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A perturbation theory based on a single-scattering approximation is developed from the rigorous differential
theory of diffraction in cylindrical coordinates. It results in analytical formulas in the inverse space for the field
amplitudes providing results that are in quantitative agreement with the results of the rigorous method, in
both the near- and far-field regions, when a proper correction to the incident field inside the aperture is made
by using the renormalized Born approximation. When working in reflection by a screen having permittivity
high in modulus, the method proposes an equivalence with the simple model consisting of the emission by a
single magnetic dipole excited inside the pierced layer, emission that is then transferred back into the cladding
following the Fresnel’s coefficients of transmission from the layer into the cladding. The theory predicts a di-
rectivity of the radiation pattern that increases for smaller values of modulus of permittivity, both for dielec-
trics and metals, thus independently of the possibility of plasmon surface wave excitation along the interface.
The theory can take into account such surface wave resonances, as well as the waveguide supported by a di-
electric slab, but cannot implicitly recognize the modes carried out by the cylindrical waveguide corresponding
to the aperture. This fact limits its domain of validity when used in transmission, although the far- and near-
field maps can be reconstructed sufficiently well within a multiplicative factor corresponding to the enhanced
transmission due to the excitation of these modes. © 2007 Optical Society of America
OCIS codes: 050.1220, 050.1960.
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. INTRODUCTION
hen Bethe1 developed his theory of light diffraction by a

ircular aperture in a perfectly conducting screen during
he Second World War, he could hardly have imagined
hat impact it would have after half a century. The al-
ost purely academic interest—as described by

ackson2—shown in this problem has received a practical
mpetus in the new wave that started almost ten years
go with the experimental work of Ebessen et al.3 that
emonstrated the possibility of transmission enhance-
ent through arrays of subwavelength holes. This was

ollowed by many theoretical works4–9 that provided a
hysical understanding of the phenomenon, explaining it
y the combined influence of surface plasmon excitation
n the dielectric–metal interface of the array supporting
ayer and the enhanced transmission due to the wave-
uide mode existing inside the hollow waveguide formed
nside the aperture. These works have invoked an inter-
st in diffraction by a single aperture, accelerated by its
mportance in chemistry and biology.10 Using single aper-
ures as nanocavities allows trapping and detecting single
olecules and studies of biomembrane segments using lu-
inescence spectroscopy or Raman scattering, provided

he light emitted reaches a detectable level. Different so-
utions of light enhancement inside the nanoholes have
lready been studied, among which are the propositions
o use a coaxial aperture11 or to introduce a surface cor-
ugation around the aperture in order to resonantly en-
1084-7529/07/020339-20/$15.00 © 2
ance the surface plasmon.12–14 Recent experimental and
heoretical works have already stressed the role played by
he surface plasmon excitation and the importance of the
olarization effects15–17 not only in enhancing the field in-
ide the aperture, but also in increasing the directivity of
he radiated field (and thus of the detected signal).18–20

The theory of Bethe predicts that a small aperture dif-
racts as if the screen and the aperture were replaced by
wo emitting electric and magnetic dipoles. In the case of
normally incident linearly polarized plane wave, the ap-

rture remains a single magnetic dipole lying in the plane
f the screen and perpendicular to the incident polariza-
ion vector. Thus, the diffraction in the plane of polariza-
ion (i.e., in the plane perpendicular to the dipole axis) is
niform angularly presenting no directivity, while in the
erpendicular plane it follows a simple cos2 law. Jackson2

redicts a stronger angular dependence (as discussed in
etail in Section 6 of the present paper) for larger aper-
ures, but his predictions for small ones coincide with Be-
he’s theory, at least concerning the directivity.

However, recent theoretical and experimental
orks15,18 indicate that the directivity of the radiation
attern of a single aperture in real metals is larger than
he theoretical predictions valid for perfectly conducting
creens. Another discrepancy, found only recently,21 is
hat Bethe’s theory predicts that the diffracted field am-
litude grows as the third power of the aperture radius R,
aster than the second power given by the Kirchoff ap-
007 Optical Society of America
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roximation, while numerical results for real metals show
hat the field inside the aperture grows like R2 for small
adii up to the cutoff of the fundamental mode of the hol-
ow metallic waveguide formed inside the aperture.

These facts indicate the necessity to revisit Bethe’s
heory in order to obtain a better understanding of the
rocess of light diffraction by small apertures in real-
etal screens. Although there exist several numerical
ethods capable of resolving this problem using general

ools like finite-difference time-domain or finite-element
ethods, or more specialized theories adapted to the ap-

rture geometry,17,22 a simpler analytical approach pro-
iding better physical insight would be welcomed. Several
fforts made in this direction23,24 have provided approxi-
ate theories for thick but perfectly conducting screens24

nd relatively large apertures.
The aim of this paper is to fill in the existing gap in the

heory for small apertures in finitely conducting screens.
n the basis of the rigorous differential method in cylin-
rical geometry,22 we propose an approach valid in the
rst-order approximation with respect to R2. This ap-
roach takes into account only the single-scattering pro-
ess adapted to real metallic or dielectric screens. The in-
ident wave inside the aperture serves as a source field
nd is diffracted by the perturbation representing the ap-
rture. This incident wave is considered unchanged in the
pproximation used and thus the approach is equivalent
o the Kirchoff theory and the theory presented by
ackson,2 but adapted to finitely conducting materials.
he resulting equations for the diffracted field represent
n approach completely analytical in the inverse space
nd requiring numerical treatment in order to obtain the
eld maps in the direct space. Comparison with rigorous
umerical results shows very good agreement in the form
f near- and far-field distribution obtained using the ana-
ytical approximate method, within a common factor of
2.
An improvement of the unperturbed incident field ap-

roximation is proposed based on a renormalization25 of
orn approximation by taking into account the singular-

ty of the three-dimensional Green’s function tensor26 due
o the self-scattering process, i.e., concerning also the in-
ident field. In the case of a cylindrical scatterer, this
enormalization provides the missing factor, which tends
oward 2 when the contrast of the optical indices of the
ayer and the aperture increases.

Another limitation of the analytical method is that ow-
ng the single-scattering approximation, it cannot take
nto account the waveguide mode, evanescent or propa-
ating inside the hollow waveguide formed inside the ap-
rture. Thus, when looking in transmission through a
onducting screen, the amplitude of the scattered field is
uch smaller than the results obtained by the rigorous
ethod, which takes this mode into account. However,

he form of the field map obtained by the two methods is
uite similar.
Section 6 is devoted to the study of the directivity of the

adiation pattern when varying the screen permittivity
2. It is demonstrated that while for very strongly con-
ucting screens (or dielectrics with very high permittiv-
ty) the angular distribution follows quite well Bethe’s
redictions (or Jackson’s formula for larger radii), smaller
oduli of the permittivity lead to larger directivity of the
eld diffracted in the plane of incident field polarization,
hus confirming the previous results. Moreover, the ana-
ytical equations provide a simple physical interpretation,
nabling us to demonstrate that for permittivities suffi-
iently large in modulus, the diffraction pattern is equiva-
ent to the diffraction pattern of a magnetic dipole excited
y the incident field and emitting inside the plane screen.
ts radiation is transferred into the cladding by the re-
raction law guided by Fresnel coefficients. The stronger
he contrast between the screen and the cladding, the
maller the angular variation of these coefficients and
hus of the diffracted field. In the limits of ��2 � →� it is
emonstrated that the diffraction pattern corresponds to
he radiation of a magnetic dipole without the screen, con-
rming Bethe’s interpretation. Contrary to the hypothesis
ade in Ref. 18 that it is the surface plasmon excitation

n real-metal screens that increases the directivity of the
adiation pattern inside the plane of the incident field po-
arization, we demonstrate that while this is true in the
ear-field region, the far-field directivity is increased for
oth metallic and dielectric interfaces, the latter being
nable to support surface or volume guided modes. We
how that the increased directivity can be simply ex-
lained by the angular variation of Fresnel transmission
oefficients.

The system under consideration is presented schemati-
ally in Fig. 1 together with the coordinate system and
ome of the notations used below. A monochromatic plane
ave linearly polarized in the xOz plane is incident from

he cladding. We assume an exp�−i�t� time dependence.

. GENERAL SOLUTION INSIDE THE
NHOMOGENEOUS MEDIUM
ue to the natural 2� periodicity with respect to �, the

lectric and magnetic field components can be repre-
ented as Fourier series in �:

Ej�r,�,z� = �
n=−�

+�

Ej,n�r,z�exp�in��,

Hj�r,�,z� = �
n=−�

+�

Hj,n�r,z�exp�in��, j = r,�,z, �1�

o that the Maxwell’s equations can be separately written
or each field component E and H :

Fig. 1. Schematic representation of a screen with an aperture.
j,n j,n
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=
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=
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=
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here �0 is the free-space absolute permittivity and � is
he relative permittivity of the medium.

