XaJnk 2 n 2

0

+ em+n( m + in±)
k 2 n2

-a Va 1 _ (amp + fn±)2
- ~~aman[ 1 k 2 n 2

X[XXZ] = XXYZ] = -YYZ = 0,

cmn_ -= 2 bm±bn± exp[i(#m± + n)t 2 ] (60)
q (fim± + fi±)2 - 83m+n2

and the summation is carried out for all four combinations
of positive and negative components of the field at o
inside the middle layer.

:3

am

-o
E
0

C)

-0

C.)

a-U)

6x 1 0-'°

5x10-1 0

4x10-'-

3x101 0-

2x 1 0-'-

1x101 0 -

0

where the square brackets denote all possible permuta-
tions. Then the case of TE polarization is not changed,
whereas in the TM case the components of the nonlinear
polarization have a more complicated form:

PX = Xxx Ex + (X Y + XXY)EXEy + XxYEY 2 ,

PY = yxx EX2 + ( YXY + XYYX)ExEy + VyyyEy2.

a)

-o

E
0

-o
0

C.)

C,)

-48.2 -48.0 -47.8 -47.6 -47.4 -47.2
angle of incidence (deg)

Fig. 2. Angular dependence of the modulus of the reflected
zeroth-order amplitude at the second-harmonic frequency for a
TM-polarized wave with wavelength 1.06 /um incident upon the
flat interface, a sinusoidal corrugation at the substrate-layer
interface with period of d = 1.5 /im and a groove depth of
0.05 um, and refractive indices at w for the cladding of n3 = 1,
the layer, n2 = 1.57, and the substrate, nj = 0.15 + i7.31 and at
2w for the cladding of n3 = 1, the layer, n2 = 1.6 + iO.0005, and
the substrate nj = 0.05 + i3.16. The thickness of the layer is
t2 = 0.5 gim; VXxX 0 0, and all other components are equal to 0.
Solid curve, rigorous method; dashed curve, Rayleigh method;
dotted curve, classical differential theory. The solid and the
dashed curves are nearly coincident.

(62)

-50-70 -65 -60 -55
angle of incidence (deg)

Fig. 3. Angular dependence of the modulus of the reflected
zeroth-order amplitude at the second-harmonic frequency
for a TE-polarized wave with wavelength 1.060 /im incident
upon the corrugated interface, a sinusoidal corrugation at the
cladding-layer interface with period of d = 0.4 ,um and a groove
depth of h = 0.12 pim, and refractive indices at for the cladding
of n3 = 1, the layer, n2 = 2, and the substrate, ni = 1.7 and at
2w) for the cladding of n3 = 1, the layer, n2 = 2.01 + iO.0005,
and the substrate, ni = 1.905. The thickness of the layer is
t2 = 0.58 gim. Solid curve, rigorous method; dashed curve,
Rayleigh method; dotted curve, classical differential theory.

TE case,

(58b)

Fm+n+p -

(59a)

where

(59b)

Caf'I

(61)
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(a)

properties. The upper interface is assumed to be flat. A
TM-polarized wave is incident upon the flat upper inter-
face. The only nonzero component of the tensor X is XXXX,
whose choice is determined by the method based on the
classical differential formalism.1 3 It must be pointed out
that in the computer code based on the rigorous formalism
developed in this paper there is no restriction with respect
to the components of X. Good coincidence is observed in
Fig. 2 for the three methods, with the results of the new
rigorous method and the Rayleigh method being indistin-
guishable, probably because the grating is very shallow
(3.33% modulation depth hid).

The second numerical experiment considers a grat-
ing system that consists of three dielectrics, with the
middle layer having nonlinear properties. The corruga-
tion now is put on the upper boundary, so the incident
wave hits the corrugated interface, in contrast to the
previous case. The polarization is TE, and the grat-
ing period is reduced significantly so that at w there is
only a single reflected order. Despite the high modu-
lation depth (30%) there are slight differences between

1.0-

0.8-

_0
a)=

I I I I I I 1 1

4 6 8 10 12 14 16 18 20
N

(b)
Fig. 4. Convergence of the reflected zeroth-order amplitude
with respect to the truncation parameter N. All the parameters
of the system and of the incident wave are the same as in
Fig. 3 except for the groove depth, h = 0.06 Am. The angle of
incidence is equal to 48.050: (a) at w, (b) at 2w. Solid curves,
rigorous method; dashed curves, Rayleigh method.

