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A perturbation theory based on a single-scattering approximation is developed from the rigorous differential
theory of diffraction in cylindrical coordinates. It results in analytical formulas in the inverse space for the field
amplitudes providing results that are in quantitative agreement with the results of the rigorous method, in
both the near- and far-field regions, when a proper correction to the incident field inside the aperture is made
by using the renormalized Born approximation. When working in reflection by a screen having permittivity
high in modulus, the method proposes an equivalence with the simple model consisting of the emission by a
single magnetic dipole excited inside the pierced layer, emission that is then transferred back into the cladding
following the Fresnel’s coefficients of transmission from the layer into the cladding. The theory predicts a di-
rectivity of the radiation pattern that increases for smaller values of modulus of permittivity, both for dielec-
trics and metals, thus independently of the possibility of plasmon surface wave excitation along the interface.
The theory can take into account such surface wave resonances, as well as the waveguide supported by a di-
electric slab, but cannot implicitly recognize the modes carried out by the cylindrical waveguide corresponding
to the aperture. This fact limits its domain of validity when used in transmission, although the far- and near-
field maps can be reconstructed sufficiently well within a multiplicative factor corresponding to the enhanced
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transmission due to the excitation of these modes. © 2007 Optical Society of America

OCIS codes: 050.1220, 050.1960.

1. INTRODUCTION

When Bethe! developed his theory of light diffraction by a
circular aperture in a perfectly conducting screen during
the Second World War, he could hardly have imagined
what impact it would have after half a century. The al-
most purely academic interest—as described by
Jackson?—shown in this problem has received a practical
impetus in the new wave that started almost ten years
ago with the experimental work of Ebessen et al.® that
demonstrated the possibility of transmission enhance-
ment through arrays of subwavelength holes. This was
followed by many theoretical works®™® that provided a
physical understanding of the phenomenon, explaining it
by the combined influence of surface plasmon excitation
on the dielectric-metal interface of the array supporting
layer and the enhanced transmission due to the wave-
guide mode existing inside the hollow waveguide formed
inside the aperture. These works have invoked an inter-
est in diffraction by a single aperture, accelerated by its
importance in chemistry and biology. 10 Using single aper-
tures as nanocavities allows trapping and detecting single
molecules and studies of biomembrane segments using lu-
minescence spectroscopy or Raman scattering, provided
the light emitted reaches a detectable level. Different so-
lutions of light enhancement inside the nanoholes have
already been studied, among which are the propositions
to use a coaxial aperture or to introduce a surface cor-
rugation around the aperture in order to resonantly en-
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hance the surface plasmon.mf14 Recent experimental and
theoretical works have already stressed the role played by
the surface plasmon excitation and the importance of the
polarization effects'®> 17 not only in enhancing the field in-
side the aperture, but also in increasing the directivity of
the radiated field (and thus of the detected signal).lg_20

The theory of Bethe predicts that a small aperture dif-
fracts as if the screen and the aperture were replaced by
two emitting electric and magnetic dipoles. In the case of
a normally incident linearly polarized plane wave, the ap-
erture remains a single magnetic dipole lying in the plane
of the screen and perpendicular to the incident polariza-
tion vector. Thus, the diffraction in the plane of polariza-
tion (i.e., in the plane perpendicular to the dipole axis) is
uniform angularly presenting no directivity, while in the
perpendicular plane it follows a simple cos? law. Jackson®
predicts a stronger angular dependence (as discussed in
detail in Section 6 of the present paper) for larger aper-
tures, but his predictions for small ones coincide with Be-
the’s theory, at least concerning the directivity.

However, recent theoretical and experimental
works'®1® indicate that the directivity of the radiation
pattern of a single aperture in real metals is larger than
the theoretical predictions valid for perfectly conducting
screens. Another discrepancy, found only recently,21 is
that Bethe’s theory predicts that the diffracted field am-
plitude grows as the third power of the aperture radius R,
faster than the second power given by the Kirchoff ap-
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proximation, while numerical results for real metals show
that the field inside the aperture grows like R2 for small
radii up to the cutoff of the fundamental mode of the hol-
low metallic waveguide formed inside the aperture.

These facts indicate the necessity to revisit Bethe’s
theory in order to obtain a better understanding of the
process of light diffraction by small apertures in real-
metal screens. Although there exist several numerical
methods capable of resolving this problem using general
tools like finite-difference time-domain or finite-element
methods, or more specialized theories adapted to the ap-
erture geometry,'??> a simpler analytical approach pro-
viding better physical insight would be welcomed. Several
efforts made in this direction®?* have provided approxi-
mate theories for thick but perfectly conducting screens’
and relatively large apertures.

The aim of this paper is to fill in the existing gap in the
theory for small apertures in finitely conducting screens.
On the basis of the rigorous differential method in cylin-
drical geometry,”? we propose an approach valid in the
first-order approximation with respect to R2. This ap-
proach takes into account only the single-scattering pro-
cess adapted to real metallic or dielectric screens. The in-
cident wave inside the aperture serves as a source field
and is diffracted by the perturbation representing the ap-
erture. This incident wave is considered unchanged in the
approximation used and thus the approach is equivalent
to the Kirchoff theory and the theory presented by
Jackson,? but adapted to finitely conducting materials.
The resulting equations for the diffracted field represent
an approach completely analytical in the inverse space
and requiring numerical treatment in order to obtain the
field maps in the direct space. Comparison with rigorous
numerical results shows very good agreement in the form
of near- and far-field distribution obtained using the ana-
lytical approximate method, within a common factor of
~2.

An improvement of the unperturbed incident field ap-
proximation is proposed based on a renormalization®® of
Born approximation by taking into account the singular-
ity of the three-dimensional Green’s function tensor”® due
to the self-scattering process, i.e., concerning also the in-
cident field. In the case of a cylindrical scatterer, this
renormalization provides the missing factor, which tends
toward 2 when the contrast of the optical indices of the
layer and the aperture increases.

Another limitation of the analytical method is that ow-
ing the single-scattering approximation, it cannot take
into account the waveguide mode, evanescent or propa-
gating inside the hollow waveguide formed inside the ap-
erture. Thus, when looking in transmission through a
conducting screen, the amplitude of the scattered field is
much smaller than the results obtained by the rigorous
method, which takes this mode into account. However,
the form of the field map obtained by the two methods is
quite similar.

Section 6 is devoted to the study of the directivity of the
radiation pattern when varying the screen permittivity
€9. It is demonstrated that while for very strongly con-
ducting screens (or dielectrics with very high permittiv-
ity) the angular distribution follows quite well Bethe’s
predictions (or Jackson’s formula for larger radii), smaller
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Fig. 1. Schematic representation of a screen with an aperture.

moduli of the permittivity lead to larger directivity of the
field diffracted in the plane of incident field polarization,
thus confirming the previous results. Moreover, the ana-
lytical equations provide a simple physical interpretation,
enabling us to demonstrate that for permittivities suffi-
ciently large in modulus, the diffraction pattern is equiva-
lent to the diffraction pattern of a magnetic dipole excited
by the incident field and emitting inside the plane screen.
Its radiation is transferred into the cladding by the re-
fraction law guided by Fresnel coefficients. The stronger
the contrast between the screen and the cladding, the
smaller the angular variation of these coefficients and
thus of the diffracted field. In the limits of |ey| — o it is
demonstrated that the diffraction pattern corresponds to
the radiation of a magnetic dipole without the screen, con-
firming Bethe’s interpretation. Contrary to the hypothesis
made in Ref. 18 that it is the surface plasmon excitation
on real-metal screens that increases the directivity of the
radiation pattern inside the plane of the incident field po-
larization, we demonstrate that while this is true in the
near-field region, the far-field directivity is increased for
both metallic and dielectric interfaces, the latter being
unable to support surface or volume guided modes. We
show that the increased directivity can be simply ex-
plained by the angular variation of Fresnel transmission
coefficients.

The system under consideration is presented schemati-
cally in Fig. 1 together with the coordinate system and
some of the notations used below. A monochromatic plane
wave linearly polarized in the xOz plane is incident from
the cladding. We assume an exp(-iwt) time dependence.

2. GENERAL SOLUTION INSIDE THE
INHOMOGENEOUS MEDIUM

Due to the natural 27 periodicity with respect to 6, the
electric and magnetic field components can be repre-
sented as Fourier series in 6:

+o0
E{r,0,2)= >, E;,(r,z)exp(inf),

n=-"

+o0
Hj(r’ 072) = E Hj,n(r9z)exp(in 0)7 j= r, 0727 (1)

n=-%

so that the Maxwell’s equations can be separately written
for each field component E;,, and H; ,:
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JE,, JE,,
= +iowugH,y,,
0z ar Hollon
. ¢9E,9’n E(g,n in
lquOHz,n = + - rns
ar r r

where g is the free-space absolute permittivity and ¢ is
the relative permittivity of the medium.

