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The extraordinary flattening of the dispersion curve of the so-called cavity resonator integrated guided-mode res-
onance filters (CRIGFs) is analyzed and explained as due to the intramode coupling imposed by the external Bragg
resonators. CRIGFs are composed of a grating coupler (guided-mode resonance filter, GMRF) put between two
distributed Bragg reflectors (DBRs). They form a cavity box in which the excited guided mode is confined. This
confinement provides resonances with small spectral width (smaller than 1 nm for optical wavelengths) and
extraordinary wide angular acceptance (several degrees). At a first glance, onemay think that similar performances
could be obtainedwhile putting the GMRF and the DBR one above the other, forming a so-called “doubly periodic”
grating, as in this configuration also the DBR confines the mode. Yet, the angular acceptance of CRIGFs is an order
of magnitude greater than in classical gratings, even with complex pattern. The aim of the present paper is to
identify the phenomenon responsible for the extraordinary large angular acceptance of CRIGFs. We numerically
calculate, for the first time to the best of our knowledge, the dispersion curve of themode excited in the CRIGF. The
dispersion curve shows a flat part, where the resonance wavelength is quasi-independent of the angle of incidence,
and the flattening grows with the width of the Bragg reflector. We develop an approximate coupled four-wave
model, which predicts the extraordinary flattening as a consequence of an additional coupling of the waveguide
modes of the GMRF provided by the Bragg grating, that does not exist in the “doubly periodic” gratings. © 2015
Optical Society of America

OCIS codes: (050.2770) Gratings; (050.6624) Subwavelength structures; (230.1480) Bragg reflectors;
(050.5745) Resonance domain; (230.7408) Wavelength filtering devices.
http://dx.doi.org/10.1364/JOSAA.32.000420

1. INTRODUCTION
Narrowband filters are key components in fields such as op-
tical telecommunications and spectroscopy. Guided-mode
resonance gratings are promising structures that could bring
a breakthrough in narrowband filtering. They are composed of
a stack of dielectric layers, playing the role of a planar wave-
guide, engraved with a subwavelength grating. Depending on
the incident wave, one eigenmode of the structure can be ex-
cited through one diffraction order of the grating that acts as a
grating coupler [1,2]. This results in a resonance peak in the
reflection or transmission spectrum of the component. The
major advantage of this peak is its thinness, which can be
theoretically as tiny as desired, depending on the perturbation
caused by the grating. A record experimental 0.03 nm band-
width at 560 nm has been reported [3].

Another property of resonant grating filters is their strong
dependence on the polar angle of incidence. This property can
be used to tune the centering wavelength of the filter with re-
spect to the angle of incidence [4]. Such a component can find
application in spectroscopic imaging. However, the strong an-
gular dependency is undoubtedly a drawback for applications
in which large parallel incident beams cannot be used, either
due to limitations on the beam collimation or on the size of the
grating. Indeed, the resonance peak crushes if the divergence
of the incident beam is not small enough as compared to the
angular acceptance of the filter [5–7]. Moreover, experimental
works have shown that the quality factor of the resonance is
very sensitive to etching imperfections all over the grating

surface [8,9]. A component with a high angular acceptance
could be illuminated with a focused beam, thus limiting the
impact of etching imperfections.

The angular acceptance can be enhanced by flattening of
the mode dispersion curve by working at the boundaries of the
forbidden zone formed due to the mode interactions inside the
grating. This can be done typically by using a Bragg grating
that concentrates the stationary mode generated by the exci-
tation of two counter-propagative modes. The Bragg grating
and the grating coupler can be merged leading to a grating
with a complex basic pattern called “doubly periodic” [10].
The 1D (periodic along one direction) “doubly periodic” pat-
tern is composed of two grooves with different sizes, and the
2D (periodic along two directions) “doubly periodic” pattern
is composed of four holes with different diameters. In 2010, a
bandwidth of 0.28 nm at 1550 nm was experimentally mea-
sured in a 2D “doubly periodic” grating illuminated with a
Gaussian beam having a 200 μm diameter at the waist [8].

The major drawback of the “doubly periodic” pattern is that
the angular acceptance and the spectral bandwidth cannot be
tuned independently: the maximum bounding of the mode
comes with an infinitely narrow spectral peak. To overcome
this problem, the Bragg grating and the grating coupler must
be pulled apart, either vertically or horizontally. In the first
case, the component is still a grating (theoretically infinite),
and its properties are well understood thanks to the large
amount of theoretical work on guided-mode resonance filters
(GMRFs) reported in the literature [11–13]. The second case
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corresponds to a finite structure that was first suggested in
2008 for surface-normal emission [14,15], and is now known
as a cavity resonator integrated guided-mode resonance filter
(CRIGF). The predicted performances are bandwidths smaller
than 0.7 nm in the near infrared for components with aperture
size less than 10 μm in diameter [16,17], which is 20 times
smaller than what can be expected with a “doubly periodic”
pattern grating. A polarization-independent filter was also
experimentally demonstrated using a 2D pattern [18]. Two
recent papers present the interest of CRIGF for the field of
lasers [19,20].