It is possible to use a Bessel-function basis for the field
omponents by using four spectral amplitudes bn,m

E �z�,
n,m
H �z�, cn,m

E �z�, and cn,m
H �z�, as demonstrated in detail in

ppendix A:

E�,n�r,z� = �
m=0

�

�bn,m
E �z�Jn+1�kmr� + cn,m

E �z�Jn−1�kmr���m,

�3�

Er,n�r,z� = i�
m

�bn,m
E �z�Jn+1�kmr� − cn,m

E �z�Jn−1�kmr���m,

�4�

k0
2�Ez,n�r,z� = i�

m
�bn,m

H �z� − cn,m
H �z��Jn�kmr�km�m, �5�

��0H�,n�r,z� = �
m

�bn,m
H �z�Jn+1�kmr� + cn,m

H �z�Jn−1�kmr���m,

�6�

��0Hr,n�r,z� = i � �bn,m
H �z�Jn+1�kmr� − cn,m

H �z�Jn−1�kmr���m,

�7�

��0Hz,n�r,z� = − i�
m

�bn,m
E �z� − cn,m

E �z��Jn�kmr�km�m,

�8�

ith k0 being the free-space wavenumber and km=m�m,
o that

�m = km+1 − km. �9�

ssuming the continuity of Er, E�, and H on the interface
etween the cladding and the screen pierced by the aper-
ure (which assumption is valid almost everywhere except
n the edge r=R), Appendix A explains how to obtain the
ollowing set of first-order differential equations:

d

dz
bn,m

E = bn,m
H −

km
2

k0
2�2

�bn,m
H − cn,m

H �

− �
m �m

��−1�m,m�
n,n

kmkm�

2k0
2 �bn,m�

H − cn,m�
H �, �10�
�

d

dz
cn,m

E = − cn,m
H −

km
2

k0
2�2

�bn,m
H − cn,m

H �

− �
m��m

��−1�m,m�
n,n

kmkm�

2k0
2 �bn,m�

H − cn,m�
H �, �11�

d

dz
bn,m

H =
km

2

2
�bn,m

E − cn,m
E � − k0

2�2bn,m
E − k0

2 �
m��m

���m,m�
n+1,n+1bn,m�

E ,

�12�

d

dz
cn,m

H =
km

2

2
�bn,m

E − cn,m
E � + k0

2�2cn,m
E + k0

2 �
m��m

���m,m�
n−1,n−1cn,m�

E ,

�13�

here the matrix elements of � responsible for the diffrac-
ion are given by the formulas

���m,m�
n,n = km�m��

0

�

��r�Jn�kmr�Jn�km�r�rdr. �14�

hey can be evaluated analytically by taking into account
he identity

�
0

�

Jn�km�r�Jn�kmr�rdr =
��km� − km�

km
, �15�

ith � representing the Dirac function, so that

���m,m�
n,n = �2�m,m� + ��d − �2�km�m��

0

R

Jn�kmr�Jn�km�r�rdr

= �2�m,m� + ��d − �2�km�m�

R

km
2 − km�

2 �Jn+1�kmR�

	Jn�km�R�km − Jn�kmR�Jn+1�km�R�km��. �16�

aking into account that for small arguments Jn�kmR�
�kmR��n�, it is obvious that the off-diagonal terms of

��n,n responsible for the scattering are then proportional
o

���m,m�
n,n � km�m�R

2��n�+1�, m� � m. �17�

hus, for small values of R, the most important terms
having the lowest power dependence on R) are the terms
ith n=0, for which the off-diagonal part of Eq. (16) takes

he form
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��d − �2�km�m�

R

km
2 − km�

2 �J1�kmR�J0�km�R�km

− J0�kmR�J1�km�R�km��. �18�

f the single scattering is predominant, then the larger ex-
ression (18) with m�= i (i being the index corresponding
o the incident wave), the stronger the scattering into the
th direction, characterized by its km radial component of

he wave vector. Let us consider at first the simplest, but
he most common case: of normal incidence with ki=0.

. NORMAL INCIDENCE
n normal incidence (m�	 i=0, so that km�=0), expression
18) is considerably simplified into the form

��d − �2��iRJ1�kmR�, �19�

ith �i	�0. This expression has already enabled us to
ptimize the geometrical parameters of a single aperture
r one surrounded by a circular rectangular-groove corru-
ation, an optimization that was confirmed by numerical
esults obtained using a rigorous electromagnetic
ethod.27 This approach can be developed further to

tudy the near-and far-field diffraction by a small-radius
perture, which is the aim of this paper.
The only nonzero Fourier components of the electric

eld vector of a linearly polarized (say, along the x axis)
ave incident normal to the surface are the components
ith n= ±1, a condition that imposes the same symmetry

n the diffracted field. Let us consider at first the set of
qs. (10)–(13) for n=1, preserving only the terms propor-

ional to R2. Taking into account Eq. (17), the only off-
iagonal term that remains is the one in the fourth equa-
ion [Eq. (23)]:

d

dz
b1,m

E = b1,m
H −

km
2

2k0
2�2

�b1,m
H − c1,m

H �, �20�

d

dz
c1,m

E = − c1,m
H −

km
2

2k0
2�2

�b1,m
H − c1,m

H �, �21�

d

dz
b1,m

H =
km

2

2
�b1,m

E − c1,m
E � − k0

2�2b1,m
E , �22�

d

dz
c1,m

H =
km

2

2
�b1,m

E − c1,m
E � + k0

2�2c1,m
E + k0

2 �
m��m

��d − �2�

	�m�RJ1�kmR�c1,m�
E . �23�

rom here, it is easy to obtain a second-order equation for
ne of the amplitudes c1,m

E :

d2

dz2c1,m
E = − kmz

2 c1,m
E + RJ1�kmR��

m�


mm�c1,m�
E ,

kmz

2 = k0
2�2 − km

2 �24�

ith

mm� = 
1 −
km

2

2k0
2�2

�k0
2��d − �2��m�. �25�

One of the possible ways to obtain the general solution
f Eq. (24) is traced in Appendix B. However, as will be-
ome evident later, it is more convenient to work with an-
ther set of unknowns, namely, the sum and the differ-
nce of the field components:

Mm
E = b1,m

E − c1,m
E , Pm

E = b1,m
E + c1,m

E ,

Mm
H = b1,m

H − c1,m
H , Pm

H = b1,m
H + c1,m

H . �26�

aking into account that the only unperturbed (for R=0)
ave is the one having amplitude ĉi

E, as follows from Eqs.
B10) and (B11), the set of differential equations for these
ew unknowns becomes, for m� i,

�Mm
E �� = Pm

H , �27�

�Pm
H�� = − kmz

2 Mm
E − RJ1�kmR���ĉi

E, �28�

�Mm
H�� = − k0

2�2Pm
E + RJ1�kmR���ĉi

E, �29�

�Pm
E �� =

kmz

2

k0
2�2

Mm
H , �30�

ith

�� = k0
2��d − �2�,

ĉi
E = �ic1,i

E . �31�

or the incident field components m= i, the equations are
urther simplified to take the form corresponding to the
nperturbed system:

�Mi
E�� = Pi

H, �Pi
H�� = − kiz

2 Mi
E,

�Mi
H�� = − k0

2�2Pi
E, �Pi

E�� =
kiz

2

k0
2�2

Mi
H. �32�

he solution of these equations is trivial; it represents the
ncident wave propagating inside the nonpierced layer:

Mi
E± = Mi

E± exp�±ikiz
z�,

Pi
E± = Pi

E± exp�±ikiz
z�, �33�

ith similar expressions for Mi
H and Pi

H. The amplitudes

i
E,H,± and Pi

E,H,± are determined using the boundary
onditions.

Combining Eqs. (27) and (28), one obtains a second-
rder inhomogeneous equation for Mm

E :

�Mm
E �� = − kmz

2 Mm
E − RJ1�kmR���ĉi

E �34�

hich has a solution in the form (see Appendix B)
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m
E = − Mm

E± exp�±ikmz
z� − RJ1�kmR�

��

kmz

2 − �i
2Ĉi

± exp�±i�iz�,

�35�

here Mm
E± are two unknown amplitudes subject to the

oundary conditions between the different domains
cladding/pierced layer/substrate), and the “sources” are
iven by

Ĉi
± = Ci

±�i = �i�Pi
E± − Mi

E±�/2. �36�

n a similar manner it is possible to obtain the solutions
or Mm

H,

Mm
H = Mm

H± exp�±ikmz
z� − iRJ1�kmR�

���i

kmz

2 − �i
2Ĉi

± exp�±i�iz�,

�37�

hile the form of Pm
H and Pm

E is obtained from the expres-
ions for Mm

E and Mm
H and Eqs. (27) and (29).

. Single Interface
et us consider first a structure consisting of two semi-

nfinite media, the upper one homogeneous and the lower
ne pierced with an infinitely long hole, the two separated
y a plane interface positioned at z=0. The first step is to
etermine the “source” terms as described in Eq. (36). To
his end it is necessary to use the boundary conditions at
=0 for m= i, which demonstrates the utility of the sub-
titution in Eq. (26). To the extent the r and � components
f the electric and magnetic field vectors are continuous
cross the interface z=0, so also are the amplitudes bE,H

nd cE,H, and thus the amplitudes Mi
E,H and Pi

E,H. As can
e observed from Eqs. (27) and (28), the couple �ME ,PH�
orms a couple corresponding to the TE case in Cartesian
oordinates, because when MH=0, the z component of the
lectric field vanishes [refer to Eq. (5)], i.e., the field is a
E wave in cylindrical coordinates. Conversely, the case
E=0 corresponds to a TM wave,because the z compo-

ent of the magnetic field is zero.
The field above z=0 consists, for m= i, of two waves, one

ncident (described in detail in Appendix C and denoted
y an upper case index I) and one reflected (upper case
ndex R),

Mi
E = Mi

E,I exp�− i�iz
z� + Mi

E,R exp�i�iz
z�, �38�

ith �iz
=�k0

2�1−ki
2, so that the continuity of Mi

E and Pm
H

�Mm
E �� at z=0 simply gives the Fresnel formulas in TE

olarization,

Mi
E,I + Mi

E,R = Mi
E−, �39�

− �iz
Mi

E,I + �iz
Mi

E,R = − kiz
Mi

E−; �40�

y taking a sum and a difference of Eq. (39) and Eq. (40),
he latter multiplied by � or k , we have
iz iz
Mi
E− = Ti

TE
Mi

E,I, Ti
TE =

2�iz

�iz
+ kiz

,

Mi
E,R = Ri

TE
Mi

E,I, Ri
TE =

�iz
− kiz

�iz
+ kiz

. �41�

n a similar manner the continuity of �MH ,PE=
MH� /k0

2�� gives the Fresnel coefficients in TM polariza-
ion:

Mi
H− = Ti

TM
Mi

H,I, Ti
TM =

2�iz
/�1

�iz
/�1 + kiz

/�2
,

Mi
H,R = Ri

TM
Mi

H,I, Ri
TM =

2�iz
/�1 − kiz

/�2

�iz
/�1 + kiz

/�2
. �42�

lthough trivial, it is necessary to write down these for-
ulas to compare them with the expressions of the scat-

ered field m� i. The “source” amplitude is obtained
hrough Eq. (36), Ĉi

−=�i�Pi
E−−Mi

E−� /2, where Pi
E−

ikiz
Mi

H−/k0
2�2, as obtained from Eqs. (30) and (33).