It is possible to use a Bessel-function basis for the field
components by using four spectral amplitudes bf,m(z),
bﬁm(z), cf’m(z), and cfl{m(z), as demonstrated in detail in
Appendix A:

Ey,(r2)= 2, [bF (&), (kyr) + 2 ()], 1 (B pr) A,
m=0

3)

Er,n(ryz) = LE [bf,m(z)Jn-fl(kmr) - cf,m(z)Jn—l(kmr)]Am’

4)

keE, ,(r,2) =i, [bE,(2) = () W, (R kA, (5)

wpoH 5,(r,2) = X, [b2 (@), 1 (kyr) + 2, (@)1 () 1A,

(6)

wpeH, ,(r,2) =i X, [bY (2) 1 (kpr) = 2, (@), 1 (1) 1A,
(7)

(‘)/‘LOHz,n(r’Z) == I’E [blrim(z) - cf,m(z)]Jn(kmr)kmAm5

8

with %, being the free-space wavenumber and k,,=mA,,,
so that

Am = km+1 - km' (9)
Assuming the continuity of E,, E,, and H on the interface
between the cladding and the screen pierced by the aper-
ture (which assumption is valid almost everywhere except
on the edge r=R), Appendix A explains how to obtain the
following set of first-order differential equations:

ks,
_bfm = bfLIm - Q_(bim - CH )

dZ ’ ’ k082 e
ok,
D G Jo zkz(bim,-cima, (10)
m'#m 0
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(9H0’n ln
P 7Hz’n +iwegeE, ,,
oH,, JH,,
P = PR iwegeE,,,
. (9H9’n He’n in
- leOSEz,n = or + - - THr,n, (2)
[
d k2
E H m o H H
&cn,m =—Chm— k282 (bn,m - cn,m)
0
Bk,
_1\n, H H
- 2 (8 l)fnzn' 2 (bn,mr - Cn’m')’ (11)
m'#m 2k0

d H k’2n E E 2 E 2 n+l,n+l; E

Ebn,m = ?(bn,m - Cn,m) - k082bn,m - kO E (s)m,m’ bn,m”
m'#m

(12)

d H _ k,zn bE E k2 E k2 n-1,n-1 E
&cn,m = 7( n,m Cn,m) + Ro€2Cy, 1 + R 2 (e)m,m’ cn,m”

m'#m

(13)

where the matrix elements of ¢ responsible for the diffrac-
tion are given by the formulas

0

e(r)d (k) , (R, r)rdr. (14)

(s)nm’zn, =kmAm,f

0

They can be evaluated analytically by taking into account
the identity

5(km’ - km)

P (15)

f (R, (Ryr)rdr =

0

with & representing the Dirac function, so that
R

= €90 m + (8q - 82)kmAmrf J (k) (R r)rdr
0

n,n
(&)

R
= 826m,m’ + (Sd - 82)kmAm’W[Jn+l(ka)

XJn(km’R)km _Jn(ka)JrHl(km’R)km’]' (16)

Taking into account that for small arguments J,(%,,R)
~(k,,R)", it is obvious that the off-diagonal terms of
(g)™" responsible for the scattering are then proportional
to

() ~ Ry REPHD (17)
Thus, for small values of R, the most important terms
(having the lowest power dependence on R) are the terms
with n =0, for which the off-diagonal part of Eq. (16) takes
the form



342 J. Opt. Soc. Am. A/Vol. 24, No. 2/February 2007

R
(g4 - 82)kmAm’W[J 10k R)J ok Rk,

= Jo(kpR)eJ 1 (R Rk ] (18)

If the single scattering is predominant, then the larger ex-
pression (18) with m’=i (i being the index corresponding
to the incident wave), the stronger the scattering into the
mth direction, characterized by its %, radial component of
the wave vector. Let us consider at first the simplest, but
the most common case: of normal incidence with &;=0.

3. NORMAL INCIDENCE

In normal incidence (m’'=i=0, so that %,,,=0), expression
(18) is considerably simplified into the form

(eq — 82) A;RJ (R, R), (19)

with A;=A,. This expression has already enabled us to
optimize the geometrical parameters of a single aperture
or one surrounded by a circular rectangular-groove corru-
gation, an optimization that was confirmed by numerical
results obtained using a rigorous electromagnetic
method.?” This approach can be developed further to
study the near-and far-field diffraction by a small-radius
aperture, which is the aim of this paper.

The only nonzero Fourier components of the electric
field vector of a linearly polarized (say, along the x axis)
wave incident normal to the surface are the components
with n==+1, a condition that imposes the same symmetry
on the diffracted field. Let us consider at first the set of
Eqgs. (10)-(13) for n=1, preserving only the terms propor-
tional to R2. Taking into account Eq. (17), the only off-
diagonal term that remains is the one in the fourth equa-
tion [Eq. (23)]:

2

b by, - 2Hs (b —ct), (20)
d E H k2 b
—c¥ == , 21
dzcl,m Cim ™~ 2k ( m) (21)
d . k2 B
Eb (b —C1 )~ k2 82b1 o (22)
d H k?n E E 2 E 2
——C1 = (b7, — €1 ,n) + RGECT , + RG 2 (84— &9)
dz 2 m'#m
XA, R (R R)CY - (23)

From here, it is easy to obtain a second-order equation for
one of the amplitudes cf e

d2
.y c1m+RJ1(k R)E nmm,clm,,

m

d22

k2, =k3es - k2, (24)

with
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k2
ot = | 1= —— |k2(eg = £2)A\,0. 25
7 ( zk%{-}z) O(Sd 82) ( )

One of the possible ways to obtain the general solution
of Eq. (24) is traced in Appendix B. However, as will be-
come evident later, it is more convenient to work with an-
other set of unknowns, namely, the sum and the differ-
ence of the field components:

E _1.E E
ML =b%, -cl,, PL=b0,+ci,,

MI=vl -, Pl=bf +cf,. (26)

Taking into account that the only unperturbed (for R=0)
wave is the one having amplitude éfg , as follows from Egs.
(B10) and (B11), the set of differential equations for these
new unknowns becomes, for m #1,

(M) =Py, (27)
(P)' =—ky, My, — RJ,(k,R)ACF, (28)
(M) = — k2e,PE + RJ | (,,R)ACE, (29)
2
(PE) = MH (30)
k082

with
A, =ki(eq—22),
éF = Ak, (31)
For the incident field components m =i, the equations are

further simplified to take the form corresponding to the
unperturbed system:

(MLE),=P€{> (P{{)’:—kZMLE,
5
(M) = — R2e,PF,  (PFy = kz,—zMiH . (32)
0€2

The solution of these equations is trivial; it represents the
incident wave propagating inside the nonpierced layer:

ME= = gnk+ exp(xik; 2),

PF* = PF* exp(zik; 2), (33)

with similar expressions for Mf{ and Pf{ . The amplitudes
DJT?H* and &]353’H’i are determined using the boundary
conditions.
Combining Eqgs. (27) and (28), one obtains a second-
order inhomogeneous equation for Mfl:
(M) ==k, My, = RI (R R)AGF (34)

which has a solution in the form (see Appendix B)
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M, = - 9M)* exp(ik,, z) - RJ 1 (k R) ———C% exp(+iyz),

A,
k=%
(35)

where E))?‘,Eni are two unknown amplitudes subject to the
boundary conditions between the different domains
(cladding/pierced layer/substrate), and the “sources” are
given by

C# = CEA; = A(BEE - mP+)/2. (36)

In a similar manner it is possible to obtain the solutions
for M Inf ,

MH SmH*exp(ﬂk 2) — iR (ky, R) C exp(xiy;z),

Ay
mzﬁ

(37)

while the form of Plnj;_land PE is obtained from the expres-
sions for ME and M% and Egs. (27) and (29).

A. Single Interface

Let us consider first a structure consisting of two semi-
infinite media, the upper one homogeneous and the lower
one pierced with an infinitely long hole, the two separated
by a plane interface positioned at z=0. The first step is to
determine the “source” terms as described in Eq. (36). To
this end it is necessary to use the boundary conditions at
z=0 for m=i, which demonstrates the utility of the sub-
stitution in Eq. (26). To the extent the » and # components
of the electric and magnetic field vectors are continuous
across the interface z=0, so also are the amplitudes b%
and ¢, and thus the amplitudes M*H and P¥#, As can
be observed from Egs. (27) and (28), the couple (MZ,PH)
forms a couple corresponding to the TE case in Cartesian
coordinates, because when MH=0, the z component of the
electric field vanishes [refer to Eq. (5)], i.e., the field is a
TE wave in cylindrical coordinates. Conversely, the case
ME=0 corresponds to a TM wave,because the z compo-
nent of the magnetic field is zero.

The field above z=0 consists, for m =i, of two waves, one
incident (described in detail in Appendix C and denoted
by an upper case index I) and one reflected (upper case
index R),

Mf = Qﬁf’l exp(- iaizz) + szﬂ exp(iaizz), (38)

with «; =\k2e1-k2, so that the continuity of M¥ and PX
ME)’ at z=0 s1mp1y gives the Fresnel formulas in TE
polarization,

mEL 4 MER = onl-) (39)

- aizgﬁf“’l + aizgﬁf’R =- kizf):nf:_; (40)

by taking a sum and a difference of Eq. (39) and Eq. (40),
the latter multiplied by ;_ or k; , we have
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Qai
- TEqmE,I TE _ i
P~ =Tl TIE = :
o; +ki
z 4
E.R TEqmE,I TE aiz_kiz
mi’ =Ri mi’, Ri = k (41)
aiz+ i

In a similar manner the continuity of (MH¥,PE=

-MH'/ k%e) gives the Fresnel coefficients in TM polariza-
tion:

Zaiz/sl
o= ™Mo M
aiz/sl + kiZ/SZ

2aiz/81 - kiz/82
mieR = RN, RM = ———— . (42)
a/iz/sl + kiz/sz

Although trivial, it is necessary to write down these for-
mulas to compare them with the expressions of the scat-
tered field m #i. The “source” amplitude is obtained
through Eq (36), é' A; (‘B SUIE')/Z where ‘B{E'
=ik; DﬁH /koaz, as obtalned from Eqgs. (30) and (33).