Because of their long (with respect to the wavelength) but
finite size, and their subwavelength patterning, numerical
modeling of CRIGFs is time consuming. In order to design
components, approximate models based on the coupled-mode
theory were developed [14,16]. Yet, to the best of our knowl-
edge, no tentative explanation of the physical origin of the
spectacular wide angular acceptance of CRIGFs has been
reported. In the present paper, our purpose is to propose a
simple physical explanation of the functioning of CRIGFs
based on the additional coupling (provided by the Bragg
gratings) between the initial four modes supported by the gra-
ting coupler near normal incidence, a coupling that leads to a
super-flattening of the mode dispersion curves and thus to
large angular tolerances.

Our paper is organized as follows: we first present numeri-
cal results using rigorous electromagnetic modeling empha-
sizing the difference in the angular behavior of CRIGFs and
classical gratings. Then, we switch to the homogeneous prob-
lem by calculating a dispersion relation of the excited mode.
For this, we use two different complimentary electromagnetic
approaches that permit working either with complex wave-
length or complex angle of incidence values. Last, we present
an approximate model, combining the coupled-mode theory
applied to four modes and the transmission matrix method,
to explain the physical origin of the flattening of the di-
spersion curve of CRIGFs.

2. REFLECTION PROPERTIES OF TWO
TYPES OF RESONANT GRATING FILTERS
Figure 1(a) shows the schematic view of the CRIGF under
study: this structure is composed of one GMRF section (21
periods) and two distributed Bragg reflector (DBR) sections
(NDBR periods). We also define a phase section (δ � 1.05d)
that is inserted between the GMRF and the Bragg reflectors.
The GMRF and the Bragg sections have both a groove width
a � 100 nm and depth h1 � 120 nm. The guiding layer thick-
ness is h2 � 165 nm. The indices of the materials are 1.46 for
the gratings and 1.97 for the guiding layer. The superstrate is
air with index 1.0 (the same for the grating grooves), and the
substrate is silica with index 1.46. The period of the central
section is d � 532 nm. The so-called “doubly periodic” struc-
ture is represented in Fig. 1(b). It is composed of the same
guiding layer, GMRF, and Bragg gratings as the CRIGF of
Fig. 1(a), except that the GMRF and Bragg gratings are located
one above the other, thus forming an infinite (periodic) struc-
ture. The values of the parameters are the same as that of the
CRIGF [Fig. 1(a)]. The numerical modeling introduces a perio-
dicity of the system in x direction having as a super-period the
entire CRIGF length. In order to avoid the coupling between
the different super-periods [Fig. 1(c)], we introduce absorbing

regions between them, as explained in detail at the end of
this section.

In Fig. 2, we plot the reflectivity of the CRIGF and of the
“doubly periodic” grating when varying the radius at the waist
of the incident Gaussian beam. We observe in Fig. 2(a) that for
a radius value around 5.7 μm the peak is maximal, while it
widens and its maximum value reduces for greater or smaller
radii. The width of the GMRF section is around 11 μm; hence,
the optimum (peak maximum around 85%) is obtained when
the beam spot recovers almost completely the GMRF area.
For larger beams, the beam spreads over the Bragg grating
area; thus a part of the beam cannot be coupled into the
guided mode. For smaller beams, the divergence of the beam
becomes greater than the angular acceptance of the filter. The
behavior of the “doubly periodic” grating is very different [see
Fig. 2(b)]. For large beams (waist greater than 100 μm), the
peak reaches 100%, same as that obtained when the compo-
nent is illuminated with a plane wave. When the waist de-
creases, we observe the widening and decreasing of the
resonance peak. For both structures, the case for ω0 � 12 μm
is represented, showing the interest of CRIGFs compared to
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Fig. 1. Schematic view of (a) the CRIGF, (b) the “doubly periodic”
grating studied, with period of the GMRF d, period of the Bragg gra-
ting d∕2, width of the grooves a, gratings depth h1, guiding layer thick-
ness h2, phase section length δ (for the CRIGF only), and (c) the
additional absorbing layers between the supercells during the numeri-
cal modeling.
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“doubly periodic” pattern gratings when illuminated with a
focused beam.