The continuity of Mm
E and Pm

H results in the following
et, taking into account that there is no incident wave
rom above when m� i,

Mm
E,R = Mm

E− − RJ1�kmR�
��

kmz

2 − �i
2Ĉi

−, �43�

�mz
Mm

E,R = − kmz
Mm

E− + RJ1�kmR�
���i

kmz

2 − �i
2Ĉi

−, �44�

hich gives for the amplitudes scattered in the upper me-
ium

Mm
E,R = −

RJ1�kmR���Ĉi
−

��mz
+ kmz

��kmz
+ �i�

, �45�

Pm
H,R = i�mz

Mm
E,R = −

i�mz
RJ1�kmR���Ĉi

−

��mz
+ kmz

��kmz
+ �i�

. �46�

he continuity of Mm
H and Pm

E gives the second set of
oundary conditions,

Mm
H,R = Mm

H− − iRJ1�kmR�
���i

kmz

2 − �i
2Ĉi

−, �47�

�mz

�1
Mm

H,R = −
kmz

�2
Mm

H− + i
kmz

2

�2
RJ1�kmR�

��

kmz

2 − �i
2Ĉi

−,

�48�

hence it is easy to determine the scattered amplitudes
n reflection:

Mm
H,R = i

kmz

�2

RJ1�kmR���Ĉi
−

��mz
/�1 + kmz

/�2��kmz
+ �i�

, �49�
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Pm
E,R = − i

�mz

k0
2�1

Mm
H,R =

�mz

k0
2�1

kmz

�2

RJ1�kmR���Ĉi
−

��mz
/�1 + kmz

/�2��kmz
+ �i�

.

�50�

hese expressions can be used to find the coefficients b1,m
E ,

1,m
E , b1,m

H , and c1,m
H of the scattered field, and to recon-

truct the field vectors by use of Eqs. (3)–(8).
The other part of the solution, corresponding to the

erm n=−1 in the Fourier series, Eq. (1), can be obtained
rom the term with n=1, using the symmetry of the opto-
eometrical parameters and of the incident field in nor-
al incidence (see Appendix C). In particular, when the

ncident field is polarized along the x axis, the following
elations exist:

b−n,m
E = − cn,m

E ,

b−n,m
H = cn,m

H . �51�

. Double Interface
single pierced layer contains two interfaces with the

urrounding semi-infinite layers and allows two sets of
aves to propagate downward and upward inside the

ayer. This will double the number of unknown ampli-
udes and equations, but as with the reflection and trans-
ission by a homogeneous layer, the use of matrix nota-

ions can significantly simplify the formulas.
Instead of Eqs. (39) and (40), one can write a single ma-

rix equation on the upper interface �z= t� as

1 1

�iz
− �iz

�
Mi
E,R

Mi
E,I�

=  1 1

kiz
− kiz

�exp�ikiz
t� 0

0 exp�− ikiz
t��
Mi

E+

Mi
E−� ,

�52�

nd on the lower �z=0� interface as


 1

− iz
�Mi

E,T =  1 1

kiz
− kiz

�
Mi
E+

Mi
E−� , �53�

here i=�k0
2�3−ki

2 and the superscript T indicates the
eld transmitted in the substrate.
As is well known, the last two equations can be used to

ntroduce the transmission matrix of the system:

Ti
TE = � cos�kiz

t�
i

kiz

sin�kiz
t�

ikiz
sin�kiz

t� cos�kiz
t� � , �54�

hich links the field below and the field above the plane
omogeneous layer:

 1 1

�iz
− �iz

�
Mi
E,R

Mi
E,I� = Ti

TE
 1

− iz
�Mi

E,T. �55�

his set of two equations gives the specular reflected and
ransmitted amplitudes as functions of the incident one,

Mi
E,R

Mi
E,T� = � − 1

− �iz
�Ti

TE
 1

− iz
��−1
 1

− �iz
�Mi

E,I, �56�

here the vertical bar separates the two columns of the
atrix. In a similar manner, the TM components can be

btained by using the TM transmission matrix

Ti
TM = � cos�kiz

t� i
�2

kiz

sin�kiz
t�

i
kiz

�2
sin�kiz

t� cos�kiz
t� � , �57�

o that


Mi
H,R

Mi
H,T� = ��

− 1

−
�iz

�1
�Ti

TM�
1

−
iz

�3
��

−1

�
1

−
�iz

�3
�Mi

H,I. �58�

Although trivial, we need these formulas in order to ob-
ain the field components diffracted by the aperture,
hen m� i, because the amplitudes Ĉi

± act as sources for
he scattered field, Eqs. (35) and (37). They can be ob-
ained using the following procedure. First, Eq. (53) is
sed to find Mi

E±. A similar equation can be written for

i
H±:

�
1

−
iz

�3
�Mi

H,T = �
1 1

kiz

�2
−

kiz

�2
�
Mi

H+

Mi
H−� . �59�

hen one of Eq. (32) enables us to obtain Pi
E±.

Once the values of Ĉi
± are known from Eq. (36), we can

roceed with the determination of the scattered field with
� i. The continuity of Mm

E and Pm
H at the upper and the

ower interface gives the following matrix relations, using
qs. (35) and (32):


 1

�mz
�Mm

E,R = 
 1 1

kmz
− kmz

�
exp�ikmz
t� 0

0 exp�− ikmz
t��

	
Mm
E+

Mm
E−�+

RJ1�kmR���

kmz

2 − �i
2 
 1 1

�iz
− �iz

�
	
exp�i�iz

t� 0

0 exp�− i�iz
t��
Ĉi

+

Ĉi
−� �60�


 1

− mz
�Mm

E,T = 
 1 1

kmz
− kmz

�
Mm
E+

Mm
E−�

+
RJ1�kmR���

kmz

2 − �i
2 
 1 1

�iz
− �iz

�
Ĉi
+

Ĉi
−� .

�61�

hese are similar to the set of Eqs. (52) and (53), the only
ifference being in the source terms. It is possible to
liminate the unknown field amplitudes inside the layer,
nd the result is a system of two algebraic equations for
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he reflected and transmitted scattered field amplitudes:


Mm
E,R

Mm
E,T� =

RJ1�kmR���

kmz

2 − �i
2 � 1

�mz
�Tm

TE
− 1

mz
��−1

	� 1 1

�iz
− �iz

�exp�i�iz
t� 0

0 exp�− i�iz
t��

− Tm
TE 1 1

�iz
− �iz

��
Ĉi
+

Ĉi
−� . �62�

The continuity of Mm
H and Pm

E , together with Eqs. (37)
nd (32), results in a second set of equations correspond-
ng to the TM polarization:

1

�mz

�1
�Mm

H,R = �
1 1

kmz

�2
−

kmz

�2
�

	exp�ikmz
t� 0

0 exp�− ikmz
t��
Mm

H+

Mm
H−�

+ i
RJ1�kmR���

kmz

2 − �i
2 �

�iz
− �iz

kmz

2

�2

kmz

2

�2

�
	exp�i�iz

t� 0

0 exp�− i�iz
t��
Ĉi

+

Ĉi
−� , �63�

�
1

−
mz

�3
�Mm

H,T = �
1 1

kmz

�2
−

kmz

�2
�
Mm

H+

Mm
H−�

+ i
RJ1�kmR���

kmz

2 − �i
2 �

�iz
− �iz

kmz

2

�2

kmz

2

�2

�
Ĉi
+

Ĉi
−� ,

�64�

hich can be solved in the same way as in TE polariza-
ion:


Mm
H,R

Mm
H,T� = i

RJ1�kmR���

kmz

2 − �i
2 ��

1

�mz

�1
�Tm

TM�
− 1

mz

�3
��

−1

	 ��
�iz

− �iz

kmz

2

�2

kmz

2

�2

�exp�i�iz
t� 0

0 exp�− i�iz
t��

− Tm
TM�

�iz
− �iz

kmz

2

�2

kmz

2

�2

��
Ĉi
+

Ĉi
−� . �65�

As can be expected, these equations contain Fabry–
erot resonances in the direction of propagation of the in-
ident wave ��i�, in the matrices Ti
TE,TM, and in the direc-

ion of the mth scattered field due to the exponential
erms in Tm

TE,TM. However, as discussed in detail in Sec-
ion 5, since the approximate method is based on the
ingle-scattering approximation, it does not include the
aveguide mode that can propagate inside the hole that
ehaves as a hollow cylindrical waveguide. Although for
mall-radius holes this mode is evanescent, its decay con-
tant is smaller than the decay of the wave tunneling
hrough the metallic layer without hole, and thus the
ode contributes to increasing the transmission signifi-

antly. Future work is required in order to force the ap-
roximate method to take into account this waveguide
ode. This argument demonstrates the limitations of the

pproximate methods, whereas the rigorous ones take
nto account a priori all the waves and modes (or at least
hey are assumed to do this).

. INCLINED INCIDENCE
he case when ki�0 can be treated in a similar manner.
he difference is that the reduced symmetry of the inci-
ent wave limits the restriction to have scattered field
ith −1st and +1st Fourier components only. However, a
etailed analysis of Eqs. (10)–(13) using Eq. (17) shows
hat the terms proportional to powers of R less than or
qual to 2 remain only in three cases:

(i) for n=−1 in Eq. (12),
(ii) for n=1 in Eq. (13),
(iii) for n=0 in Eqs. (10) and (11).

. n= ±1
he case with n=1 differs from the normal incidence only
y replacing the term

��d − �2��iRJ1�kmR� �66�

ith that presented in Eq. (18),

��d − �2�km�m�

R

km
2 − km�

2 �J1�kmR�J0�km�R�km

− J0�kmR�J1�km�R�km��, �67�

n all the formulas obtained in Section (3).