The continuity of ME and PH results in the following
set, taking into account that there is no incident wave
from above when m #1,

A,
MEE = P~ _ RJ, (&, R) yzc- (43)

z

ap MER =~k M-+ R (R, R) 1/QC- (44)

z

which gives for the amplitudes scattered in the upper me-
dium

en ENRRAC
MEE = - , (45)
(amz + kmz)(kmz + 'Yi)
ic, RJ1(k,R)A,C7
ol = i, M = - . (46)

(a/mz + kmz)(kmz + ‘Yi)
The continuity of Mln{ and P‘,En gives the second set of
boundary conditions,

As Yi A
IR = om- _iRJ, (k,,R)5——C; (47)

Bo-7
ko k2 A,
- —om? +L—RJ1(k R)—C;,

€1 €2 €2 mz %2

(48)

whence it is easy to determine the scattered amplitudes
in reflection:

kny, RJ,(k,R)AC;

z

HR _ -
M, =1

) (49)
€2 (amzlel + ka/SZ)(ka + Yi)
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amz Ay kmz

i RJ,(k,R)AC;
MR —

k2ey 6 (p o1+ ki f55) ky + %)

(50)

E.R _ —i
m. 2
k081

These expressions can be used to find the coefficients bf o
cf o bfm, and cll-l’m of the scattered field, and to recon-
struct the field vectors by use of Egs. (3)—(8).

The other part of the solution, corresponding to the
term n=-1 in the Fourier series, Eq. (1), can be obtained
from the term with n=1, using the symmetry of the opto-
geometrical parameters and of the incident field in nor-
mal incidence (see Appendix C). In particular, when the
incident field is polarized along the x axis, the following
relations exist:

E _ E
b—n,m ==Chm>
H H
b m=Com (51)

1. Double Interface
A single pierced layer contains two interfaces with the
surrounding semi-infinite layers and allows two sets of
waves to propagate downward and upward inside the
layer. This will double the number of unknown ampli-
tudes and equations, but as with the reflection and trans-
mission by a homogeneous layer, the use of matrix nota-
tions can significantly simplify the formulas.

Instead of Eqgs. (39) and (40), one can write a single ma-
trix equation on the upper interface (z=¢) as

1 1 |/omEE
a;, -, Smf’l

1 1 || exp(ik; ) 0 mP
Tk ki 0 exp(-ik; t) |\ om’- )’

(52)

and on the lower (z=0) interface as

1 1 1 |/
-5 m = k; —ki [\om®- )’ (53)

where B;= \s'k(z)33—ki2 and the superscript T indicates the
field transmitted in the substrate.

As is well known, the last two equations can be used to
introduce the transmission matrix of the system:

i
cos(kizt) — sin(k; t)
7%= ki ], (54)
ikiz Sin(kizt) COS(kizt)

which links the field below and the field above the plane
homogeneous layer:

1 1 m TE ! ET
a;, —a; |\ Pt =T - B, R (58)

This set of two equations gives the specular reflected and
transmitted amplitudes as functions of the incident one,
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mpr -1 1\ 1
()= )] (e 0

where the vertical bar separates the two columns of the
matrix. In a similar manner, the TM components can be
obtained by using the TM transmission matrix

€2
cos(kizt) ik— sin(kizt)
™= ’ : (57)
lZ
i— sin(k; 1)  coskit)
€9 Z
so that
R -1 1 11
m_ >
(zmlHT) = a, | T™M B, a;, |miI - (58)
' - €1 - €3 - €3

Although trivial, we need these formulas in order to ob-
tain the field components diffracted by the aperture,
when m #i, because the amplitudes C’f act as sources for
the scattered field, Egs. (35) and (37). They can be ob-
tained using the following procedure. First, Eq. (53) is
usgd to find smf*. A similar equation can be written for
o

1 1 1
it
B, |omHT = | ki ki ( ) (59)
_ i _z = m{-]_
€3 €9 €2

Then one of Eq. (32) enables us to obtain P+,

Once the values of C’f are known from Eq. (36), we can
proceed with the determination of the scattered field with
m#i. The continuity of M~ and P at the upper and the
lower interface gives the following matrix relations, using
Eqgs. (35) and (32):

1 1 1 exp(ik,, t) 0
mE,R — z
a, |7 by, —km, 0 exp(— ik, t)

MER\ RJ(k,,R)A, [ 1 1
X e —
omE- )" EE -y \%, 7,

exp(iy; t) 0 Ct
8 0 exp(=iv.t) )\ &7 (60

E+
L er_ [ 1 1\ (mE
-Bn, ) Ry, =k )\ oME-

RJ(k,R)A, [ 1 1 Ct
* RZ -2 \v, v )\ )

l

(61)

These are similar to the set of Egs. (52) and (53), the only
difference being in the source terms. It is possible to
eliminate the unknown field amplitudes inside the layer,
and the result is a system of two algebraic equations for
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the reflected and transmitted scattered field amplitudes:

MER\  RJ (k,R)A,| 1 -1\ |
e TIE
A " \Bn,

1 1 || exp(vy;2) 0
X .
Y, Y, 0 exp(—iv; t)

1 1 Ct
- TIE L (62)
Vi, — Y, C;

The continuity of MI,Z and Pfl, together with Eqs. (37)
and (32), results in a second set of equations correspond-
ing to the TM polarization:

Q,
m,

1 1 1
W, |IMILE = L k.
e & e
exp(ikmzt) 0 gm;“
x |: 0 exp(- ikmzt):| (S)ﬁf,{")
Vi, — Y,
+iRJ12(ka)AS krznz k?nz
kmz B )/;z g9 g9
exp(ivt) 0 Ct
8 [ 0 exp(- i%})] (c;) (69
1 1 1 -
B o= B, e, ( m};)
£3 €9 g9

RJ(k, R)A v e ct
+i 1( m ) & k,2n k?n i ,
R

(64)

which can be solved in the same way as in TE polariza-
tion:

—1\ |t
MEF\ RJy(k,R)A,
Hr | =iy | Y TEzM e
mm’ kmz - 712
€1 €3
Vi, — Y, .
9 9 exp(iy; t) 0
x| R, k3, .
: : 0 exp(-iv; t)
€9 €9
Yi, — Y, o
1™ R R ol L. (65)
C;
€9 €9

As can be expected, these equations contain Fabry—
Perot resonances in the direction of propagation of the in-
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cident wave (;), in the matrices T?E’TM, and in the direc-
tion of the mth scattered field due to the exponential
terms in T?nE’TM. However, as discussed in detail in Sec-
tion 5, since the approximate method is based on the
single-scattering approximation, it does not include the
waveguide mode that can propagate inside the hole that
behaves as a hollow cylindrical waveguide. Although for
small-radius holes this mode is evanescent, its decay con-
stant is smaller than the decay of the wave tunneling
through the metallic layer without hole, and thus the
mode contributes to increasing the transmission signifi-
cantly. Future work is required in order to force the ap-
proximate method to take into account this waveguide
mode. This argument demonstrates the limitations of the
approximate methods, whereas the rigorous ones take
into account a priori all the waves and modes (or at least
they are assumed to do this).

4. INCLINED INCIDENCE

The case when k;# 0 can be treated in a similar manner.
The difference is that the reduced symmetry of the inci-
dent wave limits the restriction to have scattered field
with —1st and +1st Fourier components only. However, a
detailed analysis of Egs. (10)—(13) using Eq. (17) shows
that the terms proportional to powers of R less than or
equal to 2 remain only in three cases:

(i) for n=-1 in Eq. (12),

(i1) for n=1 in Eq. (13),

(iii) for n=0 in Egs. (10) and (11).

A.n==+1
The case with n=1 differs from the normal incidence only
by replacing the term

(g4 — £9) AR (R, R) (66)

with that presented in Eq. (18),

R
(eq- 82)kmAm’W[Jl(ka)JO(km'R)km

= Jo(kpnR) 1 (R R)k ], (67)

in all the formulas obtained in Section (3).

B. n=0

The case with n=0 will preserve the off-diagonal matrix
elements responsible for the scattering in Egs. (10) and
(11):

(8)2° = £98m + ( VA L[J(k R)
€ =890mm' + (&g — &2)Ryy, m’k2 —k2 1\om

m,m’
m m

X Jo(kp Rk, = Jo(RynR)eJ 1 (k1 R)E, 0], (68)

so that its inverse (within the terms proportional to R2)
has elements
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(24— &2) R
=" Y%%mm 2 kmAm’kZ k2 [Jl(ka)

2 €9 m Ry

X ok Rk = Jo(kyR) 1 (ki Rk, (69)

CRky

, -

i.e., the off-diagonal terms are almost (within the factor
-1/ sg) equal to the off-diagonal terms in Eq. (13) for n
=1, and thus they can be treated in a similar manner. To
this end, let us redefine the unknowns introduced in Eq.
(26)

M =bf, —cbpn Ph=bf,+chm,

ME=bf, -l PE=bf, +cf,. (70)

Equations (27)—(30) are changed into the following set:

(ME)' =PL, (71)
(P ==k, My, (72)
(ML) = - ke P, (73)
k2
(PE) = —MH +R&,, (R)MY, (74)
kO €9
with
(8d - 82)
&G, i(R) = 8—ng _kz[Jl(k R)Jo(k;R)k,,
— ok, R)J (R R)E]. (75)

The second-order differential equation obtained for Mlnf,

M2y = — k2 MH k3esRS,, (RIMY, (76)

has a form similar to Eq. (34) and its solution is similar in
form to Eq. (35):

kgesR®, i(R)
Ry =7

M = Wlm{texp(tikmzz) - M exp(=iyz).

