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It has been shown both experimentally and numerically that the phenomenon of extraordinary transmission
through subwavelength hole arrays is generally associated with a drop in transmission located very close to it.
Paradoxically, this antiresonant drop occurs at the wavelength that, at first glance, should provoke a resonant
excitation of a surface plasmon propagating along the metallic surface of the screen. The present paper gives
a theoretical demonstration of this phenomenon, which dispels the paradox. Our theory is supported by numerical
calculations. © 2011 Optical Society of America
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1. INTRODUCTION
The phenomenon of extraordinary transmission of light
through hole arrays has been widely analyzed in recent years,
from both experimental data and theoretical results [1–25]. It
is in general acknowledged that the resonant excitation of sur-
face plasmons plays a key role in this surprising transmission
phenomenon. Many papers have pointed out a very paradox-
ical result. Indeed, it turns out that a transmission drop occurs
in the vicinity of the extraordinary transmission. The big para-
dox is that the wavelength that provokes this drop is precisely
that for which a resonant excitation of a surface plasmon pro-
pagating along the metallic screen should arise. The aim of
this paper is to give a theoretical demonstration of this phe-
nomenon and to analyze numerically its limits.

Our demonstration of the existence of a drop is based on an
assumption: the transverse width of the holes must be much
smaller than both thewavelength of the light and the array per-
iod, but numerical results show that, in fact, width of holes of
the order of half a period or half a wavelength are acceptable.
Two cases are studied successively, according to whether the
metallic screen is made of a perfectly conducting material or a
real metal in the visible region. For each of them, we deal with
one-dimensional (1D) (lamellar gratings) and two-dimensional
(2D) (inductive grids) hole arrays.

In outline, the theory shows that the field in the hole array
includes two parts: the field generated by a reflection on the
flat, nonperforated screen and a field composed of two non-
resonant (i.e., without resonantly enhanced amplitudes) sur-
face waves propagating in opposite directions on the surface
of the screen. This pair of surface waves is generated by the
incident field at a wavelength corresponding to the excitation
of surface plasmons on a flat, nonperforated screen. This re-
sult gives the explanation of the apparent paradox: the actual
resonance phenomenon that provokes the phenomenon of ex-
traordinary transmission occurs at the wavelength for which
the actual surface plasmons of the perforated screen are ex-
cited, and thus it depends on both the shape of the holes and

the optical index of the metal. On the other hand, the wave-
length for which the drop occurs depends on the optical in-
dices of the metal and dielectric only. When the size of the
holes tends to zero, these two wavelengths tend to each other,
and thus the drop and the extraordinary transmission annihi-
late each other.

It is worth noting that the demonstration of the existence of
a drop extends to nonperiodic perforated structures, espe-
cially to the case of a single hole, but the present paper does
not provide any numerical data for such structures, and thus
no conclusion can be drawn.

2. PROBLEM AND NOTATIONS
The pair extraordinary transmission–transmission drop is evi-
denced by experimental measurements published by Genet
et al. [26]. The experimental transmission curve is given in
Fig. 1. A gold inductive grid made of a gold screen perforated
by circular holes is illuminated in normal incidence by a plane
wave. The smooth curve has been obtained by a free adjust-
ment of parameters in a formula proposed by Fano. The arrow
shows the wavelength corresponding to the excitation of sur-
face plasmons on the upper interface of the screen by the ð1; 0Þ
order of the grating. Let us recall that the excitation of a surface
plasmon by a 2D grating can be achieved by adjusting the pro-
pagation constant of an evanescent order generated by the
grating to the propagation constant of the surface plasmon.
Using the propagation constant of the surface plasmon propa-
gating on a flat metallic surface and the grating formula, it is
easy to deduce that in the experimental measurements shown
in Fig. 1, the excitation occurs when the wavelength λ in va-
cuum is related to the period d of the grating by [27]

λ ¼ Re

8<
:

dνM
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ν2M

q
9=
;; ð1Þ

with the optical index of gold, νM , the order exciting the surface
plasmon here being either ðp; 0Þ or ð0; pÞ, depending on the
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polarization of the incident wave (the direction of propagation
of the surface plasmon being orthogonal to the direction of the
incident magnetic field). The arrow in Fig. 1 corresponds
to p ¼ 1.

It is quite surprising to note that the wavelength that should
excite a surface plasmon resonance in fact provokes a drop in
transmission, the extraordinary transmission being shifted to
a slightly larger wavelength. The explanation of this paradox
will be given in this paper but, to this point, it should be noted
that the constant of propagation of a surface plasmon on a
grating differs from that on a flat surface, which can explain
the shift of the resonance wavelength to the right. On the other
hand, the existence of a drop in transmission at a wavelength
given by Eq. (1) is quite puzzling. A demonstration of this phe-
nomenon is given in the following, but it must be noted that,
according to Eq. (1), the location of the drop should not de-
pend on the radius of the holes. In order to verify this conjec-
ture, in Fig. 2 we have drawn theoretical curves obtained by
calculating the transmission of the inductive grid used by
Genet et al. [26], but for various radii of holes.

In this paper, all calculations on metallic gratings with finite
conductivity have been performed using a rigorous numerical
code based on the Fourier modal method. The S-matrix pro-

pagation algorithm [28] and the correct factorization rules for
the product of discontinuous functions are used to accelerate
the convergence. Li’s method [29] for 1D gratings, and the nor-
mal vector method by Popov and Nevière [30] for 2D gratings
with circular holes, are applied. However, the convergence
remains slow for gratings composed with an alternation of ma-
terials with real positive and real negative permittivity, a case
in which the factorization rules enounced by Li are not avail-
able [31]. Nevertheless, the accuracy of the result is satisfac-
tory with ð2 � 30þ 1Þ Fourier components, except for some
configurations.

The calculations fully confirm the existence of an antireso-
nance at a wavelength slightly smaller than the wavelength of
the extraordinary transmission. The curves are qualitatively
similar to that shown in Fig. 1. However, the quantitative
agreement on both the height and the location of the peak is
obtained not for a radius of 70 nm, but for one of 110 nm. The
explanation of this discrepancy could be found in a lack of
precision on the actual radius and shape of the holes in the
grating used by Genet et al. [26]

The vital conclusion to be drawn from Fig. 2 is that, in con-
trast with the location of the extraordinary transmission that
is shifted to the right as the radius is increased, due to the shift
of the actual surface plasmon of the perforated screen, the
location of the antiresonance is independent of the radius
of the holes and is given by Eq. (1).

The aim of the following is to provide a theoretical expla-
nation to this apparently paradoxical result: an antiresonance
is obtained when, at the first glance, a surface plasmon should
be excited.