The reflectivity versus the wavelength λ and the polar angle
of incidence θ is plotted for the CRIGF [Fig. 3(a)] and the
“doubly periodic” grating [Fig. 3(b)]. The maps are very differ-
ent: for the infinite grating [Fig. 3(b)], the R�θ; λ� map shows
the well-known forbidden band, with the lower branch of the
dispersion curve only represented here, a gap that appears
due to the simultaneous excitation, under normal incidence,
of two counter-propagative modes; for the CRIGF, we observe
a horizontal spot where the reflectivity is maximum. The spot
is centered at λ � 864.9 nm and normal incidence. When the
angle of incidence increases (in absolute value), or the wave-
length moves away from 864.9 nm, the reflected energy
decreases: the resonance degrades. This device has a wide
angular acceptance, from −2° to 2°, together with a thin spec-
tral width. The results of the calculations presented here were
obtained using the Fourier modal method [21], also known as
the rigorous coupled wave (RCW) method [22], improved by
using the more rapidly converging rules of factorization of the
product of discontinuous functions [23,24]. The number of
Fourier harmonics is truncated to from −700 to 700. In order
to avoid parasite coupling between the field in the different
super-periods, absorbing regions of length LABS � 2.66 μm
are included at each side of the structure inside the grating

and guiding layers [having thicknesses h1 and h2, respectively,
in Fig. 1(a)]. The absorbing regions are formed by using ten
homogeneous rectangular rods in each layer [see Fig. 1(c)].
The refractive index np of the p-th rod is calculated as
np � n0 � i�p∕10�2 for p, an integer varying from 1 to 10, so
that the imaginary part of the refractive index increases from
zero to one from the beginning to the end of the absorbing
region. The starting value n0 is that of the material of the layer
of the structure immediately adjacent to the absorbing region
[see Fig. 1(c)].

3. HOMOGENEOUS PROBLEM
In order to better understand the physical origin of the differ-
ent behavior of the reflectivity of the two systems, it is neces-
sary to study the dispersion relations of their resonances.
Since the working region lies close to the gap boundaries,
it is not sufficient to only represent the response for real val-
ues of wavelength and angle of incidence, as it is done in Fig. 3.
Much more information can be obtained by solving the homo-
geneous problem for complex values of the wavelength λ and/
or propagation constant γ along x. To calculate the dispersion
relation of the CRIGF, we used two different methods: first the
search of the poles of the scattering matrix, and second the
search of the eigenvalues of the transmission matrix, as
explained below.
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Fig. 2. Reflectivity spectra for Gaussian beamswith different radiiω0
at the waist under normal incidence for (a) the CRIGF and (b) the
“doubly periodic” grating.
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Fig. 3. Reflectivity in the specular beam as a function of the polar
angle of incidence θ (θ � 0° under normal incidence) and of the wave-
length λ, for (a) the CRIGF illuminated with a Gaussian beam (radius
at waist � 5.2 μm) and (b) the “doubly periodic” grating illuminated
with a plane wave.
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The resonances in the grating coupler are characterized by
complex values of the pole of the scattering matrix, due to
coupling with the propagating incident wave (radiation
losses), but also due to the formation of a forbidden gap due
to the interaction between counter-propagating waveguide
modes [25]. The results of the numerical search of the poles
λp of the CRIGF system in the complex λ plane are presented
in Fig. 4, with the real part of the pole (λp) given in Fig. 4(a),
and the imaginary part in Fig. 4(b). These curves show a weak
dependence versus the angle of incidence for θ < 2°. In this
angular interval, the spectral position of the pole is practically
independent of the angle of incidence, a fact that confirms the
R�θ; λ� map: the real part is around 864.9 nm, and the imagi-
nary part stays constant. When θ becomes greater than 2°, the
real part of λ decreases rapidly, and one observes a sharp in-
crease in the imaginary part, which goes with the degradation
of the resonance peak value. This study links the reflectivity of
the system with the behavior of the resonance, but it cannot
explain why the pole behaves like this, i.e., what is the physi-
cal reason of the origin of the flat part.

In order to search for such explanation, we shall try to
study the system properties, in particular, its resonances,
by varying the strength (length) of the Bragg grating mirrors.
For this, we use another approach, proposed by Cao et al. [26],
consisting of studying the modes of the system by considering
it finite in the horizontal (x) direction and periodizing it in the
vertical (z) direction. This requires introducing absorbing
regions between the different periods in the vertical (z)

direction, in the same manner as explained previously at
the end of the previous section. Here the total length of the
absorbing regions is LABS � 2.51 μm.