(77)

As for normal incidence, at first the amplitudes for m
=i are evaluated for the incident wave as if the aperture
did not exist. Then the boundary conditions, the same as
in Section 3, are applied, depending on whether a single
interface or a layer is considered, in order to obtain the
wave components in reflection (and transmission). Fi-
nally, Egs. (3)—(8) are used to reconstruct the vector-field
components.

5. DISCUSSION AND DOMAIN OF
VALIDITY

Any theoretical method, numerical or analytical, has its
own domain of validity, and in the case of modeling dif-
fraction of light, approximate analytical solutions usually
have stronger limitations. This is the case with the
method presented in the previous sections. Fortunately, it
is possible to compare its results with existing numerical
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results in order to get some idea of these limitations. Be-
fore starting the comparison, let us remember one of the
implicit limitations of the method, already discussed in
Section 1. Both the rigorous and the analytical method
use the same basis (Fourier—Bessel) of functions inside
the pierced layer and in the hole, functions which are con-
tinuous with respect to r and 6. This fact makes it impos-
sible to extend their validity to an infinitely conducting
screen, because inside the screen the electric field is zero
and no basis can be used simultaneously inside it and in-
side the aperture. Thus no direct comparison is possible
with the results of Bethe, only an asymptotic one.

Let us first consider a normally incident plane wave
linearly polarized along the x direction with unit ampli-
tude of its electric field vector and wavelength X\
=500 nm. Figure 2 represents the %,, dependence of the
normalized field amplitudes Qﬁﬁ/km and Em[,;ll/km in the
case of a single interface (infinitely profound hole with
R=10 nm) between air and aluminum. The calculations
were done by using the rigorous numerical method and
the analytical expressions presented in Subsection 3.A.
Several important features can be observed in the figure.
First, inside the optical cone (%,, <k), the amplitudes are
slowly varying functions of %,,, which can be understood
by taking into account that, for small R,J(k,,R)/k,,
=~ const. as a function of %,,, as observed in Egs. (45) and
(49). The coefficients gradually decrease in amplitude in
the region of evanescent waves in the cladding. Second,
there is a sharp anomaly for the TM amplitudes, corre-
sponding to the excitation of a surface plasmon wave on
the metal-air interface. This anomaly can be expected
from Eqs. (49) and (50) when their denominator is close to
zero, a condition equivalent to the condition of existence
of the plasmon surface wave on a plane metallic—
dielectric interface. Both the rigorous and the analytical
methods predict the same position and type of anomaly.
Third, as can be observed, the spectral (in %,,) behavior of
the field amplitudes is the same, the only difference be-
tween the rigorous and the analytical method lying in the
factor of ~2 between the two sets of results. In any case,
within this factor, the near- and the far-field pattern of

g 10+
[:4
Te e, =-30+i8
& R=10nm
05 —O— rigorous
—O— analytical
—&— analytical renorm.

0.0 T T i T - 1
g 1 2 3 4 5
3

x ]
by . 0.12
& 1
0.08

0.04 -M

0.00 . T . T : T T ,

0 1 2 3 4 5

k_/k,

Fig. 2. Spectral amplitudes ME%/k,, and 9MZE/E,, in reflection
as function of %,, for an aluminum infinitely thick screen, air as
cladding and inside the aperture, R=10nm, wavelength X\
=500 nm. Open triangles, rigorous results; open circles, analyti-
cal results; solid squares, renormalized analytical results.
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the field diffracted by the aperture has the same appear-
ance when calculated by either method.

The difference is systematic, as will appear in the next
figures, because the local electric field amplitude of the

source field (namely, é;_ in the case of a single interface) is
approximately twice smaller than the local source field as
determined in the Born approximation, presented in Ap-
pendix D. This corresponds to the fact that the field inside
the aperture is not equal to the field inside the layer as if
the aperture were absent. This difference is well known in
the Green’s function approach and it increases consider-
ably with the optical contrast between the aperture and
the unperturbed layer. In the case of an infinitely thin
and long cylinder acting as a perturbation, the multipli-
cative factor applied to the unperturbed field is simply
equal to (Ref. 26 and Appendix D)

G, (78)
&9+ &y

which gives the missing value of 2 when |e5| > |g4|. As can
be observed in Fig. 2, the results of the analytical method
renormalized by using relation (78) become much closer to
the rigorous results, a tendency observed in the next fig-
ures, too.

As an illustration, Fig. 3 presents the x dependence of
the amplitude of the electric field of the scattered field
(without the field reflected by the plane interface in the
absence of aperture). Here the optical index of the sub-
strate is different, but the radius of the aperture is the
same as in the previous case. The field map is calculated
at a distance of 1 nm above the surface. One can observe a
sharp peak at the hole edges, a behavior, well-known now,
due to current discontinuities and charge accumulation
on the hole walls perpendicular to the incident field polar-
ization. The analytical results follow the behavior of the
rigorous ones, the only difference lying in the same factor
~2 when the correction due to relation (78) is not taken
into account. The comparison for the far-field radiation
pattern is made in the Section 6 and the same tendency is
observed.

A natural question arises with respect to the assump-
tions on which the analytical method is based, namely,
the range of R in which the terms proportional to R2 are
predominant. There are two important results that give
rise to this question. First, Bethe’s theory for diffraction
by an aperture in a perfectly conducting screen leads to a
dependence on the field amplitude ~R? rather than R2.
Second, the results in Ref. 18 indicate that the transmis-
sion through subwavelength apertures in real metals has
behavior different from R* (faster) (in intensity). In order
to check the limits of validity of the R? approximation,
Fig. 4 presents the R dependence of the scattered electric
field intensity in the cladding (without the fields incident
and that specularly reflected by the plane layer) evalu-
ated on the axis of the aperture at 1 nm height. While for
values of R>30 nm the rigorous results start to increase
more rapidly than the analytical data, the R* behavior in
intensity (i.e., R? in amplitude) for smaller radii is ob-
served quite well in the two curves. The correction ob-
tained by using Eq. (78) brings the analytical results close
to the rigorous ones. On the other hand, if we try to take
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Fig. 3. Amplitude of the diffracted electric field calculated along
the x axis at a height z=1 nm. Low-conductivity screen material.
The other parameters are as in Fig. 2.
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Fig. 4. Electric field intensity just over the center of the opening
of the aperture (z=1nm) as a function of the aperture radius R.
Infinitely thick silver screen, air as cladding and inside the aper-
ture, A\=500 nm. Open triangles, rigorous results; open circles,
analytical results; solid squares, renormalized analytical results;
solid circles, analytical results by taking into account terms pro-
portional to both R? and R*.

into account one of the higher-order terms, the curve of
solid circles in Fig. 4 shows that its role is negligible be-
low R=20 nm, while for larger R its behavior differs sig-
nificantly from that of the rigorous and analytical curves.
This is an example—quite typical for approximate
methods—where every attempt to introduce higher-order
terms in order to improve the validity of the method plays
the opposite role.

A further discrepancy between the rigorous and the
analytical results limits significantly the validity of the
latter when used in transmission. As already mentioned,
the study presented in Ref. 18 indicates that when con-
sidering the transmission through an aperture pierced in
a real-metal film, its R dependence differs a lot from the
results based on the Kirchhoff approximation, which pre-
dicts that for a perfectly conducting layer, the transmitted
intensity grows as R*, showing much more rapid varia-
tion for real-metal screens. Figure 5(a) represents the rig-
orous and the analytical results for a 200 nm thick silver
screen (electric field intensity is calculated on the axis of
the aperture at a distance of 1 nm below the screen). As
expected, the field intensity given by the analytical
method is proportional to R* both in reflection and trans-
mission, while the rigorous results present a steeper R de-
pendence than in Fig. 4, which fact has found its
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explanation20 in the role played by the fundamental mode
supported inside the hollow metallic waveguide formed by
the aperture.?*? Although this mode is evanescent below
its cut-off radius, its decay constant decreases rapidly as
R increases, and is smaller than the decay constant of the
wave tunneling directly through the layer.
Unfortunately, our analytical method cannot take this
mode into account because of the explicit limitations im-
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Fig. 5. (a) Electric field intensity after the screen in the center
of the aperture (z=-201nm) for a silver screen with thickness ¢
=200 nm. Open circles, analytical results; open triangles rigorous
results; dotted line ~R". (b) Comparison between the rigorous
and the analytical (in a.u.) results of the electric field amplitude
along the x axis 1 nm below the aperture for R=30 nm. (c) Com-
parison between the analytical results and the Hankel function
Hj(k,x), representing the plasmon field traveling away from the
aperture.
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posed by the fact that only single scattering is taken into
account. This can be observed in Egs. (27)—(30), further on
in Egs. (46)—(50) for a single interface, and in Egs. (62)
and (65) for a layer. The only source of scattering is the
field amplitudes that propagate inside the layer in the ab-
sence of an aperture. Once diffracted, the scattered field
propagates without perturbation and it plays no role as a
secondary source. Thus the approximation to take into ac-
count only the lowest-order in R terms is equivalent to ne-
glecting higher-order scattering, and within this model
additional resonances inside the aperture, different from
the unperturbed modes, cannot exist. Since the correct
description of the waveguide mode inside the cylindrical
aperture requires multiple reflections on the walls of the
aperture to be taken into account, it does not exist in this
approximation. An alternative is to combine our approach
with the modal approach proposed in Ref. 24, but this re-
quires additional work outside the scope of this paper.