The grating is represented in Fig. 3. A metallic screen of
width h parallel to the xz plane of a cartesian system of co-
ordinates is perforated by holes parallel to the y axis. These
holes are located in parallel strips (called perforated strips in
the following) of width t (light gray regions at the left-hand
side of Fig. 3) periodically spaced along the x axis, with period
d. The origin of the system of coordinates is located on the top
of the screen, on the symmetry axis of one perforated strip.
Figure 3(a) shows an inductive grid with circular holes of
radius R ¼ t=2 periodically located on the x and z axes,
and Fig. 3(b) shows a lamellar grating, but the properties de-
monstrated in the paper can apply to many other cases. For
example, the holes in each perforated strip can be arbitrarily

Fig. 1. (Color online) Experimental transmission spectrum of a gold
film of thickness 200 nm with periods d ¼ d0 ¼ 700 nm, the radius of
the holes being equal to 70 nm. The smooth curve shows a theoretical
curve obtained by adjusting freely the parameters in a formula pro-
posed by Fano. The arrow shows the location of the drop given by
Eq. (1). The inset shows the experimental transmission spectrum
for the same array, but in a film 100 nm thick. Reprinted from Ref.
[26], p. 335, with permission from Elsevier.

Fig. 2. Calculated transmission of the inductive grid corresponding
to Fig. 1, for various values of the radius of the holes.

Fig. 3. Perforated metallic screen, scheme and notations.
(a) Inductive grid, (b) lamellar grating.
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located on the z axis and are possibly finite in number. Our
demonstrations include the case where the number of perfo-
rated strips is finite, but they always must be separated by
multiples of d on the x axis, except, of course, in the case of
a unique hole in the screen, which is also included. The re-
gions 1 and 3 above and below the screen contain lossless di-
electric materials of optical indices ν1 and ν3, respectively.
The holes (region 2) are filled with a lossless dielectric of in-
dex ν2. The interfaces between the metallic regions and re-
gions 1, 2, and 3 are denoted by ΓM1, ΓM2, and ΓM3 while ΓH1

and ΓH3 represent the top and the bottom of the holes (Fig. 4).

3. TRANSMISSION DROP FOR PERFECTLY
CONDUCTING GRATINGS
A. Theoretical Demonstration
In this section, our goal is to construct a field that, in some
conditions, is the solution of the problem of scattering. Using
a time dependence expð−iωtÞ and assuming that the incident
field is p-polarized, an incident magnetic field with unit ampli-
tude, propagating in normal incidence in the upper region
(arrow one in Fig. 4), can be written in the form

Hi ¼ Hiẑ ¼ expð−ik1yÞẑ; ð2Þ

and we deduce from Maxwell’s equations the electric field:

Ei ¼ Z1 expð−ik1yÞx̂; Z1 ¼
ffiffiffiffiffiffiffiffiffiμ0
ν21ε0

r
¼ Z0

ν1
; ð3Þ

with x̂, ŷ, and ẑ being the unit vectors of the axes, ε0 and μ0 the
permittivity and permeability of vacuum, and Z1 the impe-
dance of the upper region.

We first consider the simplest case where the metallic
screen is not perforated by any hole. In that case, the field
reflected by the perfectly conducting metallic plane illumi-
nated in normal incidence (arrow 2 in Fig. 4) is given by

Hr ¼ Hr ẑ ¼ expðþik1yÞẑ; ð4Þ

Er ¼ −Z1 expðþik1yÞx̂: ð5Þ
The total field defined by E⊥ ¼ Ei þ Er andH⊥ ¼ Hi þHr, re-
ferred to as the y-propagating field in the following, is given by

H⊥ ¼ 2 cosðk1yÞẑ; ð6Þ

E⊥ ¼ Z1½expð−ik1yÞ − expðþik1yÞ�x̂ ¼ −2iZ1 sinðk1yÞx̂: ð7Þ

It satisfies the boundary conditions on the plane y ¼ 0: the
tangential component of the electric field and the normal com-
ponent of the total magnetic field vanish.

In order to construct the total field in both nonperforated
and perforated screen, we introduce a second field ðE∥;H∥Þ,
which we call the x-propagating field, corresponding to graz-
ing incidences (arrows 3 and 4 in Fig. 4):

H∥ ¼ ½expðik1xÞ þ expð−ik1xÞ�ẑ ¼ 2 cosðk1xÞẑ; ð8Þ

E∥ ¼ Z1½expðik1xÞ − expð−ik1xÞ�ŷ ¼ 2iZ1 sinðk1xÞŷ: ð9Þ

This field is composed of two plane waves propagating in op-
posite directions along the x axis. As with the y-propagating
field, the x-propagating field ðE∥;H∥Þ satisfies the boundary
conditions for y ¼ 0. It represents the solution of the homo-
geneous problem (no incident wave) for the nonperforated
screen. Thus, according to Eq. (7), all of the components of
E⊥ vanish on the plane y ¼ 0, while E∥ is parallel to the y axis,
according to Eq. (9). Let us recall that, by definition, the mag-
netic fields H⊥ and H∥ are parallel to the z axis.

When the metallic plane is perforated by holes, as shown in
Fig. 3, the problem becomes much more complex than a sim-
ple problem of reflection by a plane, and it can be expected, in
general, that a transmitted field exists. However, ðE⊥;H⊥Þ
and ðE∥;H∥Þ still satisfy the boundary conditions on the upper
metal interface ΓM1 of the metallic screen, since this interface
has not changed. Moreover, the electric field EC of a linear
combination ðEC;HCÞ ¼ ðE⊥;H⊥Þ þ aðE∥;H∥Þ, with a com-
plex number, is parallel to the y axis for y ¼ 0, while the mag-
netic field HC is parallel to the z axis. Let us suppose that it is
possible to find a such that, in addition, the components HC

z

and EC
y of this combination are equal to zero on the top ΓH1 of

the holes. In that case, all the components of ðEC;HCÞ vanish
on ΓH1. As a consequence, a field that, by hypothesis, is equal
to ðEC;HCÞ in region 1 and to zero in the other two dielectric
materials will satisfy Maxwell’s equations in the entire space
and boundary conditions. Indeed, the boundary conditions are
satisfied, not only on the top ΓM1 of the metallic part of the
screen but also on the top and bottom ΓH1 and ΓH3 of the holes
since the electric and magnetic fields vanish on both sides of
these boundaries, as well as on the boundaries ΓM2 and ΓM3 of
the dielectric regions 2 and 3 with the metal since both electric
and magnetic fields vanish. Finally, bearing in mind that
ðEi;HiÞ is the only incident wave in ðEC;HCÞ, and thanks to
the theorem of uniqueness of the solution of a problem of scat-
tering, the total field generated by ðEi;HiÞ is equal to ðEC;HCÞ.
We deduce that the transmitted field will vanish.