. n=0
he case with n=0 will preserve the off-diagonal matrix
lements responsible for the scattering in Eqs. (10) and
11):

���m,m�
0,0 = �2�mm� + ��d − �2�km�m�

R

km
2 − km�

2 �J1�kmR�

	 J0�km�R�km − J0�kmR�J1�km�R�km��, �68�

o that its inverse (within the terms proportional to R2)
as elements
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��−1�m,m�
0,0 =

1

�2
�mm� −

��d − �2�

�2
2 km�m�

R

km
2 − km�

2 �J1�kmR�

	 J0�km�R�km − J0�kmR�J1�km�R�km��, �69�

.e., the off-diagonal terms are almost (within the factor
1/�2

2) equal to the off-diagonal terms in Eq. (13) for n
1, and thus they can be treated in a similar manner. To

his end, let us redefine the unknowns introduced in Eq.
26)

Mm
E = b0,m

E − c0,m
E , Pm

E = b0,m
E + c0,m

E ,

Mm
H = b0,m

H − c0,m
H , Pm

H = b0,m
H + c0,m

H . �70�

quations (27)–(30) are changed into the following set:

�Mm
E �� = Pm

H , �71�

�Pm
H�� = − kmz

2 Mm
E , �72�

�Mm
H�� = − k0

2�2Pm
E , �73�

�Pm
E �� =

kmz

2

k0
2�2

Mm
H + RGm,i�R�Mi

H, �74�

ith

Gm,i�R� =
��d − �2�

�2
2

km�i

km
2 − ki

2 �J1�kmR�J0�kiR�km

− J0�kmR�J1�kiR�ki�. �75�

he second-order differential equation obtained for Mm
H,

�Mm
H�� = − kmz

2 Mm
H − k0

2�2RGm,i�R�Mi
H, �76�

as a form similar to Eq. (34) and its solution is similar in
orm to Eq. (35):

Mm
H = Mm

H±exp�±ikmz
z� −

k0
2�2RGm,i�R�

kmz

2 − �i
2 Mi

H±exp�±i�iz�.

�77�

As for normal incidence, at first the amplitudes for m
i are evaluated for the incident wave as if the aperture
id not exist. Then the boundary conditions, the same as
n Section 3, are applied, depending on whether a single
nterface or a layer is considered, in order to obtain the
ave components in reflection (and transmission). Fi-
ally, Eqs. (3)–(8) are used to reconstruct the vector-field
omponents.

. DISCUSSION AND DOMAIN OF
ALIDITY
ny theoretical method, numerical or analytical, has its
wn domain of validity, and in the case of modeling dif-
raction of light, approximate analytical solutions usually
ave stronger limitations. This is the case with the
ethod presented in the previous sections. Fortunately, it

s possible to compare its results with existing numerical
esults in order to get some idea of these limitations. Be-
ore starting the comparison, let us remember one of the
mplicit limitations of the method, already discussed in
ection 1. Both the rigorous and the analytical method
se the same basis (Fourier–Bessel) of functions inside
he pierced layer and in the hole, functions which are con-
inuous with respect to r and �. This fact makes it impos-
ible to extend their validity to an infinitely conducting
creen, because inside the screen the electric field is zero
nd no basis can be used simultaneously inside it and in-
ide the aperture. Thus no direct comparison is possible
ith the results of Bethe, only an asymptotic one.
Let us first consider a normally incident plane wave

inearly polarized along the x direction with unit ampli-
ude of its electric field vector and wavelength �
500 nm. Figure 2 represents the km dependence of the
ormalized field amplitudes Mm

E /km and Mm
H /km in the

ase of a single interface (infinitely profound hole with
=10 nm) between air and aluminum. The calculations
ere done by using the rigorous numerical method and

he analytical expressions presented in Subsection 3.A.
everal important features can be observed in the figure.
irst, inside the optical cone �km�k0�, the amplitudes are
lowly varying functions of km, which can be understood
y taking into account that, for small R ,J1�kmR� /km
const. as a function of km, as observed in Eqs. (45) and

49). The coefficients gradually decrease in amplitude in
he region of evanescent waves in the cladding. Second,
here is a sharp anomaly for the TM amplitudes, corre-
ponding to the excitation of a surface plasmon wave on
he metal–air interface. This anomaly can be expected
rom Eqs. (49) and (50) when their denominator is close to
ero, a condition equivalent to the condition of existence
f the plasmon surface wave on a plane metallic–
ielectric interface. Both the rigorous and the analytical
ethods predict the same position and type of anomaly.
hird, as can be observed, the spectral (in km) behavior of

he field amplitudes is the same, the only difference be-
ween the rigorous and the analytical method lying in the
actor of �2 between the two sets of results. In any case,
ithin this factor, the near- and the far-field pattern of

ig. 2. Spectral amplitudes Mm
E,R /km and Mm

H,R /km in reflection
s function of km for an aluminum infinitely thick screen, air as
ladding and inside the aperture, R=10 nm, wavelength �
500 nm. Open triangles, rigorous results; open circles, analyti-
al results; solid squares, renormalized analytical results.
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he field diffracted by the aperture has the same appear-
nce when calculated by either method.
The difference is systematic, as will appear in the next

gures, because the local electric field amplitude of the
ource field (namely, Ĉi

− in the case of a single interface) is
pproximately twice smaller than the local source field as
etermined in the Born approximation, presented in Ap-
endix D. This corresponds to the fact that the field inside
he aperture is not equal to the field inside the layer as if
he aperture were absent. This difference is well known in
he Green’s function approach and it increases consider-
bly with the optical contrast between the aperture and
he unperturbed layer. In the case of an infinitely thin
nd long cylinder acting as a perturbation, the multipli-
ative factor applied to the unperturbed field is simply
qual to (Ref. 26 and Appendix D)

Ĉi
− →

2�2

�2 + �d
Ĉi

−, �78�

hich gives the missing value of 2 when ��2 � � ��d�. As can
e observed in Fig. 2, the results of the analytical method
enormalized by using relation (78) become much closer to
he rigorous results, a tendency observed in the next fig-
res, too.
As an illustration, Fig. 3 presents the x dependence of

he amplitude of the electric field of the scattered field
without the field reflected by the plane interface in the
bsence of aperture). Here the optical index of the sub-
trate is different, but the radius of the aperture is the
ame as in the previous case. The field map is calculated
t a distance of 1 nm above the surface. One can observe a
harp peak at the hole edges, a behavior, well-known now,
ue to current discontinuities and charge accumulation
n the hole walls perpendicular to the incident field polar-
zation. The analytical results follow the behavior of the
igorous ones, the only difference lying in the same factor
2 when the correction due to relation (78) is not taken

nto account. The comparison for the far-field radiation
attern is made in the Section 6 and the same tendency is
bserved.

A natural question arises with respect to the assump-
ions on which the analytical method is based, namely,
he range of R in which the terms proportional to R2 are
redominant. There are two important results that give
ise to this question. First, Bethe’s theory for diffraction
y an aperture in a perfectly conducting screen leads to a
ependence on the field amplitude �R3 rather than R2.
econd, the results in Ref. 18 indicate that the transmis-
ion through subwavelength apertures in real metals has
ehavior different from R4 (faster) (in intensity). In order
o check the limits of validity of the R2 approximation,
ig. 4 presents the R dependence of the scattered electric
eld intensity in the cladding (without the fields incident
nd that specularly reflected by the plane layer) evalu-
ted on the axis of the aperture at 1 nm height. While for
alues of R�30 nm the rigorous results start to increase
ore rapidly than the analytical data, the R4 behavior in

ntensity (i.e., R2 in amplitude) for smaller radii is ob-
erved quite well in the two curves. The correction ob-
ained by using Eq. (78) brings the analytical results close
o the rigorous ones. On the other hand, if we try to take
nto account one of the higher-order terms, the curve of
olid circles in Fig. 4 shows that its role is negligible be-
ow R=20 nm, while for larger R its behavior differs sig-
ificantly from that of the rigorous and analytical curves.
his is an example—quite typical for approximate
ethods—where every attempt to introduce higher-order

erms in order to improve the validity of the method plays
he opposite role.

A further discrepancy between the rigorous and the
nalytical results limits significantly the validity of the
atter when used in transmission. As already mentioned,
he study presented in Ref. 18 indicates that when con-
idering the transmission through an aperture pierced in
real-metal film, its R dependence differs a lot from the

esults based on the Kirchhoff approximation, which pre-
icts that for a perfectly conducting layer, the transmitted
ntensity grows as R4, showing much more rapid varia-
ion for real-metal screens. Figure 5(a) represents the rig-
rous and the analytical results for a 200 nm thick silver
creen (electric field intensity is calculated on the axis of
he aperture at a distance of 1 nm below the screen). As
xpected, the field intensity given by the analytical
ethod is proportional to R4 both in reflection and trans-
ission, while the rigorous results present a steeper R de-

endence than in Fig. 4, which fact has found its

ig. 3. Amplitude of the diffracted electric field calculated along
he x axis at a height z=1 nm. Low-conductivity screen material.
he other parameters are as in Fig. 2.

ig. 4. Electric field intensity just over the center of the opening
f the aperture �z=1 nm� as a function of the aperture radius R.
nfinitely thick silver screen, air as cladding and inside the aper-
ure, �=500 nm. Open triangles, rigorous results; open circles,
nalytical results; solid squares, renormalized analytical results;
olid circles, analytical results by taking into account terms pro-
ortional to both R2 and R4.
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xplanation20 in the role played by the fundamental mode
upported inside the hollow metallic waveguide formed by
he aperture.24,28 Although this mode is evanescent below
ts cut-off radius, its decay constant decreases rapidly as

increases, and is smaller than the decay constant of the
ave tunneling directly through the layer.
Unfortunately, our analytical method cannot take this
ode into account because of the explicit limitations im-

ig. 5. (a) Electric field intensity after the screen in the center
f the aperture �z=−201 nm� for a silver screen with thickness t
200 nm. Open circles, analytical results; open triangles rigorous
esults; dotted line �R7. (b) Comparison between the rigorous
nd the analytical (in a.u.) results of the electric field amplitude
long the x axis 1 nm below the aperture for R=30 nm. (c) Com-
arison between the analytical results and the Hankel function