On the other hand, the unperturbed [existing in the ab-
sence of the aperture] plasmon surface waves obtained
from the denominator in Egs. (49) and (50), the Fabry—
Perot resonances, and the planar-layer waveguide modes
described by the transmission matrices T/ ™ and TTET™
are taken into account even in the single-scattering ap-
proach. This provides a necessary condition to correctly
represent the field map in the near- and far-field regions
in transmission within a multiplicative factor that is due
to the different transmission intensity shown in Fig. 5(a).
An illustration is presented in Fig. 5(b) that gives the
map (in the direction parallel to the incident polarization)
of the modulus of the diffracted electric field at a distance
of 1 nm below the aperture, which has a 30 nm radius and
is pierced in a silver screen 200 nm thick. As can be ob-
served, the approximate method not only represents quite
well the details of the diffracted field inside the aperture
but also represents the sharp field increase close to the
borders of the aperture.

Moreover, when looking far from the aperture but still
close to the metal surface, the field behavior is predomi-
nantly determined by the plasmon surface wave going
away from the aperture, which can be observed in Fig.
5(c), where a comparison is made between the results of
the approximate method (open circles) and the simple
formula®”

E(x)| ~ Hi(kyx), (79)

where H} stands for the first-order Hankel function and
k,=k((1.0667+i0.002548) is the plasmon propagation
constant on the silver—air interface at A=500 nm. Without
losses, &, is real and the asymptotic expansion of relation
(79) is proportional to 1/ \s’@; thus the total flux of energy
of the plasmon remains constant over the entire metal—
dielectric interface, whatever the distance from the aper-
ture. However, for real metals, due to the imaginary part
k”>0 of the plasmon propagation constant, the modulus
of the electric field behaves asymptotically for large val-
ues of x as exp(—k;;x)/ \s“kpj, i.e., it decreases very rapidly
due to absorption.

The absence of higher-order scattering in the approxi-
mate method can provide explanation for the systematic
difference between the rigorous and the analytical results
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[without the correction in eq. (78)] observed in Figs. 2—4.
If the higher-order scattering plays a nonnegligible role
even in the limit R—0, any single-scattering approach
will give results different from the true ones. And really,
as already discussed, the cylindrical waveguide mode ex-
cited inside the aperture cannot be described through a
single-scattering approach. Another argument supporting
the importance of multiple scattering can be found in the
fact that when the radius of the aperture is smaller, the
scattering points on its walls lie closer to each other,
which increases the importance of the second- and higher-
order scattering of the field.

To check this hypothesis, we have used the rigorous
method as a tool in a numerical experiment. It is possible
to modify the code so that only single scattering is taken
into account. This is done by using only two different
spectral (in the & space) components of the field. The dif-
ference from the analytical approach is important, be-
cause the rigorous method truncated in this manner is
not limited to the lowest terms in R. Thus a set of “single-
scatter but all-power series in R” results can be obtained
to be compared with the analytical approach containing
the lowest power in R approximation. As observed in Fig.
6, the analytical and the extremely truncated set of re-
sults coincide for small values of R, which confirms the
hypothesis that the single-scatter assumption is respon-
sible for the systematically lower analytical results.

All these studies indicate that the possibility of com-
pensating for the difference between the results of the
analytical and the rigorous methods lies outside the lim-
its of the assumptions constituting the base of the analyti-
cal method. And indeed, the correction as proposed in re-
lation (78) comes from a completely different approach
that takes into account the singularity of the Green’s ten-
sor. As already mentioned, the correction factor =2 in a
very large domain of materials, from dielectrics through
poorly to highly conducting metals. Figures. 6(a) and 6(b)
show the dependence of one of the spectral amplitudes on
the real part of &5 in a large interval of Re(ey), positive or
negative. The results are obtained using the analytical
and the rigorous approach, the “extremely truncated” rig-
orous method, but the analytical results are also corrected
by the factor due to the renormalized Born approximation
according to relation (78). One can observe in Fig. 6(b) a
spectacular amelioration of the analytical results when
this correction is introduced. In the lossy metallic case
[Fig. 6(a)], we have a residual difference, probably due to
the fact that in real metals the correction factor (78) is not
yet sufficient.

Another remark that we should make is that the
asymptotic behavior of the analytical expressions when
Re(eg) — £ is wrong, because the basis of functions
(Fourier—Bessel) used to express the field inside the
pierced layer cannot be used when the layer becomes in-
finitely conducting and thus the electric field inside it
vanishes. And indeed, as can be found from the equations
in Section 3, the spectral amplitudes decline as 1/ \8_2 for
large values of &9 so that the scattering vanishes within
this model. In order to study the perfectly conducting case
in our model, it is necessary to include higher-order terms
with respect to R, which reminds us that the results of
Bethe are correct to predict a behavior proportional to R?
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Fig. 6. Spectral amplitude MEZ%/k,, for k,,/ky=0.05 calculated
in reflection using the rigorous (open triangles), the analytical
(open circles), the renormalized analytical (solid squares), and
the “extremely truncated” (solid circles) rigorous method, as a
function of the real part of permittivity of the screen for R
=20nm and A=500nm. (a) Metals; (b) dielectrics, with a zoom
(bottom panel) close to the origin.

in amplitude, as far as, according to our model, the terms
in R? vanish when Re(gg) — .

More generally, each perturbative method (including
those based on the Born approximation) for which the
source of the perturbation is the field inside the unper-
turbed medium cannot treat materials with infinite per-
mittivity because the latter implies vanishing fields in-
side; thus any correction factor similar to relation (78)
cannot give some nonvanishing contribution. However, as
shown in Section 6, the analytical approach permits us to
obtain qualitatively (within this undetermined source fac-
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tor) the far-field pattern predicted by Bethe in the case of
a perfectly conducting screen.

There are several conclusions to be drawn from the re-
sults of this section:

1. The analytical results describe well the scattering in
reflection by a single aperture, both in the direct and the
inverse space, for different dielectric and poorly and
highly conducting metal screens.

2. There is a systematic error in the analytical results.
This error is due to the single-scattering approximation
on which the method is based, which cannot take into ac-
count the change of the incident field amplitude induced
by the aperture. However, the renormalized Born approxi-
mation provides a correction which takes into account the
difference between the incident field with and without the
aperture, a correction that compensates almost totally the
difference between the analytical and the rigorous results
in case of dielectrics, and reduces this difference for lossy
metals. Within this residual difference, the analytical
method correctly predicts the excitation of surface plas-
mons on the metallic—dielectric interface, or of waveguide
modes inside the plane layer if it is a dielectric.

3. Due to the single-scattering approximation, it is not
possible to take into account the evanescent mode inside
the hollow metallic waveguide formed by the aperture in-
side the metallic layer. This limitation introduces a sig-
nificant error in the determination of the field amplitudes
in transmission (as observed in Fig. 5), while the analyti-
cal method is still able to correctly predict the form of the
near- or far-field distributions.

6. FAR-FIELD DIRECTIVITY

The limitations of the analytical method must not be un-
derstated, and it has to be used with caution, preferably
in parallel with some rigorous method to enable compari-
son. The development of the electromagnetic grating theo-
ries during the entire 20th century has proven this. How-
ever, by taking these precautions, it is possible to use the
analytical method in order to better understand some nu-
merical and experimental properties of diffraction by ap-
ertures, because, although the rigorous numerical meth-
ods provide the necessary tools for modeling light
diffraction, quite often they serve as a black box that pro-
vides results but no physical reasoning and understand-
ing.

One of the interesting problems in light diffraction by
small apertures is the angular distribution of the dif-
fracted field, because its directivity is important in in-
creasing the efficiency of detection in biophysical and
physicochemical experiments of laser-induced fluores-
cence and Raman scattering inside nanovolumes, aiming
to study single molecules. While the classical theory of
Bethe is valid only for infinitely conducting screens, it is
sufficient to break down the intuitive expectations from
the scalar point sources that the radiation pattern of the
diffracted field will be uniformly distributed in the entire
half space. Indeed, the prediction, for example, in normal
incidence is that the field scattered by the aperture will
correspond to the field of a magnetic dipole in the free
space positioned at the aperture in the plane of the screen
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and having direction perpendicular to the incident field
polarization. In that simple case, the field (and the radia-
tion pattern) in the plane perpendicular to the dipole and
thus containing the incident electric field vector will be
uniformly distributed, i.e., not depending on the angle of
diffraction, as would be expected from the scalar diffrac-
tion. However, in the other plane of diffraction perpen-
dicular to the incident electric field vector, the diffraction
pattern is strongly nonuniform and tends to zero at graz-
ing to the screen direction, as can be expected from the
field of the magnetic dipole close to its axis. The same be-
havior can be expected from the theory presented by
Jackson,? although he insists that it is not valid for small
apertures.

Recent studies of the diffraction pattern generated by
an aperture in finitely conducting metallic screens indi-
cate that even for small apertures, the angular distribu-
tion of the radiation is not flat, either inside the plane of
incident field polarization or perpendicular to it.'® Nu-
merical modeling links this deviation from the predictions
of Bethe with the excitation of a surface plasmon wave in
the direction lying in the plane of incident field polariza-
tion. However, it is not clear how this plasmon can be ra-
diated from the surface apart from the aperture borders
in order to increase the angular directivity of the radia-
tion pattern, if the surface is without defects.