The criticism that could be addressed to this demonstration
is that the grazing incidence field contains two plane waves
propagating parallel to the screen, and, even though they
do not bring energy to the grating surface, they can be con-
sidered as incident waves in some way. In order to eliminate
any doubt, these plane waves will be considered as limits
when δ → 0 (δ positive) of evanescent waves having a propa-
gation constant along the x axis equal to k1 þ δ in modulus.

Fig. 4. Interfaces between the different regions and fields of the non-
perforated screen. The screen is illuminated in normal incidence by an
electromagnetic plane wave of wavelength λ ¼ 2π=k in vacuum and
wavevector k1 propagating in region 1 (arrow 1 in Fig. 4), thus
jk1j ¼ k1 ¼ 2π

λ1 ¼ ν1k, λ1 being the wavelength in region 1.
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Now, let us show that such a combination of fields can be
found, at least approximately. With this aim, we express the z
component of the magnetic field and the y components of the
electric field at the top of the holes (y ¼ 0) using Eqs. (2)–(9):

HC
z ¼ 2ð1þ a cosðk1xÞÞ; ð10Þ

EC
y ¼ 2iZ1a sinðk1xÞ: ð11Þ

It should be noted that Ec
y vanishes on the z axis, the symme-

try axis of the central perforated strip. It can vanish on the
symmetry axes of all of the strips provided that HC and EC

have a period d in x, which entails that

k1 ¼ pK; with K ¼ 2π=d; ð12Þ

with p being a positive integer. It is worth noting that in the
case of Fig. 3, when the perforated screen is a grating, Eq. (12)
means that the grazing incidence field is composed of the
ð�p; 0Þ order [Fig. 3(a)] or the �p order [Fig. 3(b)] of the re-
flected field generated by the normal incidence plane wave
contained in H⊥. Thus, this is a case of a Rayleigh anomaly
with two passing-off orders [27], which entails that the inci-
dent field Hi included in H⊥ can generate H∥.

Obviously, from Eq. (11),EC
y , which vanishes on the sides of

the holes, cannot vanish on the entire top of the holes, but it
can be close to zero if the width t of the perforated strips is
such that sinðk1t=2Þ ≪ 1. Thus k1t=2 ≪ π=2, which entails

t ≪ λ1=2 ¼ λ=2ν1: ð13Þ

We deduce from Eqs. (12) and (13) that t ≪ d=2, and thus the
width of the strips must be much smaller than both period d
and wavelength λ1 in region 1.

Now, wemust impose the second condition: the component
HC

z given by Eq. (10) must be small on the perforated strip. To
this end, it suffices to impose a ¼ −1. In that case, it can be
deduced from Eqs. (10) and (13) that HC

z is very close to zero
on the perforated strips and thus is at the top of the holes.

In conclusion, it can be predicted that when the width of the
perforated strip (gray region in Fig. 1) is much smaller than
both period d and wavelength λ1, a strong drop in transmission
occurs for a wavelength which, when the structure is a grat-
ing, is located close to the passing-off of an order. Further-
more, all of the amplitudes of the reflected and transmitted
orders (propagative or evanescent) vanish, except the zero
reflected order and the two passing-off orders above the grat-
ing. If the integer p of Eq. (12) is greater than 1, this remark
entails that all of the reflected and transmitted efficiencies
vanish, except that in the reflected zero order, a phenomenon
confirmed numerically in Subsection 3.B.

However, let us note that this prediction could fail for dis-
crete values of the parameters of the perforated screen. In-
deed, a hole acts like an open cavity. If a resonance of this
open cavity occurs, the field inside the cavity could become
significant, even though the field is very small on the top of the
holes. As a consequence, it could be large inside and below
the holes, due to the resonance. Thus the transmission could
increase.

Finally, at the first glance, one could think that our conclu-
sion could be deduced from a basic result on waveguides, at
least for the 2D grating. It is well known that a perfectly con-

ducting 2D waveguide has a cutoff wavelength and thus can-
not transmit light when the wavelength is large with respect
to the width of the waveguide. For example, for a circular
waveguide, the fundamental mode (TE11) has a cutoff wave-
length equal to 3:41R. Such a waveguide cannot transmit light
for larger wavelengths. Here, a hole can be considered as a
truncated waveguide, and thus it can be conjectured that
the transmission by the perforated screen is small. Numerical
results will show that this criticism is not relevant. In this re-
gard, let us remark that a truncated waveguide can transmit
significant energy by tunneling effect, especially if the thick-
ness t of the screen is not large. It will be shown that the con-
ditions of transmission drop given in this section strongly
reduce this tunneling transmission, even for very small screen
thicknesses.

Let us note finally that, in our theoretical demonstration of
the existence of a drop in transmission, the holes are consid-
ered as perturbations of a nonperforated screen. The unper-
turbed field is ðEC;HCÞ, representing a sum of fields in a
classical reflection by a plane and fields propagating along
the surface of the same plane. The latter fields are the solution
of the homogeneous problem, existing at the wavelength gi-
ven by Eq. (1). We have shown that in some conditions, the
unperturbed field vanishes on the upper surface of the holes,
and thus it vanishes inside the holes and below the screen.
The consequence is that the holes do not create a perturbation
of this field or on the wavelength at which it exists.

B. Numerical Verification: Case of Lamellar Gratings
Figure 5 shows the logarithm of the transmission by a lamellar
grating [Fig. 3(b)] as a function of the wavelength. The abscis-
sa represents the factor η, defined by

λ1=d ¼ 1:þ 10−η: ð14Þ

The period of the grating is equal to 1, and thus the �1 orders
are evanescent and reach the passing-on wavelength when
η → ∞. The calculations have been performed using the soft-
ware GRATING 2000, which uses a rigorous integral theory of
gratings [32,33]. The transmission (left-hand side of Fig. 3)
reaches unity at a wavelength of resonance close to 1.01, then
decreases rapidly to a value close to 10−7 when the wave-
length tends to 1. It can be considered that this asymptotic
limit is imposed by the limit of precision of the calculations.
The modulus of the amplitude B�1 of the magnetic field in the
�1 order above the screen (right-hand side of Fig. 3) tends to
unity, after the peak of resonance at λ ¼ 1:01.

Notice that this asymptotic value is not reached as long as
the wavelength differs from d by a value greater than 10−5. It
has been verified that, except for the �1 orders, which have a
unit amplitude, the asymptotic amplitudes of all other evanes-
cent orders in material one are negligible. The same applies to
all of the transmitted evanescent orders. It is not the purpose
of the present paper to discuss the peak of resonance (extra-
ordinary transmission) at a wavelength close to 1.01, for
which the transmission reaches unity. This result is due to the
symmetries of the grating and can be explained using the same
arguments as in [34] for the case of dielectric lossless gratings.