There are two advantages of this approach. First, the sys-
tem period in the vertical direction can be much shorter than
the horizontal length in the configuration presented in Fig. 1.
For example, it is sufficient to introduce a vertical period
of 14 μm, which requires ten times less Fourier components
(from −70 to 70) to obtain converging results. Second, the
system resonance values (complex propagation constants)
are obtained by a single calculation of the eigenvalues of the
transmission matrix [as explained in Appendix A, Eqs. (A23)–
(A25)], instead of making a search of the poles of the scatter-
ing matrix in the complex plane. The eigenvalues χ of each
mode represent the phase shift and the decay of the field
of the mode when it propagates inside the structure in the
x direction with propagation constant γ : χ � exp�iγL�, where
L is the length of the structure (in the x direction).

However, there is a price to pay: the eigenvalues corre-
spond to all the resonances of the system, not only to the ones
that are searched as considered being the interesting ones. As
an illustration, Fig. 5 presents the spectral dependence of the
imaginary part of the propagation constant γ of the modes of
the structure of Fig. 1(a) for NDBR � 200. One can see many
different propagation constants with imaginary parts that de-
pend quasi-linearly on the wavelength and correspond to
quasi-plane waves that can propagate in the substrate or in
the cladding because their total thickness is about 10 μm.
Among the values represented in Fig. 5, two sets have a differ-
ent behavior, showing an imaginary part that draws three ma-
jor foils as a function of the wavelength, resembling the
behavior in the imaginary part of the mode dispersion curves
inside the forbidden gap. This mode presents a particular
interest because it is strongly affected by the Bragg grating
(for example, see Fig. 8), and in the following we shall focus
on it. The technical problem consists of identifying its real
part, which has to be done manually.

We plot in Fig. 6 its real part that is characterized by a flat
portion that appears around 864.9 nm, which corresponds to
the center wavelength of the peak observed in Fig. 3(a). Note
that the real part of the propagation constant is defined with
an indetermination of 2π∕L � 0.0529 μm−1, with L being the
total length of the structure (L � 118.6892 μm). Hence, no
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Fig. 4. (a) Real and (b) imaginary parts of the pole for the CRIGF,
versus the incidence angle (θ).
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further conclusion can be drawn for the value of the real part
of the propagation constant outside this region [−0.0529∕2;
0.0529∕2 μm−1], yet another disadvantage of this approach.

4. EXPLANATION OF THE ORIGIN OF THE
SUPER-FLATTENING OF THE BAND EDGE
OF CRIGFS
The dispersion relation of the modes of the CRIGF has to be
compared with that of the modes of the finite-size GMRF
[central grating in Fig. 1(a)] and of the Bragg grating. Figure 7

shows the Bragg (stars) and GMRF (crosses) bandgap formed
by the propagation constant calculated from the eigenvalues.
The GMRF bandgap is quasi-included in the Bragg bandgap, as
it must be, as far as the Bragg grating serves for a distributed
mirror. The forbidden band of the Bragg grating is located
between 860.5 and 872.2 nm and is symmetric with respect to
866 nm. The GMRF forbidden band is asymmetric: on the
lower edge of the gap, the imaginary part is non-null; it is re-
lated to the leakage of the mode in the superstrate and the
substrate. It is well known that at the edges of the bandgap,
a symmetric and an antisymmetric mode appear. The symmet-
ric mode can couple to the (symmetric) propagative plane
wave while it is not the case for the antisymmetric mode.
Thus, we can guess from Fig. 7 that the symmetric mode is
located at the lower edge, as the imaginary part of its propa-
gation constant is non-null due to the possible coupling with
the incident wave. On the other hand, the antisymmetric mode
is located at the upper edge, its imaginary part is zero and it
cannot interact with the incident wave under normal inci-
dence. The two gratings periods have been chosen so that
the wavelength of the symmetric mode is located in the middle
of the gap of the Bragg grating.

As already said, we are interested in the evolution of the
dispersion relations (the real and the imaginary part of γ)
when introducing different strengths of the Bragg reflectors,
by varying the number NDBR of grooves of the Bragg grating.
The central grating length is fixed constant, so that when vary-
ing the Bragg grating length, the length LDBR of the whole
structure with NDBR Bragg periods at each side of the GMRF
varies. Figure 8 presents the evolution of the “good” propaga-
tion constant when the value of the Bragg periods number
(NDBR) increases from 1 to 200. As far as the values of real�γ�
are determined within integer times 2π∕LDBR, in order to avoid
the change in this ambiguity, we plot real�γ�LDBR∕L with re-
spect to the wavelength, where the total normalization length
L � 118.6892 μm is kept fixed. We observe that the shape of
the real part changes gradually with the DBR groove numbers,
starting from the single-grating curve (Fig. 7) toward the curve
given in Fig. 6. An increasingly flatter region is formed in the
wavelength interval 0.865–0.869 μm.