To analyze the reasons for this deviation from Bethe’s
theory, we use both the numerical and the analytical
method, first, to study the properties of the radiation pat-
tern and to compare the results of the two methods and
second, to try to find the physical reason by simplifying
and analyzing the formulas obtained in the previous sec-
tions in the case of highly conducting screens. In order to
avoid the handicap of the analytical method in transmis-
sion, discussed in detail with respect to Fig. 5, the analy-
sis is made in reflection. Then the results of the rigorous
method are shown in transmission to confirm the behav-
ior common to the case in reflection.

The following figures represent the radial component of
the angular density of the Poynting vector, defined as

P,=—(ExH)p, (80)

where p=1r?+2z? is the distance between the center of the
aperture and the observation point and p is the corre-
sponding unit vector. In the far-field region the values of
P, have to be independent of p, but they will vary with the
azimuthal angle ¢ and with the polar angle ¢ between p
and the z axis (Fig. 1). We consider two planes of diffrac-
tion, the first one parallel to the direction of incident wave
polarization, having =0, and the second one perpendicu-
lar to the first and characterized by 6=90°.

To obtain the far-field characteristics of the field it is
sufficient to go several tens of wavelength away from the
aperture. However, in the case of finitely conducting met-
als, the surface plasmon wave that can be excited on the
metal-dielectric interfaces is only slightly attenuated
along the surface and can be detected near the surface if
the distance from the origin is not sufficiently long. This
can be observed in Fig. 7, which shows the polar angle
distribution of P, in the plane #=0 for three values of p. At
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shorter distances from the aperture, a significant increase
of P, is observed in directions of propagation grazing the
surface, with values that gradually decrease with the dis-
tance, as follows from the discussion following relation
(79). This is why, in what follows, we work at p=50 um.
On the other hand, Fig. 7 shows that, except for the influ-
ence of the plasmon wave, the values of P, as normalized
in Eq. (80) do not depend on p.

Let us first consider larger apertures, where the theory
of Bethe predicts variations of P, in both planes §=0 and
90°. Figure 8 represents several results for R=100 nm.
Two different metals are considered, real A1l and an arti-
ficial one having permittivity multiplied by 100. In the
plane =0, the screen of higher conductivity shows an an-
gular dependence that is weaker than for Al screen (open
squares). Both curves are much wider than the angular
dependence in the perpendicular plane, #=90°, which has
values varying insignificantly with the conductivity, as
observed further on. The theory of Bethe predicts this be-
havior, but more correct formulas are available for
greater radii by Jackson (Ref. 2, p. 492) as

2 2
J1| sin TR sin ¢
P, o (cos? i+ sin? cos? 6),
sin TR sin

(81)

where the terms in the second set of parentheses deter-
mine the polar angle factor, different in the two planes of
observation:

1, 9=0

. 2
cos?y, 6=90° (82)

(cos® i+ sin? ¢ cos? 0) = {
While for highly conducting material the three methods
[Jackson’s Eq. (81), the analytical, and the rigorous
method] predict variation of the radiation pattern in the
two planes #=0, 90°, one can observe that the directivity
of P,(¢) increases when |e,| decreases, a result that can-
not be obtained from Eq. (81).
Figure 9 shows the variation of the behavior of P () for

B3
1E-3 4
1E-4 4
1B54 | Ag,0=0:
1| ——p=5um
-—m—- 0 =10 ym
1E64 | o = 50 um
1E-7 . T . y r T
0 20 40 60 80
y (deg)

Fig. 7. Polar angle distribution of the power radiated in reflec-
tion in a radial direction p (see Fig. 1) for three different values of
p lying in the plane of incident polarization #=0. Infinitely thick
silver screen, R=10nm, and A=500 nm.
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Fig. 8. Variation of the power radiated in reflection with the po-
lar angle ¢ in the two planes =0, 90° for two different metals
and relatively wide aperture, R=100 nm, and A=500 nm. For 6
=0 and very highly conducting material (g4=100g4;): open
circles, analytical results; half-filled circles, Jackson’s formula;
open triangles, rigorous results. Open squares, real metal (alu-
minum) and #=0. Solid triangles, in the plane #=90° for both
aluminum and very high conductivity.
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Fig. 9. Similar to Fig. 8 but for much smaller aperture, R
=10nm, and screen materials (metals) with values of permittiv-
ity increasing in modulus as indicated at bottom of graph. Sym-
bols, 6=0; solid curve #=90°.

different values of the screen permittivity when the ra-
dius of the aperture is reduced to 10 nm. Relation (81)
predicts that for these dimensions of the aperture and the
wavelength, the curve P (i) will be practically flat when
0=0, while it is evident that even for these small radii,
the real metals present a variation that is flattened when
|eg| —o=. In the other plane of observation, P,(y) is practi-
cally independent of |e5| and its dependence is repre-
sented by the cos? i factor in relation (81).

As already discussed, the stronger directivity in the
plane containing the incident electric field vector that ex-
ists for finitely conducting metals has been already in-
voked and explained by the propagation of the existing
surface plasmon. However, whereas this is true in the
near-field region, where the plasmon “extends” the elec-
tromagnetic field along the metallic surface in the direc-
tion parallel to the incident electric field vector (Fig. 7),
the experimentally observed stronger directivity in the
far-field region cannot be due to the surface plasmon,
whose field decreases away from the aperture, even in the
vicinity of the metallic interface.

In order to confirm or reject the plasmon role in the en-
hancement of the far-field directivity, we present in Fig.
10 results similar to those given in Fig. 9, but for a dielec-
tric instead of metallic material surrounding the aper-
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ture. Similar behavior in the plane #=0 is obtained, the
dependence becomes flatter with the increase of |g,|, i.e.,
for materials with smaller |e,| the directivity is higher, a
fact that cannot be explained by a surface wave that is not
supported by a single dielectric—dielectric interface, if all
the materials are lossless. Contrary to the metallic case,
the directivity in the other plane #=90° depends on the
refractive index and increases with |e,|; see Fig. 11.

All this points up that the increased directivity of the
radiation pattern in the plane of incident polarization,
when finite-conductivity materials (metal or dielectric)
are used, needs an explanation different from plasmon
surface waves, which play a clear role in the near-field
distribution but cannot be invoked in the far-field pattern,
all the more in the case when no surface wave can exist.
To this end, let us return to the basic equations of the
analytical method and try to observe what happens when
|es| becomes much larger than ¢;. In that case, the expres-
sions of ME and M in Eqgs. (45) and (49) can be easily
simplified to

MER = B imvon = Du (83)
mnt,R _ TgM,inva ,DM’ (84)
where
2k,
7TE,inv _ z
m ay + k m, ’
) 2k mz/ €9
TZM,mV _ ( 8 5)

- ’
amz/sl + kmz/82

are the Fresnel coefficients for transmission from the sub-
strate into the cladding, and

» RJ;(k,,R)AC7
P — 86
" 2kmz(kmz + 'yi) ( )
R (k,R)A,C;
o = , (87)

" - z(kmz + 7i)

will be shown to be equal to the %,, components of a mag-
netic dipole lying just below the interface when |gg| > ¢,.
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Fig. 10. Variation of P, with polar angle  in the plane =0 for
different dielectric screens with gradually increasing permittiv-
ity as given in the inset. R=10 nm, A=500 nm.
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Fig. 11. Same as Fig. 10 but in the #=90° plane, perpendicular
to the incident wave polarization.

In the far-field zone k,,<k,, so that k,, + y;~2\ey, and
taking into account that

Ji(k,,R) = k,,RI2, (88)
Eq. (86) takes the form

ZsD

MEDY < b, 2 R2C = g (89)
m 8le,| 8w

which represents (see Appendix E) the QJT‘EL’D M component

of the field radiated by a magnetic dipole oriented in the y

direction (i.e., lying in the plane of the screen and perpen-

dicular to the incident field polarization) with a dipole

moment equal to

» & (90)
Dy = mR*— 90
|82| koZs
It can be demonstrated in a similar manner that
k2‘82| Z DM
DM~ _jpy 2 91)
m kmz 8

represents the sm’,,f’DM component of the same dipole. The
other two field components ‘Bﬁ and ‘Iifnl can be derived
from the expressions of ME and M using Egs. (27) and
(29).

As already mentioned, these results have the following
physical interpretation: the incident field induces a scat-
tered field inside the layer pierced by the aperture. For
high values of |e5], the scattered field can be considered as
the field of a magnetic dipole having a dipole moment
given by Eq. (90) that is proportional to the incident field

inside the layer. This incident field is equal to C’i‘
=Ai(‘l3;E"—9ﬁ;E‘)/2, following Eq. (36) and corrected by us-
ing the Born approximation by the factor given in relation
(78). The emission of the dipole in the plane perpendicu-
lar to the dipole direction (i.e., the plane containing the
incident electric field vector) is uniform angularly. The
field emitted by this dipole is transmitted through the
layer surface following Eqs. (83)—(85). However, the
Fresnel transmission coefficients are angularly depen-
dent, so that the emission in the cladding will depend on
the angle of transmission, i.e., even in the plane =0 one
can expect an angular variation of the emission.