Figure 6 shows the same curves as Fig. 5, but with a much
greater value of t. The phenomenon of resonance holds for the
transmission, for a value of the wavelength close to 1.1, which
differs much more from the passing-off wavelength than in
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Fig. 5. The transmission tends to an asymptotic value slightly
smaller than 0.1, while the modulus of the amplitude of the
first order tends asymptotically to a value close to 1.75. These
results are not surprising, since the width of the holes is equal
to 60% of the period, and consequently our assumption is not
satisfied in that case, but it is worth noting that the trans-
mission tends to a relatively small asymptotic value, as well
as the modulus of the amplitude of the magnetic field in the
first order.

In order to obtain precise limits of the validity of our theory,
in Fig. 7 we show the asymptotic values of the logarithm of the
transmission and of the modulus of the amplitude in the first
order versus the width t of the holes, keeping the same other
parameters as in Figs. 5 and 6. It is very surprising to notice
that, even though the limit value of the modulus of the ampli-
tude in the first order rapidly differs from 1 as t=d is increased
(it is close to 1.25 for t=d ¼ 0:35), the asymptotic value of the
transmission remains smaller than 10−2 as long as t=d < 0:55,
a value which is much greater than the limit of our basic as-
sumption given by Eq. (13), which states that t should be much
smaller than 0.5.

In order to analyze this result, it is interesting to compare
the numerical values of the amplitudes and phases of the pro-
pagating and evanescent, reflected and transmitted orders on
two points of Fig. 7. For t=d ¼ 0:05 (left-hand side), the am-
plitudes of the zero and �1 reflected orders are equal to unity
and the corresponding phases are equal to 0 (0 order) and 180°
(�1 orders), as predicted by the theory. The other reflected
evanescent orders are negligible (less than 10−3 in amplitude).

The amplitudes of all the transmitted orders are of the order of
10−4 (including the zero order), except the �1 orders, which
reach 0.03 in amplitude. For t=d ¼ 0:5, the amplitudes of the 0,
�1, and�2 reflected orders are equal to 0.998, 1.48, and 0.185,
respectively. The corresponding phases are equal to −14:6° for
the 0 order and 172:3° for both �1 and �2 orders. These
values significantly differ from the theoretical predictions, ex-
cept the amplitude of the 0 reflected order. As regards the
transmitted orders, the amplitudes of the 0, �1, and �2 trans-
mitted orders are equal to, respectively, 0.0557, 0.38, and 0.04.
The corresponding phases are equal to 177°, 135°, and 2°, re-
spectively. From these results, it can be deduced that when
t=d increases, the phase of the reflected zero order is signifi-
cantly changed. As a consequence, the boundary conditions
on ΓM1 (metallic part of the top of the screen) are no longer
satisfied by the field ðEC;HCÞ ¼ ðE⊥;H⊥Þ þ aðE∥;H∥Þ. In-
deed, although aðE∥;H∥Þ satisfies these boundary conditions
for any value of a (it is composed of two plane waves propa-
gating along the x axis), ðE⊥;H⊥Þ no longer satisfies this con-
dition because the phase of the reflected wave has changed.
Thus, evanescent waves of higher orders are needed to fulfill
the boundary condition on ΓM1, which explains the important
amplitude (0.185) of the �2 reflected orders for t=d ¼ 0:5. In
the same way, the amplitudes of the �1 transmitted orders
(0.38 for t=d ¼ 0:5 and 0.03 for t=d ¼ 0:05) show that the field
penetrates inside the holes. However, these orders (which
satisfy the boundary conditions on ΓM3) allow the field that
reaches the bottom of the holes to be canceled in such a
way that the transmission remains very small. In conclusion,

Fig. 5. Decimal logarithm of the transmission (left) and of the modulus of B�1 (right) for a perfectly conducting lamellar grating [Fig. 3(b)] having a
period d ¼ 1:, a width t of the holes equal to 0.05 and a depth h ¼ 0:3. The indices ν1, ν2 and ν3 of the dielectric regions are equal to unity.

Fig. 6. Same as Fig. 5, but with a hole width t equal to 0.6.
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the transmission remains small because a complex process
involving the 0 (for the phase only), �1, and �2 reflected
orders, as well as the �1 transmitted orders, allow the trans-
mitted zero order to remain very small, even though the field
can penetrate inside the holes.

Finally, we have analyzed the influence of the width h of the
metallic screen. Figure 8 shows the transmission of a lamellar
grating having holes of width equal to 0.05 as a function of h.
The ordinate is the asymptotic value of the transmission as the
wavelength tends to 1, with the same parameters as in Fig. 5.
The first remark to be made is that the transmission remains
very small, even as h decreases. For h ¼ 0:025, the transmis-
sion does not exceed 10−8. Problems of convergence occur for
smaller values of the screen width. These problems are caused
by the integration of Green’s functions when the distance be-
tween two opposite interfaces of the lamellar grating become
much smaller than the wavelength. However, it can be de-
duced from Fig. 8 that our theoretical demonstration holds
for h → 0, the case of a perfectly conducting perforated sheet.

The second important conclusion to be drawn from Fig. 8 is
the existence of a peak of transmission around h=d ¼ 0:6. This
peak can be attributed to a Fabry–Perot resonance of the field
inside the hole, which is nothing more than an open cavity. At
first glance, it seems that the quality factor of such an open
cavity should be poor, since the apertures on both sides of
the screen are large. In general, Fig. 8 shows that the trans-
mission of a plane wave inside a hole is very small. By reci-
procity, the transmission of the mode on both extremities of a
hole also is very small, and this explains why the quality factor
is large. The existence of this peak is simply the consequence
of the resonant multiple reflections of the mode on these ex-
tremities. Bearing in mind that the fundamental mode (which
is the unique nonevanescent mode for this wavelength) is con-
stant along the x axis and propagates in expð�ikyÞ along the y
axis, it turns out, assuming a phase shift of the mode at the
extremities equal to 0 or π, that the smallest thickness of the
screen that provokes a resonance is equal to λ=2: ¼ 0:5, which
is close to the location of the peak in Fig. 8 (0.5877). Because
of the horizontal symmetry of the structure, the transmission
peak reaches unity but its width is very small, less than 10−4.

These remarks show that the phenomenon of transmission
drop is confirmed by numerical calculations, except in very
small ranges of wavelength where acute resonances occur.

C. Numerical Verification: Case of Inductive Grids
In order to extend the test of validity to 2D gratings, we next
consider the case of a 2D inductive grid [Fig. 3(a)]. The period
d along the x axis is equal to unity, as is the period d0 along the
z axis. Figure 9 shows the variations in the logarithm of the
transmission and the logarithm of the modulus jB�1;0j of the
amplitudes in the ð�1; 0Þ orders for a small radius. Here, �1
and 0 represent the indices n andm of the order, according to
the grating formula in normal incidence, giving the compo-
nents αn and βm on the x and z axes of the propagation
constant in this order:

αn ¼ n
2π
d
; βm ¼ m

2π
d0

: ð15Þ

The passing-off for these orders occurs at a wavelength λ1
equal to 1. The transmission remains very small, less than
10−8, except in the vicinity of η ¼ 4:2 and η ¼ 6:7, where it cul-
minates at 100%, and asymptotically tends to 0. The amplitude
jB�1;0j tends to unity, as predicted by theory.