1
+�kpx�, representing the plasmon field traveling away from the

perture.
osed by the fact that only single scattering is taken into
ccount. This can be observed in Eqs. (27)–(30), further on
n Eqs. (46)–(50) for a single interface, and in Eqs. (62)
nd (65) for a layer. The only source of scattering is the
eld amplitudes that propagate inside the layer in the ab-
ence of an aperture. Once diffracted, the scattered field
ropagates without perturbation and it plays no role as a
econdary source. Thus the approximation to take into ac-
ount only the lowest-order in R terms is equivalent to ne-
lecting higher-order scattering, and within this model
dditional resonances inside the aperture, different from
he unperturbed modes, cannot exist. Since the correct
escription of the waveguide mode inside the cylindrical
perture requires multiple reflections on the walls of the
perture to be taken into account, it does not exist in this
pproximation. An alternative is to combine our approach
ith the modal approach proposed in Ref. 24, but this re-
uires additional work outside the scope of this paper.
On the other hand, the unperturbed [existing in the ab-

ence of the aperture] plasmon surface waves obtained
rom the denominator in Eqs. (49) and (50), the Fabry–
erot resonances, and the planar-layer waveguide modes
escribed by the transmission matrices Ti

TE,TM and Tm
TE,TM

re taken into account even in the single-scattering ap-
roach. This provides a necessary condition to correctly
epresent the field map in the near- and far-field regions
n transmission within a multiplicative factor that is due
o the different transmission intensity shown in Fig. 5(a).
n illustration is presented in Fig. 5(b) that gives the
ap (in the direction parallel to the incident polarization)

f the modulus of the diffracted electric field at a distance
f 1 nm below the aperture, which has a 30 nm radius and
s pierced in a silver screen 200 nm thick. As can be ob-
erved, the approximate method not only represents quite
ell the details of the diffracted field inside the aperture
ut also represents the sharp field increase close to the
orders of the aperture.
Moreover, when looking far from the aperture but still

lose to the metal surface, the field behavior is predomi-
antly determined by the plasmon surface wave going
way from the aperture, which can be observed in Fig.
(c), where a comparison is made between the results of
he approximate method (open circles) and the simple
ormula27

�E�x�� � H1
+�kpx�, �79�

here H1
+ stands for the first-order Hankel function and

p=k0�1.0667+ i0.002548� is the plasmon propagation
onstant on the silver–air interface at �=500 nm. Without
osses, kp is real and the asymptotic expansion of relation
79) is proportional to 1/�kpx; thus the total flux of energy
f the plasmon remains constant over the entire metal–
ielectric interface, whatever the distance from the aper-
ure. However, for real metals, due to the imaginary part

p� �0 of the plasmon propagation constant, the modulus
f the electric field behaves asymptotically for large val-
es of x as exp�−kp�x� /�kpx, i.e., it decreases very rapidly
ue to absorption.
The absence of higher-order scattering in the approxi-
ate method can provide explanation for the systematic

ifference between the rigorous and the analytical results
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without the correction in eq. (78)] observed in Figs. 2–4.
f the higher-order scattering plays a nonnegligible role
ven in the limit R→0, any single-scattering approach
ill give results different from the true ones. And really,
s already discussed, the cylindrical waveguide mode ex-
ited inside the aperture cannot be described through a
ingle-scattering approach. Another argument supporting
he importance of multiple scattering can be found in the
act that when the radius of the aperture is smaller, the
cattering points on its walls lie closer to each other,
hich increases the importance of the second- and higher-
rder scattering of the field.

To check this hypothesis, we have used the rigorous
ethod as a tool in a numerical experiment. It is possible

o modify the code so that only single scattering is taken
nto account. This is done by using only two different
pectral (in the k space) components of the field. The dif-
erence from the analytical approach is important, be-
ause the rigorous method truncated in this manner is
ot limited to the lowest terms in R. Thus a set of “single-
catter but all-power series in R” results can be obtained
o be compared with the analytical approach containing
he lowest power in R approximation. As observed in Fig.
, the analytical and the extremely truncated set of re-
ults coincide for small values of R, which confirms the
ypothesis that the single-scatter assumption is respon-
ible for the systematically lower analytical results.

All these studies indicate that the possibility of com-
ensating for the difference between the results of the
nalytical and the rigorous methods lies outside the lim-
ts of the assumptions constituting the base of the analyti-
al method. And indeed, the correction as proposed in re-
ation (78) comes from a completely different approach
hat takes into account the singularity of the Green’s ten-
or. As already mentioned, the correction factor �2 in a
ery large domain of materials, from dielectrics through
oorly to highly conducting metals. Figures. 6(a) and 6(b)
how the dependence of one of the spectral amplitudes on
he real part of �2 in a large interval of Re��2�, positive or
egative. The results are obtained using the analytical
nd the rigorous approach, the “extremely truncated” rig-
rous method, but the analytical results are also corrected
y the factor due to the renormalized Born approximation
ccording to relation (78). One can observe in Fig. 6(b) a
pectacular amelioration of the analytical results when
his correction is introduced. In the lossy metallic case
Fig. 6(a)], we have a residual difference, probably due to
he fact that in real metals the correction factor (78) is not
et sufficient.

Another remark that we should make is that the
symptotic behavior of the analytical expressions when
e��2�→ ±� is wrong, because the basis of functions

Fourier–Bessel) used to express the field inside the
ierced layer cannot be used when the layer becomes in-
nitely conducting and thus the electric field inside it
anishes. And indeed, as can be found from the equations
n Section 3, the spectral amplitudes decline as 1/��2 for
arge values of �2 so that the scattering vanishes within
his model. In order to study the perfectly conducting case
n our model, it is necessary to include higher-order terms
ith respect to R, which reminds us that the results of
ethe are correct to predict a behavior proportional to R3
n amplitude, as far as, according to our model, the terms
n R2 vanish when Re��2�→ ±�.

More generally, each perturbative method (including
hose based on the Born approximation) for which the
ource of the perturbation is the field inside the unper-
urbed medium cannot treat materials with infinite per-
ittivity because the latter implies vanishing fields in-

ide; thus any correction factor similar to relation (78)
annot give some nonvanishing contribution. However, as
hown in Section 6, the analytical approach permits us to
btain qualitatively (within this undetermined source fac-

ig. 6. Spectral amplitude Mm
E,R /km for km /k0=0.05 calculated

n reflection using the rigorous (open triangles), the analytical
open circles), the renormalized analytical (solid squares), and
he “extremely truncated” (solid circles) rigorous method, as a
unction of the real part of permittivity of the screen for R
20 nm and �=500 nm. (a) Metals; (b) dielectrics, with a zoom

bottom panel) close to the origin.
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or) the far-field pattern predicted by Bethe in the case of
perfectly conducting screen.
There are several conclusions to be drawn from the re-

ults of this section:

1. The analytical results describe well the scattering in
eflection by a single aperture, both in the direct and the
nverse space, for different dielectric and poorly and
ighly conducting metal screens.
2. There is a systematic error in the analytical results.

his error is due to the single-scattering approximation
n which the method is based, which cannot take into ac-
ount the change of the incident field amplitude induced
y the aperture. However, the renormalized Born approxi-
ation provides a correction which takes into account the

ifference between the incident field with and without the
perture, a correction that compensates almost totally the
ifference between the analytical and the rigorous results
n case of dielectrics, and reduces this difference for lossy

etals. Within this residual difference, the analytical
ethod correctly predicts the excitation of surface plas-
ons on the metallic–dielectric interface, or of waveguide
odes inside the plane layer if it is a dielectric.
3. Due to the single-scattering approximation, it is not

ossible to take into account the evanescent mode inside
he hollow metallic waveguide formed by the aperture in-
ide the metallic layer. This limitation introduces a sig-
ificant error in the determination of the field amplitudes

n transmission (as observed in Fig. 5), while the analyti-
al method is still able to correctly predict the form of the
ear- or far-field distributions.

. FAR-FIELD DIRECTIVITY
he limitations of the analytical method must not be un-
erstated, and it has to be used with caution, preferably
n parallel with some rigorous method to enable compari-
on. The development of the electromagnetic grating theo-
ies during the entire 20th century has proven this. How-
ver, by taking these precautions, it is possible to use the
nalytical method in order to better understand some nu-
erical and experimental properties of diffraction by ap-

rtures, because, although the rigorous numerical meth-
ds provide the necessary tools for modeling light
iffraction, quite often they serve as a black box that pro-
ides results but no physical reasoning and understand-
ng.

One of the interesting problems in light diffraction by
mall apertures is the angular distribution of the dif-
racted field, because its directivity is important in in-
reasing the efficiency of detection in biophysical and
hysicochemical experiments of laser-induced fluores-
ence and Raman scattering inside nanovolumes, aiming
o study single molecules. While the classical theory of
ethe is valid only for infinitely conducting screens, it is
ufficient to break down the intuitive expectations from
he scalar point sources that the radiation pattern of the
iffracted field will be uniformly distributed in the entire
alf space. Indeed, the prediction, for example, in normal

ncidence is that the field scattered by the aperture will
orrespond to the field of a magnetic dipole in the free
pace positioned at the aperture in the plane of the screen
nd having direction perpendicular to the incident field
olarization. In that simple case, the field (and the radia-
ion pattern) in the plane perpendicular to the dipole and
hus containing the incident electric field vector will be
niformly distributed, i.e., not depending on the angle of
iffraction, as would be expected from the scalar diffrac-
ion. However, in the other plane of diffraction perpen-
icular to the incident electric field vector, the diffraction
attern is strongly nonuniform and tends to zero at graz-
ng to the screen direction, as can be expected from the
eld of the magnetic dipole close to its axis. The same be-
avior can be expected from the theory presented by
ackson,2 although he insists that it is not valid for small
pertures.
Recent studies of the diffraction pattern generated by

n aperture in finitely conducting metallic screens indi-
ate that even for small apertures, the angular distribu-
ion of the radiation is not flat, either inside the plane of
ncident field polarization or perpendicular to it.18 Nu-

erical modeling links this deviation from the predictions
f Bethe with the excitation of a surface plasmon wave in
he direction lying in the plane of incident field polariza-
ion. However, it is not clear how this plasmon can be ra-
iated from the surface apart from the aperture borders
n order to increase the angular directivity of the radia-
ion pattern, if the surface is without defects.