The conclusion of this study is that the Bragg grating reflec-
tion plays a decisive role in the formation of the flat part in the
dispersion curve, where the stronger the coupling, the flatter
the curve. A natural question rises with respect to this
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phenomenon: why it has not been observed in the almost half-
century development of integrated optics. The answer is that
in integrated optics, the main interest is in manipulating the
propagating modes, i.e., when the Bragg distributed mirrors
are used to deflect waveguides modes that are far from the
forbidden gap boundaries. In our case the situation is com-
pletely different, the modes of the central CRIGF region are
close to the forbidden gap boundary, in order to initially flat-
ten the dispersion curves by using the contra-propagative
mode coupling. As it is well-known (see Appendix A), this cou-
pling leads to a formation of two hybrid standing modes with
slightly different constants of propagation k� and k− (Eq. A3),
separated by twice their distance from the gap boundary.
When this separation is large (small contra-propagating cou-
pling), their mutual conversion on the Bragg mirror is negli-
gible. However, when their difference is small (close to the
gap edge), these two waves can be mutually coupled.

In order to directly study the role of this additional
coupling, we have developed an approximate four-wave
coupled-mode model, as described in Appendix A. The ap-
proach takes into account the coupling due to the Bragg gra-
ting of the four waves (two with propagation constant k�

propagating in opposite directions and two with propagation
constant k−). We consider two different coupling processes:
the Bragg reflection into the same mode (k� to −k� or k−

to −k−, as has been usually done up to now) and the coupling
between the different modes of the central section (k� to −k−,
for example). The strength of the latter coupling can become
large due to the fact that the modal structure of the Bragg gra-
ting and the central CRIGF, when considered separately, are
quite different, as can be judged from the difference in the
propagation constants of the initial modes, as given in Fig. 7.
This difference results in non-null overlapping integrals R−�

and R�− (Eq. A14). The real part of the calculated propagation
constant with respect to the wavelength is plotted in Fig. 9 for
different values of the overlapping integral, in the case
R−� � R�−. It is obvious that the additional coupling leads to
an additional flattening of the dispersion curve. In order
to take into account that the effective propagating length
of the modes of the central section is greater than its
length, due to the partial penetration in the Bragg gratings,
we have taken in the approximate calculations a GMRF

twice longer than in the previous rigorous calculations
(L � 2 × 12.2892 μm). Only a zoom close to the lower gap
boundary is given. The initial mode of CRIGF is supposed
to have a constant of propagation kg � k0�1.636� i0.0001�
and the contra-propagation coupling coefficient κ �
0.01k40∕k

2
g. The initial mode of the Bragg grating has the

parameters kB;g � k0�1.63� i0� and κ � 0.0225k40∕k
2
B;g. The

parameters are adjusted to correspond to the results in
Fig. 6. As explained in Appendix A, we neglect the losses
due to the transition phenomena on the interface between the
central region and the Bragg gratings. As observed in Fig. 9, if
the intermodal conversion is neglected (R�− � 0), the real
part of γ has the same behavior as in Fig. 8 without the Bragg
reflector. As R�− increases, the curve flattens, and the gap
boundary is blueshifted. At its maximum �R�−�R���

�������
0.5

p
�,

the curve has an almost flat region, as was true for the maxi-
mum length of the Bragg gratings in Figs. 7 and 8.

5. CONCLUSION
In order to investigate the physical origin of the extraordinary
angular tolerance of CRIGFs, we adopt an original approach
based on the resolution of the homogeneous problem (search
for the eigenfrequencies of the mode in the complex plane).
Numerically, we showed that the flattening of the dispersion
curve increases as the strength of the Bragg reflection rises up
with the growing number of Bragg periods. This behavior is
reproduced with the approximate model we developed based
on the four-mode coupled-mode theory. As it is well-known
from the two-wave coupled-mode theory, the interaction be-
tween two counter-propagative modes leads to the creation of
two hybrid modes, one with a larger (k�) and the other with a
smaller (k−) constant of propagation. The Bragg grating cavity
resonator that contains the central GMRF grating can lead to a
well-known reflection of the mode “k�” into the mode “−k�”

(and similarly for k−), but also can provide an additional cou-
pling between the hybrid modes (“k�” into “−k−”) that does
not exist without the Bragg grating box. We have shown that
the strength of this additional coupling (proportional to over-
lapping integral R−�) is directly responsible for the flattening
of the dispersion curve of the mode of the entire system. In
particular, when the two types of coupling have similar
strengths, one observes an extraordinary flattening of the
dispersion curve of CRIGF devices. The performance of the
device can be critical for some applications that cannot afford
substantial beam collimation that is necessary for classical
grating filters, or for applications that a priori need focused
light beams, as it is, for example, in confocal microscopy.