Comparing Fig. 9 with Fig. 5, it is evident that the properties
of 1D and 2D gratings present some significant differences.
First, the transmission and amplitude jB�1;0j includes two
peaks in the 2D case (the peak for η ¼ 6:7 being very acute),
while a single one was obtained in the 1D case. The existence
of a double peak can be explained very easily. The peaks are

Fig. 7. Asymptotic values when η → ∞ of the logarithm of the transmission and of the modulus of the amplitude in the first order with the same
other parameters as in Figs. 5 and 6.

Fig. 8. Variation of the asymptotic value of the transmission of a per-
fectly conducting lamellar grating as the wavelength tends to one
(η → ∞), versus the screen depth h. The period is equal to 1, the width
t of the holes is equal to 0.05. The indices ν1, ν2 and ν3 are equal to
unity.
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caused by the excitation of surface waves on both sides of the
grating. The horizontal symmetry of the grating entails that
two resonances can arise, symmetrical and countersymmetri-
cal. The reason why a single one occurs for 1D gratings is not
obvious. It could be linked with the strong difference between
the roles of the holes. For a 1D grating, a cutoff wavelength
does not exist for the hole that is considered as a waveguide,
which entails that a strong coupling exists between the fields
on both sides of the screen. This is not so for the inductive grid
and, since the wavelength is much greater than the radius of
the holes, the coupling between the two sides is much smaller.
The shift between the resonance peaks increases with the
coupling. It can be conjectured that, due to the strong cou-
pling, one of the resonance wavelengths for the 1D grating
is shifted to a wavelength that is smaller than unity and thus
cannot appear on the curves.

Figure 10 shows the same curves, but with a greater radius
of the holes. As observed for 1D gratings, the asymptotic value
of the transmission is strongly increased (from 10−14 to 10−3:5)
but remains small. On the other hand, the asymptotic limit of
jB�1;0j becomes equal to a value close to 2, which is very dif-
ferent than unity, the limit predicted by theory for small holes.

Figure 11 gives the variations of the asymptotic limits of the
transmission and jB�1;0j when the radius of the holes is in-
creased. The most striking conclusion to be drawn is that
the transmission remains smaller than 10−2 as long as the
radius remains smaller than 0.35, while the asymptotic value
of jB�1;0j becomes 40% greater than unity as soon as the radius
reaches 0.15, a phenomenon already observed for 1D gratings.

The analysis given in Section 3.B for 1D gratings also holds for
2D gratings.

Finally, Fig. 12 shows the logarithm of transmission versus
the ratio h=t of the thickness of the screen over the grid per-
iod. The oscillations on the left-hand side of the figure are
caused by a poor convergence of the numerical results when
the thickness of the screen becomes very small, due to a bad
integration of the Green’s functions. One can observe a quasi-
linear variation as soon as h=t exceeds about 0.1. This linear
behavior was not observed for 1D gratings. The explanation is
straightforward: as mentioned previously, the wavelength is
greater than the cutoff value and thus, in contrast with 1D
gratings, the transmitted energy is caused by a tunneling ef-
fect. This tunneling effect exponentially decreases as h=t is
increased, which explains the linear behavior of the logarithm
of the transmission. The same explanation can be given for the
lack of any resonance peak, compared with the same curves
in Fig. 8 for 1D gratings: due to the exponential decrease of the
field inside the holes, these holes cannot behave like resonant
antennas.

A last remark may be derived from Fig. 12: as observed for
1D gratings, the transmission remains very small (of the order
of 10−8) when the thickness of the screen tends to 0, which
shows that our theory applies to the case of a perforated per-
fectly conducting sheet. From this remark, bearing in mind the
Babinet principle, it can be conjectured that complementary
properties could be observed for capacitive grids, i.e., struc-
tures deduced from the inductive grids by exchanging metal
and vacuum inside the grid region: a drop in reflection should

Fig. 9. Decimal logarithm of the transmission and of the modulus of B�1 for a perfectly conducting inductive grid [Fig. 3(a)] having periods
d ¼ d0 ¼ 1, with a radius R of the circular holes equal to 0.1 and a depth h ¼ 0:3. The indices ν1, ν2 and ν3 are equal to unity.

Fig. 10. Same as Fig. 7, but R ¼ 0:3.
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be observed for s-polarized light when the radius of the circu-
lar metallic elements is small with respect to the wavelength.

In all of the examples given in this paper, the value of the
integer p in Eq. (12) is equal to 1: the orders at the passing-off
wavelength are the �1 orders (1D grating) or ð�1; 0Þ orders
(2D gratings). We have verified that if p is greater than 1, all of
the reflected and transmitted efficiencies vanish, except that
in the reflected zero order. For example, for a 1D lamellar
grating with d ¼ 1, t ¼ 0:2, h ¼ 0:3 illuminated in normal inci-
dence by a p-polarized plane wave with wavelength 0.2000002,
none of the efficiencies of the reflected and transmitted orders
exceeds 10−3, except that of the reflected 0 order, which
reaches unity.

4. TRANSMISSION DROP FOR FINITE
CONDUCTIVITY METALLIC GRATINGS

A. Theoretical Demonstration
We consider the structure represented in Fig. 3, the metal now
having a complex index νM ¼ ðεMÞ1=2. The incident electric
and magnetic fields are still given by Eqs. (2) and (3). In the
simplest case, where the metallic screen is not perforated by
any hole and the metal has an infinite extension toward
y ¼ −∞, the fields reflected and transmitted by the metallic
plane located on the xz plane are given by

Hr ¼ Hr ẑ ¼ ρ expðik1yÞẑ; ð16Þ

Er ¼ −ρZ1 expðik1yÞx̂; ð17Þ

Ht ¼ τ expð−ikMyÞẑ; kM ¼ kνM; ð18Þ

Et ¼ ZMτ expð−ikMyÞx̂; ZM ¼
ffiffiffiffiffiffiμ0
εM

r
; ð19Þ

with ρ and τ being the Fresnel coefficients for reflection and
transmission by a metallic surface:

ρ ¼ ðνM − ν1Þ=ðνM þ ν1Þ; ð20Þ

τ ¼ 2νM=ðνM þ ν1Þ: ð21Þ
Following the same lines as for perfectly conducting metal,

we define the y-propagating field ðE⊥;H⊥Þ, which is now
defined in the entire space by

E⊥ ¼
�
Ei þ Er for y > 0

Et for y < 0
;