On the other hand, the angular dependence of the
Fresnel coefficient decreases with increasing contrast be-
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tween the cladding and the layer with the aperture, so
that one can expect that with |e9| increasing, the radiation
pattern in the plane #=0 will become less dependent on
the polar angle . Indeed, as demonstrated in Fig. 12(a)
for metals and in Fig. 12(b) for dielectrics, larger values of
|eo| lead to a weaker angular dependence of PZE/k,, . for
example, conversely, when |e5| decreases, the coefficient
‘l}fn’R/km decreases when k,,/kqg— \s'&:, i.e., when ¢—90°,
and this decrease is faster (and thus the directivity stron-
ger) for smaller values of |go|.

By taking the asymptotic expressions of the transmis-
sion coefficients in Eqgs. (85),

TE,inv
T, ™ —2,

TTM i &1
,inv 2
Ay, €2
2

z

, (92)

and multiplying them by the dipole field components as
given in relations (89) and (91), it is easily found that the
components of the field radiated in the cladding are given
by

ER km 28201'_ HR km 2820i_
o, =—R , B,y =ia, —R s
4 ‘82| 4 |82|
(93)
£
X
[+4
uf
€
& €, = 50
024 &, =-1000
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Fig. 12. Variation of the spectral amplitude ‘BEZ’R/ k,, as a func-

tion of %,, for (a) metals, (b) dielectrics for different permittivity
of the screen as shown in the insets. R=10nm, A\=500 nm.
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R kerky, ZSZCi
M, =-1i —

(%

(94)

These are nothing but the field components of a magnetic
dipole emitting in the cladding as if the substrate were
absent, having a direction perpendicular to the incident
field polarization, and lying in the plane of the layer sur-
face. That is, these expressions represent the equivalence
between the scattering by an aperture in an infinitely
conducting screen in normal incidence and the radiation
pattern of a magnetic dipole. It has to be pointed out that
when |g9| — o, the source (unperturbed) field has an am-

plitude C’i_ ~1/ \«‘”8_2—> 0 with or without the Born correction
of relation (78), so that another expression is necessary to
obtain a nonvanishing scattering. One possibility is the
approximation used by Jackson: Assume that the source
field is equal to the incident field inside the aperture.

An approximation better than relations (93) and (94)
can be obtained by going back to relation (88). Taking it
into account, relations (93) and (94) have to be replaced
by the following expressions:

IR 8zci_
MER = RJ, (k,,R)—,
2‘82|
g9 Ai_
AR~ ja,, RJ,(k,R) , (95)
2|<‘32|
k281 €9 Ai_
MR = — iRy (o R) =,
amz 2‘82|
Széi_
BR ~ _RJ\(k,,R)—, (96)
2|‘92‘

which are close to the expressions presented by Jackson
and valid in a much larger interval of radius values.

Let us briefly summarize the conclusions that can be
drawn for the diffraction by small apertures:

1. While a scalar wave is diffracted by a small aperture
in a manner to produce a uniform angularly scattered
field, a linearly polarized vector field is diffracted by an
aperture in a finitely conducting metal or nonconducting
dielectric screen in a pattern that is nonuniform angu-
larly. This nonuniformity is more pronounced in the plane
of diffraction perpendicular to the incident vector polar-
ization.

2. When the permittivity e9 of the screen increases in
modulus, the scattered field becomes more and more uni-
form in the plane of the incident electric field vector, and
in the limits of |g5| — ® the radiation in this plane pattern
is completely uniform (a conclusion already drawn from
Bethe’s theory).

3. With increase of the aperture dimensions, the direc-
tivity of the scattered field increases [this conclusion can
already be found for perfectly conducting screens; for ex-
amplze, it is contained in Eq. (81), taken from Jackson’s
book~].
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APPENDIX A

The Helmholtz equations in cylindrical coordinates for
E,, and E,, are written

E,, 2in

AE,, - —+—E,,+kE,,=0,
r r
E,., 2in
AE,,-—5 -—E;,+kE,,=0, (A1)
r r

where k=w\upeqe is the wavenumber and the Laplacian
has the form

# 19 1F# &
i v 2a@ " at
By making two linear combinations of E, ,, and E,,, it is
possible to decouple Eqgs. (Al). Defining

E-,=Ey,+iE,,, (A3)

A= (A2)

Eqgs. (A1) take the form

P 19 (nxl)? s
. _ +k2+ F E, ,(rz)=0. (A4)
2z

— +
ar?  ror r2

Here it is easy to identify the generating equation for
Bessel functions of first kind and integer number equal to
n+1; this enables the writing of the general form for E, ,
in a Bessel-function basis:

m=0

E_,= f EE(hpy2) by by Al = >, CE ()T 1 (R,
0

E+,n = J Bf(kr,z)Jn+l(krr)krdkr = 2 bf,m(Z)Jn+1(kmr)Am>
0

m=0
(A5)

where {%,} is the set of discretized values of k,,A,,
=k,,+1—k,,, and the right-hand side of Eq. (A5) represents
the discretized integrals, which is necessary in the nu-
merical treatment.

Equations (3) and (4) appear immediately when taking
into account Egs. (A3) and (A5).

The third line of Egs. (2) permits obtaining the form of
z components of electric and magnetic field vectors in the
form given in Egs. (5) and (8) by using the Bessel-function
identities. Let us consider H, ,=1/ioug(0E,/dr+E,,/r
-(in/r)E, ). Substituting E,, and E, , from Egs. (3) and
(4) and taking into account the identities

d n+l
-t Jn+1(kmr) = kan(kmr),
dr r

( d n- 1)
—- Jno1(kpr) = = kel (k1) (A6)
dr r

one obtains Eq. (8).

A similar treatment can be done for H,. ,,H,, and ¢E, ,,
in order to obtain the other three equations in the set
(3)—(8). However, in the inhomogeneous region containing
the aperture we have e=¢(r), which fact requires special
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treatment. Using Eq. (5), it is possible to express E, in a
form similar to that of Eqs. (A5):

k3e(rE, , = k3e(r) D, e, m(2)d,(kur)A,,

Eq. (5)
= i [b ()~ Wk k.

(A7)
Multiplying the second equivalence by k&, /7, (k,,r), inte-

grating over r, and using the orthogonality relations [Eq.
(15)], one obtains that

4
B2 ()0 enm(2) = R [0),,,(2) =€), (2)], - (AS)

where the matrix element of ¢ is given in Eq. (16). Invert-
ing the matrix, the Fourier—Bessel coefficients of E, are

i
enm@) =52 (e kbl @) =l ()], (A9)
0 ;!

obtained for H

z,n

A similar expression is
=3 ol m@),(kpr)A,, with

1
hn,m(z) =7
Lwpg

[67,,(2) = cht (2)]. (A10)

Combining the first two lines of Eq. (2), replacing E, ,
from Eqgs. (A7) and (A9), and taking into account the iden-
tity

d R,
—d (k) = —[J1(kyr) = I yia(Ryr)], (A1)
dr 2

one obtains the following set:

d
— 2 @) Ay == X @) s o)A
2 m m

k
mn n,ny—1 H
- z_kgglr (8 )m’m,km,[bn,m’(z)
— @Y ak,r),  (Al2)

J
3—2 by @ g1 (byyr) A = 2 bY L (2)eT 01 (k) A,
4 m m

k

m n,n\—1 H
— 2—k(2)mEm, (8 ’ )m,m’km'[bn,m’(z)
— e @Wpalkyr).  (A13)

Multiplying Eq. (A12) by &,,rd,_1(k,,r) and Eq. (A13) by
k,rd,.1(k,,r), integrating them over r, and using the or-
thogonality relation Eq. (15), one obtains, respectively,
Eq. (11) and Eq. (10).

When the first two equations for the z derivatives of H
in Eq. (2) are combined, the following equations are writ-
ten for bf’m and cf,m by using Eqgs. (A10) and (A11):
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2

k;,
=> —[bE (2)

m

—cE @)W, (kA

#R30() D T2 o)

J
—> e @),y (kyr)A,,
2

(A14)

2

k2,
@1 (k)N = >, 3[bf,m(z>

m

- Cf,m(z)]Jn+l(kmr)Am

-kga(r)z bE (@)1 (kyr)A,,.

d
I
oz .,

(A15)

When multiplying Eq. (A14) by k,rJ,_1(k,r) and Eq.
(A15) by k,,rd,.1(k,r) and integrating over r, one finds
Eq. (13) and Eq. (12), respectively.

APPENDIX B

Let us consider a set of second-order linear differential
equations of the form

em(2) = =k, e(2) + RI1(kR) D thunca(2).  (B1)

Its general solution can be searched in the form of waves
propagating along *z:

en(2) = D, Crexp(iv,2), (B2)

which leads to the following equation
> Crvrexp(2iv,2) = X, (yy 8, = BRIy (R R) 11y)
n b9
X C5,exp(£iy,2). (B3)
In so far as this equation has to be valid for each z, one

obtains a typical eigenvalue/eigenvector problem for 7>
and C3, :

Crn¥a= E (2, 8p = Ry (kyuR) 7,p)C. (B4)

The eigenvalues y2 of the matrix (k2 =RJ (k) 7pyp)
can easily be obtained within the order of R?; they are
simply equal to the diagonal elements of this matrix:

Vi = ki = RI (R R) - (B5)

Then Eq. (B4) results in

RJ1 (k,.R)
C:m - E 77mp (B6)

On the other hand, the diagonal elements C;,,, repre-
sent the waves that can propagate without aperture [see
Eq. (B1) with R=0], while the off-diagonal elements cor-
respond to the scattering by the aperture; thus

Vol. 24, No. 2/February 2007/J. Opt. Soc. Am. A 355
Crin = CrmOnn + O(R?). (B7)

In that case, all the terms RJ¢(k,,R)7,,,C pn in Eq. (B6)
will be of the order of R*, except for the terms with p=n.
Thus Eq. (B6) leads to the following expression:

C RJl(ka) nmnc B
s = ————C%,. 8
mn k,an_%Zl nn ( )

By taking into account Eqs. (B2), (B7), and (B8), the final
form of the general solution becomes

Cm(Z) = C;mEXP(iiYmZ)

’r]mn
+RJ (kR —
1( " )nén krznz - YrZL

Let us now consider the case when a single wave (with
m=1i) is incident on the structure. This means that it
would be the only propagating wave if the aperture were
not existing and thus all the other waves will have ampli-
tudes of the order of O(R?), i.e., Eq. (B9) can be rewritten
separately for the incident wave component (m =i) and for
the scattered waves (m #1):

C: exp(xiy,z). (B9)

ci(z) = Ciexp(ziyz), (B10)

RJ(k,R) 7y
Ry =%

Cm#i(2) = Ciexp(+ivyz), (B11)

with C7=C% being the unperturbed incident field ampli-
tude in the corresponding medium.