To analyze the reasons for this deviation from Bethe’s
heory, we use both the numerical and the analytical
ethod, first, to study the properties of the radiation pat-

ern and to compare the results of the two methods and
econd, to try to find the physical reason by simplifying
nd analyzing the formulas obtained in the previous sec-
ions in the case of highly conducting screens. In order to
void the handicap of the analytical method in transmis-
ion, discussed in detail with respect to Fig. 5, the analy-
is is made in reflection. Then the results of the rigorous
ethod are shown in transmission to confirm the behav-

or common to the case in reflection.
The following figures represent the radial component of

he angular density of the Poynting vector, defined as

P� =
1

2�2 �E 	 H̄� · �̂, �80�

here �=�r2+z2 is the distance between the center of the
perture and the observation point and �̂ is the corre-
ponding unit vector. In the far-field region the values of
� have to be independent of �, but they will vary with the
zimuthal angle � and with the polar angle � between �̂
nd the z axis (Fig. 1). We consider two planes of diffrac-
ion, the first one parallel to the direction of incident wave
olarization, having �=0, and the second one perpendicu-
ar to the first and characterized by �=90°.

To obtain the far-field characteristics of the field it is
ufficient to go several tens of wavelength away from the
perture. However, in the case of finitely conducting met-
ls, the surface plasmon wave that can be excited on the
etal–dielectric interfaces is only slightly attenuated

long the surface and can be detected near the surface if
he distance from the origin is not sufficiently long. This
an be observed in Fig. 7, which shows the polar angle
istribution of P in the plane �=0 for three values of �. At
�
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horter distances from the aperture, a significant increase
f P� is observed in directions of propagation grazing the
urface, with values that gradually decrease with the dis-
ance, as follows from the discussion following relation
79). This is why, in what follows, we work at �=50 �m.
n the other hand, Fig. 7 shows that, except for the influ-
nce of the plasmon wave, the values of P� as normalized
n Eq. (80) do not depend on �.

Let us first consider larger apertures, where the theory
f Bethe predicts variations of P� in both planes �=0 and
0°. Figure 8 represents several results for R=100 nm.
wo different metals are considered, real A1 and an arti-
cial one having permittivity multiplied by 100. In the
lane �=0, the screen of higher conductivity shows an an-
ular dependence that is weaker than for A1 screen (open
quares). Both curves are much wider than the angular
ependence in the perpendicular plane, �=90°, which has
alues varying insignificantly with the conductivity, as
bserved further on. The theory of Bethe predicts this be-
avior, but more correct formulas are available for
reater radii by Jackson (Ref. 2, p. 492) as

Pp � �J1
sin
2�

�
R sin ��

sin
2�

�
R sin � �

2

�cos2 � + sin2 � cos2 ��,

�81�

here the terms in the second set of parentheses deter-
ine the polar angle factor, different in the two planes of

bservation:

�cos2 � + sin2 � cos2 �� = � 1, � = 0

cos2 �, � = 90°
. �82�

hile for highly conducting material the three methods
Jackson’s Eq. (81), the analytical, and the rigorous
ethod] predict variation of the radiation pattern in the

wo planes �=0, 90°, one can observe that the directivity
f P���� increases when ��2� decreases, a result that can-
ot be obtained from Eq. (81).
Figure 9 shows the variation of the behavior of P���� for

ig. 7. Polar angle distribution of the power radiated in reflec-
ion in a radial direction � (see Fig. 1) for three different values of
lying in the plane of incident polarization �=0. Infinitely thick

ilver screen, R=10 nm, and �=500 nm.
ifferent values of the screen permittivity when the ra-
ius of the aperture is reduced to 10 nm. Relation (81)
redicts that for these dimensions of the aperture and the
avelength, the curve P���� will be practically flat when
=0, while it is evident that even for these small radii,
he real metals present a variation that is flattened when
�2 � →�. In the other plane of observation, P���� is practi-
ally independent of ��2� and its dependence is repre-
ented by the cos2 � factor in relation (81).

As already discussed, the stronger directivity in the
lane containing the incident electric field vector that ex-
sts for finitely conducting metals has been already in-
oked and explained by the propagation of the existing
urface plasmon. However, whereas this is true in the
ear-field region, where the plasmon “extends” the elec-
romagnetic field along the metallic surface in the direc-
ion parallel to the incident electric field vector (Fig. 7),
he experimentally observed stronger directivity in the
ar-field region cannot be due to the surface plasmon,
hose field decreases away from the aperture, even in the
icinity of the metallic interface.

In order to confirm or reject the plasmon role in the en-
ancement of the far-field directivity, we present in Fig.
0 results similar to those given in Fig. 9, but for a dielec-
ric instead of metallic material surrounding the aper-

ig. 8. Variation of the power radiated in reflection with the po-
ar angle � in the two planes �=0, 90° for two different metals
nd relatively wide aperture, R=100 nm, and �=500 nm. For �
0 and very highly conducting material ��2=100�A1�: open
ircles, analytical results; half-filled circles, Jackson’s formula;
pen triangles, rigorous results. Open squares, real metal (alu-
inum) and �=0. Solid triangles, in the plane �=90° for both

luminum and very high conductivity.

ig. 9. Similar to Fig. 8 but for much smaller aperture, R
10 nm, and screen materials (metals) with values of permittiv-

ty increasing in modulus as indicated at bottom of graph. Sym-
ols, �=0; solid curve �=90°.



t
d
f
f
s
t
t
r

r
w
a
s
d
a
T
a
�
s
s

w

a
s

w
n

I
t

E

w
o
d
d
m

r
o
f
(

p
t
h
t
g
i
=
i
(
l
i
fi
l
F
d
t
c

F

F
d
i

F
t

352 J. Opt. Soc. Am. A/Vol. 24, No. 2 /February 2007 Popov et al.
ure. Similar behavior in the plane �=0 is obtained, the
ependence becomes flatter with the increase of ��2�, i.e.,
or materials with smaller ��2� the directivity is higher, a
act that cannot be explained by a surface wave that is not
upported by a single dielectric–dielectric interface, if all
he materials are lossless. Contrary to the metallic case,
he directivity in the other plane �=90° depends on the
efractive index and increases with ��2�; see Fig. 11.

All this points up that the increased directivity of the
adiation pattern in the plane of incident polarization,
hen finite-conductivity materials (metal or dielectric)
re used, needs an explanation different from plasmon
urface waves, which play a clear role in the near-field
istribution but cannot be invoked in the far-field pattern,
ll the more in the case when no surface wave can exist.
o this end, let us return to the basic equations of the
nalytical method and try to observe what happens when

�2� becomes much larger than �d. In that case, the expres-
ions of Mm

E and Mm
H in Eqs. (45) and (49) can be easily

implified to

Mm
E,R = Tm

TE,inv
Mm

E,DM, �83�

Mm
H,R = Tm

TM,inv
Mm

H,DM, �84�

here

Tm
TE,inv =

2kmz

�mz
+ kmz

,

Tm
TM,inv =

2kmz
/�2

�mz
/�1 + kmz

/�2
, �85�

re the Fresnel coefficients for transmission from the sub-
trate into the cladding, and

Mm
E,DM = −

RJ1�kmR���Ĉi
−

2kmz
�kmz

+ �i�
, �86�

Mm
H,DM = i

RJ1�kmR���Ĉi
−

2�kmz
+ �i�

, �87�

ill be shown to be equal to the km components of a mag-
etic dipole lying just below the interface when ��2 � ��d.

ig. 10. Variation of P� with polar angle � in the plane �=0 for
ifferent dielectric screens with gradually increasing permittiv-
ty as given in the inset. R=10 nm, �=500 nm.
n the far-field zone km�ko, so that kmz
+�i�2��2, and

aking into account that

J1�kmR� � kmR/2, �88�

q. (86) takes the form

Mm
E,DM � km

�2

8��2�
R2Ĉ1

− = kmk2

Z2DM

8�
, �89�

hich represents (see Appendix E) the Mm
E,DM component

f the field radiated by a magnetic dipole oriented in the y
irection (i.e., lying in the plane of the screen and perpen-
icular to the incident field polarization) with a dipole
oment equal to

DM = �R2
�2

��2�

Ĉi
−

k2Z2
. �90�

It can be demonstrated in a similar manner that

Mm
H,DM � − ikm

k0
2��2�

kmz

k2

Z2DM

8�
�91�

epresents the Mm
H,DM component of the same dipole. The

ther two field components Pm
E and Pm

H can be derived
rom the expressions of Mm

E and Mm
H using Eqs. (27) and

29).
As already mentioned, these results have the following

hysical interpretation: the incident field induces a scat-
ered field inside the layer pierced by the aperture. For
igh values of ��2�, the scattered field can be considered as
he field of a magnetic dipole having a dipole moment
iven by Eq. (90) that is proportional to the incident field
nside the layer. This incident field is equal to Ĉi

−

�i�Pi
E−−Mi

E−� /2, following Eq. (36) and corrected by us-
ng the Born approximation by the factor given in relation
78). The emission of the dipole in the plane perpendicu-
ar to the dipole direction (i.e., the plane containing the
ncident electric field vector) is uniform angularly. The
eld emitted by this dipole is transmitted through the

ayer surface following Eqs. (83)–(85). However, the
resnel transmission coefficients are angularly depen-
ent, so that the emission in the cladding will depend on
he angle of transmission, i.e., even in the plane �=0 one
an expect an angular variation of the emission.

On the other hand, the angular dependence of the
resnel coefficient decreases with increasing contrast be-

ig. 11. Same as Fig. 10 but in the �=90° plane, perpendicular
o the incident wave polarization.
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ween the cladding and the layer with the aperture, so
hat one can expect that with ��2� increasing, the radiation
attern in the plane �=0 will become less dependent on
he polar angle �. Indeed, as demonstrated in Fig. 12(a)
or metals and in Fig. 12(b) for dielectrics, larger values of
�2� lead to a weaker angular dependence of Pm

E,R /km, for
xample, conversely, when ��2� decreases, the coefficient

m
E,R /km decreases when km /k0→��1, i.e., when �→90°,

nd this decrease is faster (and thus the directivity stron-
er) for smaller values of ��2�.