An interesting extension of these studies can be considered
by using two-dimensional periodic structures aiming to effi-
cient filtering in unpolarized light. Promising experimental
techniques have already been proposed [18,27,28] in the liter-
ature. However, this is one of the rare cases when the numeri-
cal modeling could be more difficult to perform than the
experimental realization because of the large device dimen-
sions with respect to the wavelength.

APPENDIX A: FOUR-MODE COUPLED-MODE
THEORY
1. Eigenmodes at the Band Edge for an Infinite Grating
Let us consider a grating waveguide, invariant in the y direc-
tion, that supports leaky modes propagating in the x direction,
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Fig. 9. Evolution of the real part of the eigenmodes propagation con-
stant as a function of the factor of conversion between the hybrid
modes of CRIGF due to the Bragg mirror reflection, as calculated
using the approximate four-wave coupled theory developed in
Appendix A.
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with leakage κout due to the radiation into propagating diffrac-
tion orders in the substrate and the superstrate. The vector
field components of the mode F�x; z� can be factorized in
the form

F�x; z� � f�z�eikgx: (A1)

The propagation constant kg is real without grating for
waveguides made of lossless materials. For a grating wave-
guide, the radiation losses enter in the mode propagation con-
stant along x and increase its imaginary part,

kg � Re�kg� � i�κout � κa:l:�; (A2)

with κa:l: staying for the absorption losses, if any.
In addition to the leakage, the mode propagation constant

and field map can be modified by the interaction between
counter-propagating modes. The classical coupled-mode
theory shows that this coupling modifies the propagation con-
stant and forms a forbidden gap in its dispersion map, the
modification resulting in a formation of two hybrid modes
having two slightly different propagation constants:

k� � K� Δ;k− � K − Δ; (A3)

with

Δ �
������������������������������
�K − kg�2 − κ2

q
; (A4)

where κ is the coupling strength between the two counter-
propagating modes and is proportional to the overlap mode
integral in the transverse direction. In particular, if the inter-
action involves the same counter-propagating modes and is
due to the grating that extends from 0 to h in the z direction,
then

κ � κ
−2κ�2

4k2g
; κ�2 � k20

Z
h

0
FT
�2�n2�x; z��jf�z�j2dz; (A5)

and FT
m�n2�x; z�� stays for the m-th Fourier transform, along x,

of the square of the refractive index function of the grating.
The spectral region in which jK − kgj < κ is forbidden

(bandgap) in the sense that the imaginary part of the propa-
gation constant increases due to the backward scattering. At
its boundaries, the real part of k� has the weakest depend-
ence on the incident vector component, parallel to the sur-
face, and thus the angular tolerances of the filter response
are less tight.

2. Transmission Matrix of a CRIGF
Let us consider the CRIGF that consists of a grating that acts
to couple in and out the waveguide mode(s) to the incident
and reflected waves, and two Bragg reflectors at the two sides
of the middle grating. Inside the middle grating, the two hybrid
modes, with propagation constants k� and k−, do not interact.
However, when entering the Bragg grating region in its gap,
there may occur an energy transfer between these two hybrid
modes because the field maps of the local modes in the middle
grating and in the Bragg gratings can differ significantly, as far
as the Bragg gratings act inside their gap.

A simplified model can take into account this interaction, at
least approximately, contributing to a better understanding of
the underlying phenomenon. Let us consider a TE (transverse
electric) mode with an electric field component parallel to the
y axis.

If we take into account that in each region we have two
possible directions of propagation, the tangential non-null
field components can be expressed in the form

0
BBBBB@

E�
y

iωμ0H�
z

E−

y

iωμ0H−

z

1
CCCCCA �

0
BBBBB@

1 1 0 0

k� −k� 0 0

0 0 1 1

0 0 k− −k−

1
CCCCCA

×

0
BBBBBB@

eik
�x 0 0 0

0 e−ik
�x 0 0

0 0 eik
−x 0

0 0 0 e−ik
−x

1
CCCCCCA

0
BBBBB@

a�p

a�n

a−p

a−n

1
CCCCCA; (A6)

with subscripts p and n indicating the positive and negative
directions of propagation along the x axis. The transmission
matrix inside the middle grating layer having length L is simply
given by the expression

T�

0
BBBBB@

1 1 0 0

k� −k� 0 0

0 0 1 1

0 0 k− −k−

1
CCCCCA

×

0
BBBBB@

eik
�x 0 0 0

0 e−ik
�x 0 0

0 0 eik
−x 0

0 0 0 e−ik
−x

1
CCCCCA

0
BBBBB@

1 1 0 0

k� −k� 0 0

0 0 1 1

0 0 k− −k−

1
CCCCCA

−1

:

(A7)

At the interface between the Bragg and the middle gratings,
it is necessary to preserve the continuity of the tangential
electric and magnetic field components, namely, Ey and Hz.
Assuming the hypothesis that in each of the gratings it is suf-
ficient to consider only the two hybrid modes, the boundary
conditions require that

�
E�
By � E−

By

H�
Bz � H−

Bz

�
�

�
E�
Gy � E−

Gy

H�
Gz � H−

Gz

�
; at x � 0 or L;

(A8)

where B stands for the Bragg grating, G stands for the middle
grating, and � and − correspond to the two different con-
stants, as given in Eq. (A3). It must be pointed out that their
values are different in each grating.

Let us underline that each of the field components re-
present a single mode, giving the possibility to separate the
variables by use of transverse field distributions f(z), such that
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E�;−
B;Gy�x; z� � f�;−

B;G�z�E�;−
B;Gy�x�;

H�;−
B;Gz�x; z� � f�;−

B;G�z�H�;−
B;Gz�x�: (A9)

They are normalized so that the transverse field integral is
equal to one:

Z �∞

−∞
jf�z�j2dz � 1: (A10)

Thus,

�E�
Gy �E−

Gy

H�
Gz �H−

Gz

�
x�0

�
� f�G �z� 0 f−G�z� 0

0 f�G �z� 0 f−G�z�

�
0
BBBBBB@

E�
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H�
Gz
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Gy

H−

Gz

1
CCCCCCA

x�0

;

(A11)

and a similar expression is valid inside the Bragg-grating re-
gion. Then Eq. (A8) applied at x � 0 takes the form

� f�G �z� 0 f−G�z� 0

0 f�G �z� 0 f−G�z�

�
0
BBBBBB@

E�
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1
CCCCCCA

x�0

: (A12)

Because the two hybrid modes are mutually independent in
each grating region, we can use the orthogonality between f�G
and f−G. First, we multiply by f̄�G (overbar means complex con-
jugated) and integrate in z:

�1 0 0 0

0 1 0 0
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CCCCCA;

(A13)

with

R�� �
Z �∞

−∞
f�B f̄

�
Gdz;

R−� �
Z �∞

−∞
f−Bf̄

�
Gdz: (A14)

Second, Eq. (A12) is multiplied by f̄−G and integrated in z:
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(A15)

Combining Eqs. (A13) and (A15) together, one obtains that
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(A16)

Let us denote with R the matrix that contains the overlap
integrals. The transmission through the first Bragg grating
from x � −LB to x � 0 is expressed through the correspond-
ing transmission matrix TB, so that
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: (A17)

At x � L,

�
E�
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By

H�
Bz � H−

Bz
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�
�
E�
Gy � E−
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; (A18)

i.e.,

� f�B �z� 0 f−B�z� 0
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: (A19)

First, we multiply by f̄�B and integrate in z. Second, we
multiply by f̄−B and integrate in z to obtain
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Finally,
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If we take into account the propagation inside the two
Bragg gratings, the total transmission matrix is the product
of the transmission matrices in the Bragg gratings TB and
the M matrix, containing the propagation in the middle grating
plus the interaction on the interfaces between the different
gratings:

Ttotal � TBR	TGRTB: (A22)

3. Eigenmodes of a CRIGF
The eigenmodes of the system (propagating, evanescent, and
leaky) are characterized by their principal property; their field
can be factorized in the form of Eq. (A1). Thus,

F�x � Ltotal; z� � χF�x � 0; z� (A23)

⇒ TtotalF�x � 0; z� � χF�x � 0; z�; (A24)

i.e., the problem is equivalent to finding eigenvalues and eigen-
vectors of the transmission matrix. The propagation constants
(γ) are then obtained from the relation

γ � ln χ
iLtotal

: (A25)

Although simple, this link presents several traps because
the logarithm of the complex exponential is determined within
integer times 2π∕Ltotal, so that the real part of γ cannot be ob-
tained deterministically.

In order to illustrate the influence of the mode interaction
on the interface between the different gratings, in what fol-
lows we make several reasonable assumptions:

(1) Symmetrizing the problem by assuming that

R�� � R−− � R1;R−� � R�− � R2: (A26)

We shall take these coefficients as real (R1;2 ∈ Re).
(2) Neglecting the radiation losses due to the transition ef-

fects on the interfaces between the gratings, and higher mode
interactions. For this aim we consider the relation

R2
1 � R2

2 � 1: (A27)

(3) In order to enable analytical results, we further assume
that the Bragg gratings act as if localized on the interfaces x �
0 and L through the overlap integrals in R, i.e., considering the
eigenvalues of M � R	TGR in Eq. (A24) instead of Ttotal.