H⊥ ¼
�
Hi þHr for y > 0

Ht for y < 0
: ð22Þ

The horizontally propagating fields ðE∥;H∥Þ are composed of
two surface plasmons [27] propagating in opposite directions
along the interface between region 1 and the half-space y < 0
filled with metal:

for y > 0; H∥ ¼ exp½ikðαxþ βyÞ� þ exp½ikð−αxþ βyÞ�ẑ
¼ 2 cosðkαxÞ expðikβyÞẑ; ð23Þ

for y < 0; H∥ ¼ exp½ikðαx − γyÞ� þ exp½ikð−αx − γyÞ�ẑ
¼ 2 cosðkαxÞ expð−ikγyÞẑ; ð24Þ

α ¼ νMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνM=ν1Þ2

p ; β ¼ −ν1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνM=ν1Þ2

p ;

γ ¼ ν2M=ν1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνM=ν1Þ2

p : ð25Þ

It is important to note that since νM is complex, α, β, and γ are
also complex. Indeed, due to losses in the metal, the surface
plasmon is damped and thus the constant of propagation kα
has an imaginary part.

Fig. 11. Variations of the asymptotic values of the logarithm of the transmission and of jB�1;0j with R=d. The other parameters are the same as in
Fig. 9.

Fig. 12. Variations of the asymptotic values of the logarithm of the
transmission with h=d. The other parameters are the same as in Fig. 9.
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From Eqs. (23) and (24), we deduce using Maxwell’s
equations:

for y > 0; E∥ ¼ 2Z1
ν1

½−β cosðkαxÞx̂

þ iα sinðkαxÞŷ� expðikβyÞ; ð26Þ

for y < 0; E∥ ¼ 2ZM

νM
½γ cosðkαxÞx̂

þ iα sinðkαxÞŷ� expð−ikγyÞ: ð27Þ
As for the case of perfectly conducting metal, we define a

combination ðEC;HCÞ ¼ ðE⊥;H⊥Þ þ aðE∥;H∥Þ. Thus, the
magnetic field HC remains, by definition, parallel to the z axis
but now the electric field EC has nonnull components on both
x and y axes

We deal now with the case of perforated screen, shown in
Fig. 3. The domain of space including region 1 (y > 0) and
metal will be denoted by D1 and the complementary region
of space by D2. The aim of the demonstration is to show that
the field ðE;HÞ defined by

ðE;HÞ ¼
� ðEC;HCÞ in D1

ð0; 0Þ in D2
ð28Þ

satisfies, for a given value of the coefficient a, Maxwell’s equa-
tions and boundary conditions between the different materi-
als, at least approximately. Since the only incident wave in
that field is ðEi;HiÞ, it is deduced that ðE;HÞ is the total field
generated by this incident wave, and thus that the transmitted
field vanishes.

The field ðE;HÞ identifies with ðEC;HCÞ in D1; thus it satis-
fies Maxwell’s equations in this region and boundary condi-
tions (continuity of the tangential components of the fields)
on the upper metallic surface ΓM1 of the screen, which is not
changed. If, in addition, the limit in D1 of the z component of
HC and of the x and y components of EC vanish on the bound-
ary of D1 (top ΓH1 of the holes, vertical sides ΓM2 of the holes,
metallic part ΓM3 of the lower interface of the screen), then a
field equal to ðE;HÞ will satisfy Maxwell equations in the en-
tire space and boundary conditions on all interfaces between
different materials since all the components of the field vanish
on both sides of this boundary.

It is very easy to impose ðEC;HCÞ to vanish on the metallic
part ΓM3 of the lower interface of the screen. It suffices to

assume that the width h of the screen is much greater than
the skin depth δ of the metal:

h ≫ δ: ð29Þ

In fact, this condition is not sufficient. At given wavelengths,
Fabry–Perot resonances inside the holes can excite surface
plasmons at the bottom of the screen, creating an enhance-
ment of the field in this region. Numerical results given in
the following (Fig.16) show that this kind of resonance is
restricted to extremely small ranges of wavelength.

In order to satisfy the conditions of nullity on the top and on
the vertical sides of the holes, we express the field ðEC;HCÞ
from Eqs. (2), (3), (16)–(19), and (23)–(27).

On the top ΓH1 of the holes (y ¼ 0),

HC ¼ ½1þ ρþ 2a cosðkαxÞ�ẑ; ð30Þ

EC ¼ Z1

��
ð1 − ρÞ − 2aβ

ν1
cosðkαxÞ

�
x̂þ 2iαa

ν1
sinðkαxÞŷ

�
; ð31Þ

and inside the metal

HC ¼ ½τ expð−ikνMyÞ þ 2a cosðkαxÞ expð−ikγyÞ�ẑ; ð32Þ

EC ¼ ZMf½τ expð−ikνMyÞ þ 2γa cosðkαxÞ expð−ikγyÞ=νM �x̂
þ 2iαa sinðkαxÞ expð−ikγyÞŷ=νMg: ð33Þ

Fig. 13. Decimal logarithm of the transmission (left) and of the modulus of B�1 (right) for a metallic lamellar grating with optical index 4:2i having
a period d ¼ 1, a width t of the holes equal to 0.05 and a depth h ¼ 0:3. The indices ν1, ν2 and ν3 are equal to unity.

Fig. 14. Same as Fig. 13 (left) but with a width t of the holes equal to
0.6.
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Here, we have to face an initial difficulty. It is possible to
impose the magnetic field on the top of the holes, given by
Eq. (30) to be very close to zero on the central perforated strip
of Fig. 3 (around x ¼ 0) by assuming that t ≪ 2π=kα and tak-
ing 1þ ρþ 2a ¼ 0. However, we must remember that α is
complex, and thus cosðkαxÞ is not periodic. The consequence
is that it is not possible to impose a magnetic field periodic
and close to 0 on all the strips of a grating (we exclude here
the case where a single strip is perforated). In order to over-
come this difficulty, we will assume that the optical index of
metal is purely imaginary and greater than ν1 in modulus. In
that case, the permittivity is real and negative, which entails
that the conductivity vanishes. As a consequence, there is no
Joule effect, the metal becomes lossless, and the constant of
propagation kα given by Eq. (25) is real while kβ and kγ are
purely imaginary. Since cosðkαxÞ is periodic, it is possible to
impose the magnetic field HC at the top of the holes to be
close to 0 on all the perforated strips by setting

a ¼ −
1þ ρ
2

¼ −
νM

νM þ ν1
; ð34Þ

kα ¼ p
2π
d

⇒ λ ¼ dνM
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνM=ν1Þ2

p ; ð35Þ

t ≪ 2π=kα ¼ λ=α: ð36Þ

It is worth noting that our assumption about the optical index
of the metal is not so unrealistic. For example, at a wavelength
of 650 nm, the index of aluminum is equal to 1:3þ i7:1 and
that of silver to 0:07þ i4:2, and it can be considered that
the real part is much smaller than the imaginary part. Also,
since jνM j is greater (and even much greater, in many cases)
than unity, it turns out that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðνM=ν1Þ2

p
is imaginary and

slightly smaller than νM=ν1 in modulus. It can be deduced from
Eqs. (25), (34), and (35) that kα is slightly greater than
k1 ¼ kν1, that λ=ν1 is slightly greater than d=p, and that a is
complex and close to −1. Furthermore, Eq. (36) can be written
as t ≪ λ=ν1, which entails from Eq. (35) that t ≪ d.