By taking the asymptotic expressions of the transmis-
ion coefficients in Eqs. (85),

Tm
TE,inv → 2,

Tm
TM,inv → 2

�1

�mz

kmz

�2
, �92�

nd multiplying them by the dipole field components as
iven in relations (89) and (91), it is easily found that the
omponents of the field radiated in the cladding are given
y

Mm
E,R �

km

4
R2

�2Ĉi
−

��2�
, Pm

H,R � i�mz

km

4
R2

�2Ĉi
−

��2�
,

�93�

ig. 12. Variation of the spectral amplitude Pm
E,R /km as a func-

ion of km for (a) metals, (b) dielectrics for different permittivity
f the screen as shown in the insets. R=10 nm, �=500 nm.
Mm
H,R � − i

k0
2�1

�mz

km

4
R2

�2Ĉi
−

��2�
, Pm

E,R � −
km

4
R2

�2Ĉi
−

��2�
.

�94�

hese are nothing but the field components of a magnetic
ipole emitting in the cladding as if the substrate were
bsent, having a direction perpendicular to the incident
eld polarization, and lying in the plane of the layer sur-
ace. That is, these expressions represent the equivalence
etween the scattering by an aperture in an infinitely
onducting screen in normal incidence and the radiation
attern of a magnetic dipole. It has to be pointed out that
hen ��2 � →�, the source (unperturbed) field has an am-
litude Ĉi

−�1/��2→0 with or without the Born correction
f relation (78), so that another expression is necessary to
btain a nonvanishing scattering. One possibility is the
pproximation used by Jackson: Assume that the source
eld is equal to the incident field inside the aperture.
An approximation better than relations (93) and (94)

an be obtained by going back to relation (88). Taking it
nto account, relations (93) and (94) have to be replaced
y the following expressions:

Mm
E,R � RJ1�kmR�

�2Ĉi
−

2��2�
,

Pm
H,R � i�mz

RJ1�kmR�
�2Ĉi

−

2��2�
, �95�

Mm
H,R � − i

k0
2�1

�mz

RJ1�kmR�
�2Ĉi

−

2��2�
,

Pm
E,R � − RJ1�kmR�

�2Ĉi
−

2��2�
, �96�

hich are close to the expressions presented by Jackson
nd valid in a much larger interval of radius values.
Let us briefly summarize the conclusions that can be

rawn for the diffraction by small apertures:
1. While a scalar wave is diffracted by a small aperture

n a manner to produce a uniform angularly scattered
eld, a linearly polarized vector field is diffracted by an
perture in a finitely conducting metal or nonconducting
ielectric screen in a pattern that is nonuniform angu-
arly. This nonuniformity is more pronounced in the plane
f diffraction perpendicular to the incident vector polar-
zation.

2. When the permittivity �2 of the screen increases in
odulus, the scattered field becomes more and more uni-

orm in the plane of the incident electric field vector, and
n the limits of ��2 � →� the radiation in this plane pattern
s completely uniform (a conclusion already drawn from
ethe’s theory).
3. With increase of the aperture dimensions, the direc-

ivity of the scattered field increases [this conclusion can
lready be found for perfectly conducting screens; for ex-
mple, it is contained in Eq. (81), taken from Jackson’s
ook2].
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PPENDIX A
he Helmholtz equations in cylindrical coordinates for
r,n and E�,n are written

�E�,n −
E�,n

r2 +
2in

r
Er,n + k2E�,n = 0,

�Er,n −
Er,n

r2 −
2in

r
E�,n + k2Er,n = 0, �A1�

here k=���0�0� is the wavenumber and the Laplacian
as the form

� =
�2

�r2 +
1

r

�

�r
+

1

r2

�2

��2 +
�2

�z2 . �A2�

y making two linear combinations of Er,n and E�,n, it is
ossible to decouple Eqs. (A1). Defining

E�,n = E�,n ± iEr,n, �A3�

qs. (A1) take the form

 �2

�r2 +
1

r

�

�r
−

�n ± 1�2

r2 + k2 +
�2

�z2�E±,n�r,z� = 0. �A4�

ere it is easy to identify the generating equation for
essel functions of first kind and integer number equal to
±1; this enables the writing of the general form for E±,n

n a Bessel-function basis:

E−,n =�
0

�

ĉn
E�kr,z�Jn−1�krr�krdkr = �

m=0

�

cn,m
E �z�Jn−1�kmr��m,

E+,n =�
0

�

b̂n
E�kr,z�Jn+1�krr�krdkr = �

m=0

�

bn,m
E �z�Jn+1�kmr��m,

�A5�

here �km� is the set of discretized values of kr ,�m
km+1−km, and the right-hand side of Eq. (A5) represents

he discretized integrals, which is necessary in the nu-
erical treatment.
Equations (3) and (4) appear immediately when taking

nto account Eqs. (A3) and (A5).
The third line of Eqs. (2) permits obtaining the form of

components of electric and magnetic field vectors in the
orm given in Eqs. (5) and (8) by using the Bessel-function
dentities. Let us consider Hz,n= 1 � i��0 ��E�,n /�r+E�,n /r
�in /r�Er,n�. Substituting E�,n and Er,n from Eqs. (3) and

4) and taking into account the identities


 d

dr
+

n + 1

r �Jn+1�kmr� = kmJn�kmr�,


 d

dr
−

n − 1

r �Jn−1�kmr� = − kmJn�kmr�, �A6�

ne obtains Eq. (8).
A similar treatment can be done for Hr,n ,H�,n, and �Ez,n

n order to obtain the other three equations in the set
3)–(8). However, in the inhomogeneous region containing
he aperture we have �=��r�, which fact requires special
reatment. Using Eq. (5), it is possible to express Ez in a
orm similar to that of Eqs. (A5):

k0
2��r�Ez,n = k0

2��r��
m

en,m�z�Jn�kmr��m

=
Eq. �5�

i�
m

�bn,m
H �z� − cn,m

H �z��Jn�kmr�km�m.

�A7�

ultiplying the second equivalence by km�rJn�km�r�, inte-
rating over r, and using the orthogonality relations [Eq.
15)], one obtains that

k0
2�

m
���m�,m

n,n en,m�z� =
i

�
km��bn,m�

H �z� − cn,m�
H �z��, �A8�

here the matrix element of � is given in Eq. (16). Invert-
ng the matrix, the Fourier–Bessel coefficients of Ez are

en,m�z� =
i

k0
2�

m�

��−1�m,m�
nn km��bn,m�

H �z� − cn,m�
H �z��. �A9�

A similar expression is obtained for Hz,n
�m=0

� hn,m�z�Jn�kmr��m with

hn,m�z� =
1

i��0
�bn,m

H �z� − cn,m
H �z��. �A10�

ombining the first two lines of Eq. (2), replacing En,z
rom Eqs. (A7) and (A9), and taking into account the iden-
ity

d

dr
Jn�kmr� =

km

2
�Jn−1�kmr� − Jn+1�kmr��, �A11�

ne obtains the following set:

�

�z�m cn,m
E �z�Jn−1�kmr��m = − �

m
cn,m

H �z�Jn−1�kmr��m

−
km

2k0
2 �

m,m�

��n,n�m,m�
−1 km��bn,m�

H �z�

− cn,m�
H �z��Jn−1�kmr�, �A12�

�

�z�m bn,m
E �z�Jn+1�kmr��m = �

m
bn,m

H �z�Jn+1�kmr��m

−
km

2k0
2 �

m,m�

��n,n�m,m�
−1 km��bn,m�

H �z�

− cn,m�
H �z��Jn+1�kmr�. �A13�

ultiplying Eq. (A12) by kmrJn−1�kmr� and Eq. (A13) by
mrJn+1�kmr�, integrating them over r, and using the or-
hogonality relation Eq. (15), one obtains, respectively,
q. (11) and Eq. (10).
When the first two equations for the z derivatives of H

n Eq. (2) are combined, the following equations are writ-
en for bH and cH by using Eqs. (A10) and (A11):
n,m n,m
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�

�z�m cn,m
H �z�Jn−1�kmr��m = �

m

km
2

2
�bn,m

E �z�

− cn,m
E �z��Jn−1�kmr��m

+ k0
2��r��

m
cn,m

E �z�Jn−1�kmr��m,

�A14�

�

�z�m bn,m
H �z�Jn+1�kmr��m = �

m

km
2

2
�bn,m

E �z�

− cn,m
E �z��Jn+1�kmr��m

− k0
2��r��

m
bn,m

E �z�Jn+1�kmr��m.

�A15�

hen multiplying Eq. (A14) by kmrJn−1�kmr� and Eq.
A15) by kmrJn+1�kmr� and integrating over r, one finds
q. (13) and Eq. (12), respectively.

