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Analysis of dielectric gratings of arbitrary profiles
and thicknesses: comment
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To reveal the advantages and capabilities of a recently published method [J. Opt. Soc. Am. A 8, 755 (1991)] for
the improvement of the modal approach to the analysis of gratings, we propose some additional numerical ex-
periments in cases in which the previous differential method is known to fail.

In a recent paper' Pai and Awada proposed a method of
computing the efficiencies of deep dielectric gratings in
TE-polarized light (electric-field vector parallel to the
grooves). The authors of Ref. 1 claim that their method
is numerically stable, whatever the groove depth of the
grating may be. Starting from the propagation equation
of the field in the region of the modulated refractive index
(which equation is the basis of the differential approach2' 3 ),
they discretize they variable of integration (perpendicular
to the grating plane) into several layers. Inside each
layer the refractive index is assumed to be independent of
the y axis, and the solution within each layer can be ex-
pressed in terms of eigenmodes, as has usually been done
(see Refs. 19-31 of Ref. 1). The novelty of the method
proposed by Pai and Awada lies in the following step,
which is necessary for the final solution: the sewing to-
gether of the different modes (eigenfields) in the sepa-
rated layers. Pai and Awada introduce layer transmission
matrices and interface reflection and transmission ma-
trices, and, in terms of these matrices, they derive the so-
lution in terms of a multiple-reflection series that seems
stable with respect to the usual numerical difficulties as-
sociated with the undesired exponential functions of the
evanescent field components. They claimed their method
to be stable, whatever the groove depth.

To prove their assertion, Pai and Awada' gave two
numerical examples with different modulation depths.
First the efficiencies of gratings with classical groove
shapes (sinusoidal, triangular, and lamellar) are calcu-
lated for a groove depth-to-period ratio hd equal to 0.67
and a wavelength-to-period ratio A/d = 1.67. The grating
material is assumed to be a dielectric with a refractive
index equal to V'3 or to 2. Second, Pai and Awada pre-
sent numerical results for a very deep (hid = 4) lamellar
grating with A/d = 1.

To verify their results (and, more importantly, the ca-
pacities of this new approach), we made calculations of
the same examples with two different numerical methods:
the codes based on the original differential formalism2

and on the classical modal method4 applied to the lamellar
gratings. In the first case (h/d = 0.67) we found exactly
the same results by using the classical differential method,
as in Figs. 6, 8, and 9 of Ref. 1. But in the second case
(hid = 4) the original differential method failed to give
convergent results, owing to the growing exponential fac-
tors of evanescent fields. On the other hand, the use of
the classical modal method results in exactly the same
data as those presented in Fig. 7 of Ref. 1. We decided
not to give the corresponding curves in this Communi-
cation, since they are not noticeably different from those
of Ref. 1.

The conclusion is that the method proposed in Ref. 1 is
a nice improvement over the differential method, since it
succeeds for modulation depths for which the original dif-
ferential method fails, and it can deal with profiles out of
the reach of the classical modal method. With the devel-
opment of binary optics, the problems of deep gratings con-
cern many scientists; thus it is desirable to have a more
accurate idea of the exact capacities of this new method.'

The aim of this Communication is to draw the attention
of grating investigators and, in particular, of the authors of
Ref. 1, to some conditions useful for further numerical ex-
periments, to determine the capabilities and limits (which
surely exist) of the method. These conditions are quite
natural and pertain directly to the essence of the method.
Moreover, the conditions concern not only this specific im-
provement of the differential method but all numerical
methods for light diffraction by relief gratings:

1. The numerical results presented in Ref. 1 pertain to
conditions under which only one or two orders propagate,
since Ad is taken to be 1.67 or 1. This condition under-
lies the reason why a triangular grating could be success-
fully approximated by few (six or even two) steps (see
Fig. 10 of Ref. 1); it is well known from the famous equiva-
lence rule' that, if a grating supports only two diffraction
orders, the exact grating profile is of little significance,
since the predominant role is played by the first Fourier
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component of the profile. Unfortunately it does not hold
for other cases of shorter wavelengths. Thus it would be
useful and interesting to have more numerical results cov-
ering the shorter-wavelength region (say, 1 > A/d > 0.3),
where more propagating orders exist. In these cases not
only is profile-form discretization important, but more
vertical slides are needed owing to the increase in the
hiA ratio. Information concerning the lowest Aid ratio
beyond which computation difficulties arise, as well
as some examples of the necessary computation time,
is desirable.

2. Most sensitive to the capability and the efficiency of
the different numerical methods is the numerical model-
ing of light diffraction by metallic gratings. Even for
commercial gratings (hid < 0.4) difficulties often arise
even for nonsmall A/d ratios. For example, one of the
principal difficulties in the modal method, which would
also exist for the proposed method in Ref. 1, is the com-
plexity of the eigenvalues in the case of lossy materials as
well the nonorthogonality (and probably noncompleteness)
of the set of eigenvectors. Furthermore, owing to the
growing exponentials, even in the TE case, the classical
differential method is restricted to a modulation depth of
-0.8 in the case of highly reflecting materials. Thus it is
important to know the capabilities of the novel method
with respect to metallic gratings, in view of the fact that
the method does not seem to suffer from the problem of
exponentials. We cannot stress enough how important
this can be from the practical point of view.

3. In the case of TM polarization (electric-field vector
perpendicular to the grooves) the difficulties of the classi-
cal differential method increase rapidly with the ref lectiv-
ity of the grating material even for the most common
cases of hid E (0.1,0.4). Contrary to the TE case, the
numerical problems arise now mainly because of the slow
convergence rate (to the power of -1) of the Fourier series
used to describe the electromagnetic field. In our labora-
tory, we have already succeeded in getting rid of the
nonorthogonality difficulty6 mentioned above by deriving
an improved differential method7 that applies Schmidt
orthonormalization of the functions in the course of inte-
gration. This enables us to deal with aluminum gratings
in the visible region without any numerical instabilities,

even for TM polarization up to a groove depth of hid = 0.2
(see Ref. 6). We applied our improved differential method
to the thick grating example of Fig. 7 in Ref. 1 and en-
countered no overflowing, even for a metallic substrate
and TM polarization. But the main problem remains the
slow rate of convergence of the Fourier series, in which,
even with 101 Fourier components, our result is still more
than 7% away from those of the integral method. We
have the notion that this problem would also exist in the
method of Ref. 1.

In any event, the new improvement of the differential
method proposed by Pai and Awadal seems powerful
for the investigation of deep dielectric gratings. The
method would be even more useful if it proves to work well
enough for small A/d ratios, metallic gratings, and TM
polarization.

E. Popov recently held a postdoctoral position at the
Laboratoire d'Optique Electromagn6tique, Marseille.
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