APPENDIX C

Let us consider an arbitrary wave vector k with compo-
nents Kk, and k, in the xOy plane and on the z axis, re-
spectively. If 6, is the polar angle of k, in the xOy plane,
then an incident plane wave is represented in a cylindri-
cal basis in the form

©

=E, Y, i"J,(kr)exp[in(0- 6y)lexp(-ik.z). (C1)

n=-—x

The form of the amplitude vector E; in the cylindrical
spatial basis depends on the incident field polarization.
For a linearly polarized incident wave, the Cartesian com-
ponents of E, are constant:

E0=E0xﬁ+E0y$7+E022' (C2)

Using the expression of the Cartesian unit vectors in cy-
lindrical coordinates, we obtain

E, = E,(F cos 6— @sin 6) + Ey (& sin 0+ cos 6) + Ey.2,
(C3)
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E N EOx EOy (0) EOx EOy ( 0)
=1 +— |ex +| — - — |exp(-
0 9 g TPV 9 g )P

A E() EO EO EO
+06| |- .x +— exp(if) + —x +— exp(-1i6) | +2E,.
2 21 2

(C4)

From these expressions, one can deduce the expression
of the electromagnetic components E.=E'-+ and Ej

=E'- 0 of the incident plane wave. For the first

. N EOx EOy
E=> 5 "o i"exp(= in 6y)J,,(k,r)expl[i(n + 1)6]
1A

N EOx EOy
Xexp(—ik,z) + E - — |i"exp(—inby)d ,(k,r)
n=—-N 2 21

Xexpli(n — 1) 0lexp(-ik,z). (C5h)
A simple translation of the subscript n by =1 then leads to

N+1 (on EOy

E= > i i ?)in_lexp[— i(n—1)60)S,_1(k,7)
n=-N+1 l

N-1 Eo, E,
X
Xexp(inf)exp(-ik,z) + E i - +— |in*t
nenN-1 \ 2 2

Xexp[—i(n +1)6ylJ,.1(k,r)exp(inf)exp(-ik,z)
(Ce)

and, in a similar way,

A N+1 on EOy " .
E,= E Y + > i" texpl-i(n' — 1)y, _1(k,r)
n'=—N+1 l

Nl on 0,
Xexp(in' O)exp(—ik,z) + D T [ A
Y 21 2
n"=—N-1
Xexp[—i(n" + 1) 0yl 1(k,r)exp(in” O)exp(- ik,z).
(C7)
By comparing these equations with Eqgs. (3) and (4), we
obtain the expression of the components of the incident

electromagnetic field in a Fourier—Bessel basis in terms of
their Cartesian components:

E, E, )i’”l

+— | — exp[—i(n + 1)6,], (C8)

bl (z=0) =
nn(@ )(Zi 2 )

m

. Ey,  Eo )\t
Lz=0)=|-— +— |— exp[-i(n - 1)6,].
Cum(z=0) TR exp[-i(n - 1)6;]

(C9)

APPENDIX D

Using notations common to electromagnetism, the electric
field E(p) scattered by a given optogeometrical system can
be described by a vectorial integral equation using the
tensorial Green’s function of this system G(p-p’):
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E(p)=Ei(p) + f c<p—p’>(8—d - 1)E<p'>d3p', D1)

€2

where g4 is the relative permittivity of the unperturbed
medium, g4 of the scatterer, and E;(p) is the incident un-
perturbed field. As is well known, a three-dimensional
Green’s function presents a singularity when p=p’ and it
can be decomposed into a singular part and a principal
value (P,):

Glp-p')=Lélp-p")+P,G(p-p'), (D2)

where 6 is the Dirac delta function and the tensor I. de-
pends on the shape of the exclusion domain chosen to de-
fine the principal value.??® In the case, for example, of a
spherical inclusion, it is simply equal to —l3)/3, where I3,
is the three-dimensional unit tensor. For a cylindrical cav-
ity much longer than its radius, the singular part is the
same as for a small disk and is equal to

L=-1lg/2, (D3)
where
1 0 0
Iy=|0 1 0f, (D4)
0 0 0

if the cylinder axis lies along the z axis.

This singular part has the physical meaning that it is
impossible to neglect the scattered field in the point of
scattering. Moreover, this self-scattering is singular and
much stronger than the scattering by the other part of the
volume, as can be expected due to the Dirac delta function
in Eq. (D2), so that the self-scattering part in Eq. (D1) can
be expressed in the form

E(p) = E;(p) + L(es/eo — 1)E(p), (D5)

whence it follows that the “local” field E(p) differs from
the unperturbed field E;(p),

-1
€4
E(p) ~ [m) - ”“(8— - 1)} E(p), (D6)
2
by a factor
2¢e
2 0 0
-1 &qt &2
Eq— &9 9 D7)
Igy— L = € ,
3) o 0 2 0 (
Eq T €9
0 0 1

where Eqgs. (D3) and (D4) are used. This means that for
the x and y components of the electric field, it is necessary
to introduce a correction factor equal to the term given in
relation (78).

APPENDIX E

From the covariant expression of the electric and mag-
netic fields of a magnetic dipole,
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>

Zk2 1 \exp(-ikp)
E=——pXDyll-—|——
4 ikp p

1
H=-_ 4_{}32@ X Dyy) X p—[3p(p-Dyy) — Dyl

1 ik | exp(-ikp)
(3|
p° P P

one can obtain their components in a coordinate system in
which the dipole moment is equal to

Dy =Dyy, (E2)

so that, when looking in the xOy plane, the electric field
has only one vector component:

ZDMk2< 1 ) exp(—ikr)
E =- 1 -

z 8w _%

[exp(i6) + exp(-i6)].

(E3)

On the other hand, Eq. (5) gives E, in the Fourier—Bessel
basis and, comparing the two expressions, it is easy to
identify that

ZDMk4( 1 ) exp(—ikr)
1 -

8w _ik_r

r
=i, [b2,,0)-cZ (01, (kP )kA, (E4)

by taking into account that in nonmagnetic media k2
=kgs. Multiplying the two sides by rd,(k,,r), integrating
over r, and using the orthogonality in Eq. (15), one ob-
tains that

ZDyk* 1
mi =pll M~ 1- —
’ ’ 8w o ikr

ZDyk* k,,
Ji(ky,r)rdr=-1 —_,
8w  kky,

(E5)

exp(-ikr)
X e —

where the integral is evaluated using Eqs. (11.4.35-
11.4.38) of Ref. 29. After simplification, this expression is
equivalent to Eq. (91) when applied to medium 2.

It is impossible in such a simple way to obtain the ex-
pression for Dﬁi, because H, vanishes in the xOy plane.
Instead, Appendix A gives another possibility to obtain di-
rectly the spectral amplitude bfm. To this end, we shall
use an equation similar to the second of Eqs. (A5), but
written for the magnetic field:

%

Ho,l - iHr,l = f Blli(kr,z)jn+l(krr)krdkr
0

= > b @)k, (E6)
m=0

The components of the magnetic field in cylindrical coor-
dinates can be obtained from Eq. (E1) by taking into ac-
count that in the xOy plane
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p XDy =Dyscos 02, (pxDyy) X p=Dyycos 60,

p-Dyr=Dyssin 6, (E7)
so that
2Dk 1 1 \exp(kr) 1
r= 4—7T(W + ik_r)—Z_i[eXp(w) —exp(-10)],

(E8)

Dy k2 1 1 \ exp(ikr) 1
H,= - (1 " nE T %>—5[exp(i0) +exp(-i6)].

(E9)
After applying the orthogonality from Eq. (15) to Eq. (E6),
we obtain that

" Wfo - .
bl,m = ?km (He,l - lHr,l)JZ(kmr)rdr
0

WMo DMk2 “ 3 3
=—kn 1-5-
2 87 J, k*r*  ikr

exp(ikr)
X ————Jy(k,,,r)rdr
r

oy  Dyk? ) k2
= —km - L—z N (ElO)
2 8m k%,

where the integration is made again by using Egs.
(11.4.35-11.4.38) of Ref. 29. Equations (E5) and (E10) give
directly

H H H ZDy
P =205, M =i~ kh,k,, (E11)

8w

The other two spectral amplitudes are obtained by using
relations (27) and (30), so that

M, = _1 (,13 =k, k—
m il ] m m S B
‘:B = ; 293( =—k, k— E12
m kZ m m 8 . ( )
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