After some tedious nontrivial calculations using Mathema-
tica, the four eigenvalues of M are given by the expression

f1−4 � cos�KL� cos�ΔL� � ξ� 1
2

����������������������������������������������������
A − 8ξ cos�ΔL� cos�KL�

p
;

(A28)

with

A � −2�sin2�K� Δ�L� sin2�K − Δ�L�

� 16
R2
2�1 − R2

2�
K2

− Δ2 �K2 cos2�KL� − Δ2 cos2�ΔL�� (A29)

and

ξ �
��������������������������������������������������������������������������������������������������������������������������
sin2�ΔL�sin2�KL� − 4

K2 sin2�KL� − Δ2 sin2�ΔL�
K2

− Δ2 �R2
2 − R4

2�
s

:

(A30)

Neglecting the terms proportional to R4
2 and to Δ2R2

2 yields

ξ ≈ sin�KL�
��������������������������������
sin2�ΔL� − 4R2

2

q
: (A31)

Let us take, for example, one of the eigenvalues

f1 � cos�KL� cos�ΔL� − ξ� 1
2

����������������������������������������������������
A − 8ξ cos�ΔL� cos�KL�

p
:

(A32)

If R2 � 0, then

ξ0 ≡ ξ�R2 � 0� � sin�ΔL� sin�KL�;
A − 8ξ cos�ΔL� cos�KL� � −4 sin2��K� Δ�L�; (A33)

so that

f1 � ei�K�Δ�L: (A34)

This indicates that without cross-interaction between the
modes with propagation constants K� Δ and K − Δ, which
happens if R2 vanishes, the proper modes inside the middle
waveguide do not change.

In the other limit when Δ � 0 (at the boundary of the for-
bidden gap),

f1 � eiKL�1 − 2R2� � ei�K�Δ�L�ln�1−2R2� ≈ ei�K�i2
R2
L �L; (A35)

i.e., the interaction induced by R2 increases the imaginary part
of the propagation constant, thus enlarging the initial gap.

In the more general case, when both Δ and R2 are non-null,
but small, the fact that ξ contains a square root prevents
us from directly expanding Eq. (A32) in series of R2 and Δ
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around zero. However, it is possible to expand it in series of R2

and ξ. The expansion in series in ξ of Eq. (A32) around ξ0 gives
the following approximate expressions:

f1 � ei�K�Δ�L
�
1 − i sin�ΔL� � i

��������������������������������
sin2�ΔL� − 4R2

2

q �

� ei�K�Δ�L�ln �1−i sin�ΔL��i
���������������������
sin2�ΔL�−4R2

2

p �

≈ ei�K�Δ�L−iΔL�iL
��������������������
Δ2

−�2R2∕L�2
p

� ei�K�
��������������������
Δ2

−�2R2∕L�2
p �L: (A36)

In the particular cases of R2 � 0 or Δ � 0, we obtain
Eqs. (A34) or (A35). Let us recall that

Δ2 � �K − kg�2 − κ2; (A37)

and thus
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����������������������������������������������������
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�
2R2

L

�
2

s
: (A38)

This means that the interaction between the counter-
propagating modes inside the GMRF region (proportional
to κ) is increased by 2R2∕L, as if the intermodal overlap inte-
gral (R2) is distributed over the waveguide length, the factor 2
can be explained as due to the double effect on the borders of
the two Bragg reflectors.

The second study concerns the case of strong coupling, i.e.,
R2 ≈ R1. Another process of tedious calculations shows that
the eigenvalues of the system take the simple form

eik
�L � R2

R1
eik

−L � i
Δ2

K2 sin�KL�;

R2

R1
eik

�L � eik
−L � i
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K2 sin�KL�;

e−ik
�L � R2

R1
e−ik

−L
− i

Δ2

K2 sin�KL�;

R2

R1
e−ik

�L � e−ik
−L

− i
Δ2

K2 sin�KL�: (A39)

Each one constitutes a hybrid wave composed of two
original modes having propagation constants k� and coupled
through R2. It is interesting to note that the third terms can be
neglected practically, so that when R2 ≈ R1, the eigenvalues
take even a more simple form. For the first propagation
constant, for example, we obtain

eik
�L � eik

−L � 2eiKL cos�ΔL�: (A40)

The logarithm of the cosine of the complex argument as a
function of the wavelength looks like a worn staircase, with
the “vertical” segments forming a flat gap in the dispersion
curves of the propagation constants.
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