In order to simplify Eqs. (30)–(33), we assume that jνM j2 ≫
ν21 (which is the case in the visible, IR, and microwave regions
for the usual metals and dielectric materials) in such a way
that α≃ ν1, β ≃ −ν21=νM , γ ≃ νM , and thus, these equations
become, using Eq. (34), on the top of the holes (y ¼ 0)

HC ≃ 2
νM

νM þ ν1
½1 − cosðkν1xÞ�ẑ; ð37Þ

EC ¼ 2ZM
νM

νM þ ν1

�
½1 − cosðkν1xÞ�x̂ − i

νM
ν1

sinðkν1xÞŷ
�
; ð38Þ

and inside the metal

HC ¼ 2 expð−ikνMyÞ
νM

ðνM þ ν1Þ
½1 − cosðkν1xÞ�ẑ; ð39Þ

Fig. 15. Values of the logarithm of the transmission and of the amplitude in the first order at the wavelength λ ¼ 1:0296 given by Eq. (35), keeping
the same other parameters as in Figs. 13 and 14. The horizontal dotted lines represent the theoretical values of the real and imaginary parts of B�1.

Fig. 16. Variation of the values of the logarithm of the transmission and of the amplitude in the�1 order at the wavelength λ ¼ 1:0296, keeping the
same other parameters as in Figs. 13 (t=d ¼ 0:05). The horizontal dotted lines represent the theoretical values of the real and imaginary parts of B�1.
The indices ν1, ν2 and ν3 are equal to unity.
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EC ¼ 2ZM expð−ikνMyÞ
νM

ðνM þ ν1Þ
�
½1 − cosðkν1xÞ�x̂

− i
ν1
νM

sinðkν1xÞŷ
�
: ð40Þ

Bearing in mind that t ≪ λ=ν1, it turns out that cosðkν1xÞ≃
1 on the top of the holes, since −t=2 < x < t=2, and that
sinðkν1xÞ≃ 0 on the vertical sides of the metal, since
x ¼ �t=2. Thus, all the components of HC and EC are close
to zero at the top of the holes and on their vertical sides pro-
vided that Eqs. (34)–(36) are satisfied, and that the thickness
of the screen is much larger than the skin depth of the metal.
The field generated by an incident field given by Eq. (2) inside
the holes and below the screen should be close to zero, except
when Fabry–Perot resonances occur inside the holes.

B. Numerical Verification: Case Of Lamellar Gratings
All calculations on metallic gratings with finite conductivity
were performed using the code based on the Fourier modal
method, described in Section 2, which can deal with both
1D and 2D gratings.

We first consider the simplest case: the 1D lamellar grating
represented in Fig. 3(b). Figure 13 shows the logarithm of the
transmission by the lamellar grating as a function of the
wavelength. The transmission reaches unity for a wavelength

equal to 1.016 but, in contrast to the case of perfect con-
ductivity (Fig. 5), the transmission minimum of 3:4 × 10−7 is
observed for a wavelength λ ¼ λ1, close to 1.03. The theory
predicts a minimum at a wavelength λ ¼ 1:0296, given by
Eq. (35) (with p ¼ 1, since the wavelength and the grating per-
iod are close to each other). Thus the agreement between the-
ory and numerical calculations on the location of the drop is
excellent. With regard to the amplitude of the first order, the
same resonance is observed at a wavelength close to 1.016. In
Fig. 17, the vertical dotted lines represent the wavelength
1.0296 of the drop given by the theory, and the horizontal
dotted lines represent the theoretical value of log jB�1j ¼
log jaj ¼ −0:0119ðjB�1j ¼ 0:973Þ given by Eq. (34). The numer-
ical result is log jB�1j ¼ −0:0082ðjB�1j ¼ 0:981Þ. The corre-
sponding values for the phase of jB�1j are equal to 13:39°
for theory and 15:95° for numerical calculations. Thus, the
agreement between theory and calculations on B1 can be con-
sidered satisfactory. The software based on RCWA cannot
handle larger values of the imaginary part of the index, but
using the integral theory for an index equal to 7:1i (imaginary
part of the index of aluminum at 647 nm), a much better
agreement (2% in relative value for the modulus and the
phase) has been observed.

Figure 14 shows the transmission of the same grating as in
Fig. 13, but with a much larger width t=d ¼ 0:6 of the holes.

Fig. 17. Values of the logarithm of the transmission and of the amplitude in the first order for a 2D inductive grid with periods d ¼ d0 ¼ 1, with a
radius R of the circular holes equal to 0.2 and a depth h ¼ 0:3. The indices ν1, ν2 and ν3 are equal to unity and the index of metal is equal to 4:2i. The
vertical dotted line shows the location (1.0296) of the drop in transmission predicted by theory, the horizontal dotted lines represent the theoretical
values of the real and imaginary parts of B�1;0 at wavelength 1.0296.

Fig. 18. Variations of the asymptotic values of the logarithm of the transmission and of B�1;0 with R=d. The other parameters are the same as in
Fig. 17.
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Obviously, this width is outside the range of validity of our
theory: no drop is observed for λ ¼ 1:0296.

For precision regarding the range of validity of the theore-
tical predictions, in Fig. 15 we show the values of the logarithm
of the transmission and of the real and imaginary parts of
the amplitude in the first order versus the width t of the holes,
keeping other parameters the same as in Figs. 13 and 14.

As in the case of perfect conductivity (Fig. 7), it is surpris-
ing to note that, although the value of B�1 significantly differs
from the theoretical value as soon as t=d exceeds 0.25, the
transmission remains smaller than 10−2 up to t=d ¼ 0:53,
which corresponds to a hole width larger than the width of
the metal regions. Although the problem for metallic gratings
is more complicated, one can conjecture that the bases of the
analysis given for 1D perfectly conducting gratings (Sect. 3.B)
hold. The agreement between theoretical predictions and
numerical results on the limit of B�1 as t tends to zero is
remarkable.