The solution in this more general case can be obtained
immediately from Eqs. (58) and (59) with the following
substitutions:

X 13 m 3n± n XXXxm±fin± - (xxy + Xxyx)fim±an

+ XxYYaman,

XY a a:n XyXX O +fi± - (Yy + XYyX)f3m ±an

+ X Yaman-

0.6

0.4

0.2

10-2

a)

E
0

(63)
1o-10

The efficiencies are determined with Eqs. (45).

4. NUMERICAL RESULTS

To analyze the performance of the rigorous method as well
as of the Rayleigh method, we have performed several
numerical experiments. The first simulation concerns a
system consisting of a metallic substrate with a corru-
gated surface that is covered by a layer with nonlinear

lo- 12

2 4 6 8 10 12 14 16 18 2
N

(a)

. I II I I I I

2 4 6 8 10 12 14 16 18 20
N

(b)
Fig. 5. Same as in Fig. 4 except for the groove depth h equal to
0.16 m: (a) at ow, (b) at 2X.
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Fig. 6. Modulus of the amplitude of the reflected zeroth-order
as a function of the layer thickness. All the parameters are
given in Fig. 3 except the groove depth h is equal to 0.16 Am;
the angle of incidence is 48.05°: rigorous method, (a) at co, (b)
at 2a.

the three methods, as is seen in Fig. 3. It is remark-
able that the Rayleigh method also gives correct re-
sults, although we are far beyond the limit of its validity
(hid = 14% for a sinusoidal grating). But the next nu-
merical experiment shows that it could be dangerous to
rely on only the results of the Rayleigh method. We
have investigated the convergence of the rigorous method
and of the Rayleigh method for two different modu-
lation depth values: hd = 15% and hid = 40% (Figs. 4
and 5). Here the truncation parameter N represents the
total number of diffraction orders taken into consider-
ation in the calculations at 2w; at &t they are twice as
many. Whereas the rigorous method behaves well, the
Rayleigh method diverges at the second-harmonic fre-
quency, provided that the groove depth is high enough.
Its convergence behavior at w is good even for high modu-

lation rates, a fact that was previously known, provided
that the profile is sinusoidal. In contrast, at 2 there
is a divergence for deep grooves [Fig. 5(b)]. Even for
a moderate value of the groove depth, corresponding to
Fig. 3 (30%), if we increase N by more than 14 then the
Rayleigh method diverges.

The reason for such different behavior at and 2)
can be understood by our taking into account the re-
sults of Van den Berg23 : for groove-depth values greater
than the limit of the validity of the Rayleigh method, the
Rayleigh method can give correct results only in the far-
field zone (i.e., for the amplitudes of the propagating dif-
fracted orders at w, in our case), whereas in the near-field
zone, and, in particular, for the boundary conditions at
the corrugated interface, a divergence with respect to the
truncation parameter is observed. Since the near-field
amplitudes of the electric field at w are used to compute
the source for the field at 2w, the divergence of the re-
sults at 2w comes from the fact that the source term is
erroneous.

The last figure (Fig. 6) contains the dependence of the
specular reflected order amplitudes at and at 2w as a
function of the middle (nonlinear) layer thickness. Fig-
ure 6 shows that the rigorous method is capable of dealing
with thick waveguide layers without numerical instabili-
ties. The value of 10 am in the figure is not limited by
the method; the method could deal successfully with lay-
ers several millimeters thick or more because the growing
exponential terms in the scattering matrix have been re-
moved. Note the series of resonance peaks observed both
at co and 2co, which appear any time a higher-order mode
is resonantly excited.

APPENDIX A

Starting from the definition of the matrix tensor g given
by

-. ax, ax+ ax, ax+ ax, ax,
ax ax ay ay az3 az

it follows that, for the specific coordinate system defined
by Eqs. (8), g takes the form

(A2)

In TE polarization Eq. (2) can be written as

a E3 iwoo(g 21 Hf + g223 2)ax' oU1 )
E3= iw 1Ho(g + g' 23-1)X

ax2 i~e1n0g 2)3

aH-2 al1 - -2 33E
ax, aX2 -Ceh g T

(A3)

Substituting Eq. (A2) into Eqs. (A3) and reordering the
terms leads to Eqs. (9a). Equations (9b) can be obtained
in the same way.

At the second-harmonic frequency Eqs. (3) are repre-
sented in a similar form, taking into account the covari-
ant representation, Eq. (4), of the nonlinear polarization

-
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.
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vector P and the transformation law for the third-order
rank tensor X:

i'jk' = 3 ax axi' axhi ijk
i axi ax* ax X

(A4)

*On leave from the Institute of Solid State Physics, Bul-
garian Academy of Sciences, 72, Tzarigradsko Chaussee
Boulevard, 1784 Sofia, Bulgaria.
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