Figure 16 shows the influence of the metallic screen thick-
ness h on a lamellar grating having hole width equal to 0.05, at
the wavelength λ ¼ 1:0296. In contrast with the case of perfect
conductivity, the transmission does not remain very small as h
decreases: it exceeds 10−2 as soon as h=d is smaller than 0.12.
This is not surprising if we remember that the width of the
metallic screen must be much greater than the skin depth.
Here, the skin depth is equal to 0.04, thus we can conclude
that the theory remains valid as long as the width of the me-
tallic screen remains larger than three skin depths. This width
corresponds to attenuation by a factor close to 20 of a field
propagating inside the metal. On the other hand, we observe,
as for the case of perfectly conducting metal, some reso-
nances, the most important ones occurring for h=d ¼ 0:12,
0.4 and 0.7, with very acute transmission peaks culminating
at unity. These resonances create serious discrepancies with
theoretical conclusions on the transmission, but on very small
intervals of wavelength: for example, the transmission on both
sides of the peak at h=d ¼ 0:7 falls to a value less than 10−7 as
soon as the thickness of the screen is varied by 10−4 in relative
value. Here again, these peaks can be explained by Fabry–
Perot resonances of the field inside the hole.

As for the case of perfect conductivity, it can be concluded
that, except in very small wavelength ranges where acute
resonances occur, the phenomenon of transmission drop is
very robust and extends to a domain that is wider than pre-
dicted by theory.

C. Numerical Verification: Case of Inductive Grids
Figure 17 shows the logarithm of the transmission and of the
amplitude B�1;0 for an inductive grid with a ratio of radius
over period equal to 0.2 and an index 4:2i. The drop in trans-
mission occurs at a wavelength of 1.0295, very close to the
theoretical value, and a double peak of resonance reaches
unity at wavelengths close to 1.036. Despite the problems
of stability of the calculations and a hole diameter equal to
almost half of the grating periods, the agreement between nu-
merical and theoretical results are satisfactory and confirm
the validity of the theory.

For precision regarding the domain of validity of the theory,
in Fig. 18 we show the curves giving the logarithm of transmis-
sion and B�1;0 versus R=d. Because of numerical instabilities,
the curves have been obtained by using a polynomial fit of the
data obtained for discrete values of R=d. Once again, it must
be noticed that, surprisingly, the transmission remains smaller
than 10−2 up to R=d ¼ 0:35, i.e., a diameter of 70% of the per-
iods, which obviously is outside the basic hypothesis of the
theory. On the other hand, B�1;0, which tends to the theore-
tical prediction when the radius tends to zero, notably differs
from the theoretical value as soon as the radius exceeds a va-
lue of 0.2. This conclusion is very similar to that stated for the
other types of gratings previously studied, and the same anal-
ysis (Sect. 3.B) can be given.

In Fig. 19, we represent the variations in the same quantities
versus the thickness h of the screen for R=d ¼ 0:1. As in the

Fig. 19. Variations of the asymptotic values of the logarithm of the transmission and of B�1;0 with h=d for R=d ¼ 0:1. The other parameters are the
same as in Fig. 17.

Fig. 20. Same as the left-hand side of Fig. 11, but with the index of
silver (νM ¼ 0:7þ i4:2) instead of νM ¼ i4:2.
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case of 1D gratings, the transmission remains smaller than
10−2 where the width of the screen remains larger than 0.12,
i.e., three times the skin depth.

D. Numerical Verification: Effect of Real Indices of
Metals
So far, we have given a purely imaginary value to the metal
index. In order to test the validity of our theoretical conclu-
sions for real metals, in Fig. 20 we show the logarithm of the
transmission for the 1D lamellar grating of Fig. 13, but with the
actual complex index 0:07þ i4:2 of silver at 650 nm. It turns
out that the curve is not significantly modified, except in the
vicinity of the peak. This result is not surprising: the peak cor-
responds to a plasmon resonance, and this resonance gener-
ates a strong local enhancement of the field in the metal. In
contrast with what occurs for the lossless grating, a large
amount of energy is dissipated by Joule effect and thus, the
transmission peak in Fig. 20 is reduced by a factor of 10 with
respect to the lossless case. However, the location of the drop
in transmission as well as the value of the transmission in this
region are almost identical.

The conclusion is that the model of lossless metal with a
purely imaginary part is accurate, except when a resonance
occurs.

5. CONCLUSION
The existence of a drop in transmission through hole array has
been demonstrated. Assuming that the width of the holes is
much smaller than both the wavelength and the grating per-
iod, and that the width of the metallic screen is greater than
three times the skin depth, it has been shown that this drop is
due to the nonresonant propagation of surface plasmons of
the nonperforated screen along the surface of the perforated
screen. These surface plasmons are generated by the incident
wave, and thus the wavelength is given by a very simple equa-
tion derived from the grating formula and from the constant of
propagation of the surface plasmon on a flat surface. As a con-
sequence, the location of the drop in transmission depends on
the metal index only, and not on the shape or width of the
holes. It must be emphasized that the drop is not caused by
a surface plasmon resonance: the amplitudes of the surface
plasmons contained in H∥ have the same order of magnitude
as those of the incident and reflected fields. In fact, the drop is
caused by an antiresonant process that cancels the trans-
mitted field.

Thus, the apparent paradox of this antiresonance phenom-
enon, which takes place at an alleged resonant excitation of
surface plasmons, can be easily explained: the actual resonant
excitation of surface plasmons on the surface of the screen
arises when the actual surface plasmons of the perforated
screen are excited, and the propagation constants of these
surface plasmons differ from those of a nonperforated screen.

The phenomenon is quite similar for perfectly conducting
screens. In that case, the peak of extraordinary transmission
is caused by the resonant excitation of two surface waves pro-
pagating in opposite directions along the x axis. These surface
waves are nothing more than the limits of surface plasmons
propagating on the surface of the perforated screen made of
real metal when the conductivity of the metal tends to infinity
[27]. In regard to the drop in transmission, it corresponds to
the propagation of plane waves with wavevectors parallel to

the screen. It can be seen that these plane waves represent a
double limit: the limits of surface plasmons of a nonperforated
metallic screen as its conductivity tends to infinity, and the
limit of the surface waves propagating on a perfectly conduct-
ing perforated screen as the radius of the holes tends to 0.

Numerically, it turns out that the domain of existence of the
drop is much wider than expected from theory: holes having
widths of the order of half a period or half a wavelength are
acceptable.

In this paper, we have not given numerical results about
nonperiodic structures, especially the very important case
of a single hole, where the frequency selectivity of the drop
does not hold because the periodicity in x is canceled. This
case will be studied in a future paper.

Note added on proof: After the paper was accepted, the
authors became aware of an earlier related work [35] explain-
ing the zero transmission as a nonresonant superposition of
surface plasmons, incident fields, and reflected fields. How-
ever, our paper contains a complete, precise, more general
theoretical demonstration of the existence of a drop, sup-
ported by a wide set of numerical calculations that were
not included in the earlier paper.
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