PPENDIX B
et us consider a set of second-order linear differential
quations of the form

cm� �z� = − kmz

2 cm�z� + RJ1�kmR��
n


mncn�z�. �B1�

ts general solution can be searched in the form of waves
ropagating along ±z:

cm�z� = �
n

Cmn
± exp�±i�nz�, �B2�

hich leads to the following equation

�
n

Cmn
± �n

2exp�±i�nz� = �
p,q

�kmz

2 �mp − RJ1�kmR�
mp�

	Cpq
± exp�±i�qz�. �B3�

n so far as this equation has to be valid for each z, one
btains a typical eigenvalue/eigenvector problem for �n

2

nd Cmn
± :

Cmn
± �n

2 = �
p

�kmz

2 �mp − RJ1�kmR�
mp�Cpn
± . �B4�

he eigenvalues �n
2 of the matrix �kmz

2 �mp−RJ1�kmR�
mp�
an easily be obtained within the order of R2; they are
imply equal to the diagonal elements of this matrix:

�m
2 � kmz

2 − RJ1�kmR�
mm. �B5�

hen Eq. (B4) results in

Cmn
± �

RJ1�kmR�

kmz

2 − �n
2 �

p

mpCpn

± . �B6�

On the other hand, the diagonal elements Cmm
± repre-

ent the waves that can propagate without aperture [see
q. (B1) with R=0], while the off-diagonal elements cor-
espond to the scattering by the aperture; thus
Cmn
± � Cmm

± �mn + O�R2�. �B7�

n that case, all the terms RJ1�kmR�
mpCpn
± in Eq. (B6)

ill be of the order of R4, except for the terms with p=n.
hus Eq. (B6) leads to the following expression:

Cmn
± =

RJ1�kmR�
mn

kmz

2 − �n
2 Cnn

± . �B8�

y taking into account Eqs. (B2), (B7), and (B8), the final
orm of the general solution becomes

cm�z� = Cmm
± exp�±i�mz�

+ RJ1�kmR� �
n�m


mn

kmz

2 − �n
2 Cnn

± exp�±i�nz�. �B9�

Let us now consider the case when a single wave (with
= i) is incident on the structure. This means that it
ould be the only propagating wave if the aperture were
ot existing and thus all the other waves will have ampli-
udes of the order of O�R2�, i.e., Eq. (B9) can be rewritten
eparately for the incident wave component �m= i� and for
he scattered waves �m� i�:

ci�z� = Ci
±exp�±i�iz�, �B10�

cm�i�z� =
RJ1�kmR�
mi

kmz

2 − �i
2 Ci

±exp�±i�iz�, �B11�

ith Ci
±	Cii

± being the unperturbed incident field ampli-
ude in the corresponding medium.

PPENDIX C
et us consider an arbitrary wave vector k with compo-
ents kr and kz in the xOy plane and on the z axis, re-
pectively. If �0 is the polar angle of kr in the xOy plane,
hen an incident plane wave is represented in a cylindri-
al basis in the form

Ei = E0 �
n=−�

�

inJn�krr�exp�in�� − �0��exp�− ikzz�. �C1�

The form of the amplitude vector E0 in the cylindrical
patial basis depends on the incident field polarization.
or a linearly polarized incident wave, the Cartesian com-
onents of E0 are constant:

E0 = E0xx̂ + E0yŷ + E0zẑ. �C2�

sing the expression of the Cartesian unit vectors in cy-
indrical coordinates, we obtain

E0 = E0x�r̂ cos � − �̂ sin �� + E0y�r̂ sin � + �̂ cos �� + E0zẑ,

�C3�
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E0 = r̂
E0x

2
+

E0y

2i �exp�i�� + 
E0x

2
−

E0y

2i �exp�− i���
�̂
−

E0x

2i
+

E0y

2 �exp�i�� + 
E0x

2i
+

E0y

2 �exp�− i��� + ẑE0z.

�C4�

From these expressions, one can deduce the expression
f the electromagnetic components Er

i =Ei · r̂ and E�
i

Ei · �̂ of the incident plane wave. For the first

Er
i = �

n=−N

N 
E0x

2
+

E0y

2i �inexp�− in�0�Jn�krr�exp�i�n + 1���

	exp�− ikzz� + �
n=−N

N 
E0x

2
−

E0y

2i �inexp�− in�0�Jn�krr�

	exp�i�n − 1���exp�− ikzz�. �C5�

simple translation of the subscript n by ±1 then leads to

Er
i = �

n=−N+1

N+1

i
E0x

2i
−

E0y

2 �in−1exp�− i�n − 1��0�Jn−1�krr�

	exp�in��exp�− ikzz� + �
n=−N−1

N−1

i
E0x

2i
+

E0y

2 �in+1

	exp�− i�n + 1��0�Jn+1�krr�exp�in��exp�− ikzz�

�C6�

nd, in a similar way,

E�
i = �

n�=−N+1

N+1 
−
E0x

2i
+

E0y

2 �in�−1 exp�− i�n� − 1��0�Jn�−1�krr�

	exp�in���exp�− ikzz� + �
n�=−N−1

N−1 
E0x

2i
+

E0y

2
�in�+1

	exp�− i�n� + 1��0�Jn�+1�krr�exp�in���exp�− ikzz�.

�C7�

By comparing these equations with Eqs. (3) and (4), we
btain the expression of the components of the incident
lectromagnetic field in a Fourier–Bessel basis in terms of
heir Cartesian components:

bn,m
E,I �z = 0� = 
E0x

2i
+

E0y

2
� in+1

�m
exp�− i�n + 1��0�, �C8�

cn,m
E,I �z = 0� = 
−

E0x

2i
+

E0y

2
� in−1

�m
exp�− i�n − 1��0�.

�C9�

PPENDIX D
sing notations common to electromagnetism, the electric
eld E��� scattered by a given optogeometrical system can
e described by a vectorial integral equation using the
ensorial Green’s function of this system G��−� �:
�
E��� = Ei��� +� G�� − ���
�d

�2
− 1�E����d3��, �D1�

here �2 is the relative permittivity of the unperturbed
edium, �d of the scatterer, and Ei��� is the incident un-

erturbed field. As is well known, a three-dimensional
reen’s function presents a singularity when �=�� and it

an be decomposed into a singular part and a principal
alue �Pv�:

G�� − ��� = L��� − ��� + PvG�� − ���, �D2�

here � is the Dirac delta function and the tensor L de-
ends on the shape of the exclusion domain chosen to de-
ne the principal value.25,26 In the case, for example, of a
pherical inclusion, it is simply equal to −I�3� /3, where I�3�
s the three-dimensional unit tensor. For a cylindrical cav-
ty much longer than its radius, the singular part is the
ame as for a small disk and is equal to

L = − I�2�/2, �D3�

here

I�2� = �
1 0 0

0 1 0

0 0 0
� , �D4�

f the cylinder axis lies along the z axis.
This singular part has the physical meaning that it is

mpossible to neglect the scattered field in the point of
cattering. Moreover, this self-scattering is singular and
uch stronger than the scattering by the other part of the

olume, as can be expected due to the Dirac delta function
n Eq. (D2), so that the self-scattering part in Eq. (D1) can
e expressed in the form

E��� � Ei��� + L��d/�2 − 1�E���, �D5�

hence it follows that the “local” field E��� differs from
he unperturbed field Ei���,

E��� � I�3� − L
�d

�2
− 1��−1

Ei���, �D6�

y a factor

I�3� − L
�d − �2

�2
�−1

= �
2�2

�d + �2

0 0

0
2�2

�d + �2

0

0 0 1
� , �D7�

here Eqs. (D3) and (D4) are used. This means that for
he x and y components of the electric field, it is necessary
o introduce a correction factor equal to the term given in
elation (78).

PPENDIX E
rom the covariant expression of the electric and mag-
etic fields of a magnetic dipole,
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E = −
Zk2

4�
�̂ 	 DM
1 −

1

ik�
�exp�− ik��

�
,

H = −
1

4�
�k2��̂ 	 DM� 	 �̂ − �3�̂��̂ · DM� − DM�

	
 1

�2 −
ik

�
�� exp�− ik��

�
, �E1�

ne can obtain their components in a coordinate system in
hich the dipole moment is equal to

DM = DMŷ, �E2�

o that, when looking in the xOy plane, the electric field
as only one vector component:

Ez = −
ZDMk2

8�

1 −

1

ikr�exp�− ikr�

r
�exp�i�� + exp�− i���.

�E3�

n the other hand, Eq. (5) gives Ez in the Fourier–Bessel
asis and, comparing the two expressions, it is easy to
dentify that

ZDMk4

8�

1 −

1

ikr�exp�− ikr�

r

= i�
m

�bn,m
H �0� − cn,m

H �0��Jn�kmr�km�m �E4�

y taking into account that in nonmagnetic media k2

k0
2�. Multiplying the two sides by rJn�km�r�, integrating

ver r, and using the orthogonality in Eq. (15), one ob-
ains that

Mm
H 	 b1,m

H − c1,m
H = i

ZDMk4

8�
�

0

� 
1 −
1

ikr�
	

exp�− ikr�

r
J1�kmr�rdr = − i

ZDMk4

8�

km

kkmz

,

�E5�

here the integral is evaluated using Eqs. (11.4.35–
1.4.38) of Ref. 29. After simplification, this expression is
quivalent to Eq. (91) when applied to medium 2.

It is impossible in such a simple way to obtain the ex-
ression for Mm

E , because Hz vanishes in the xOy plane.
nstead, Appendix A gives another possibility to obtain di-
ectly the spectral amplitude b1,m

H . To this end, we shall
se an equation similar to the second of Eqs. (A5), but
ritten for the magnetic field:

H�,1 − iHr,1 =�
0

�

b̂1
H�kr,z�jn+1�krr�krdkr

= �
m=0

�

b1,m
H �z�J2�kmr��m. �E6�

he components of the magnetic field in cylindrical coor-
inates can be obtained from Eq. (E1) by taking into ac-
ount that in the xOy plane
�̂ 	 DM = DM cos �ẑ, ��̂ 	 DM� 	 �̂ = DM cos ��̂,

�̂ · DM = DM sin �, �E7�

o that

Hr =
2DMk2

4�

 1

k2r2 +
1

ikr�exp�ikr�

r

1

2i
�exp�i�� − exp�− i���,

�E8�

H� =
DMk2

4�

1 −

1

k2r2 −
1

ikr�exp�ikr�

r

1

2
�exp�i�� + exp�− i���.

�E9�

fter applying the orthogonality from Eq. (15) to Eq. (E6),
e obtain that

b1,m
H =

��0

2
km�

0

�

�H�,1 − iHr,1�J2�kmr�rdr

=
��0

2
km

DMk2

8�
�

0

� 
1 −
3

k2r2 −
3

ikr�
	

exp�ikr�

r
J2�kmr�rdr

=
��0

2
km

DMk2

8� 
− i
km

2

k2kmz

� , �E10�

here the integration is made again by using Eqs.
11.4.35–11.4.38) of Ref. 29. Equations (E5) and (E10) give
irectly

Pm
H = 2b1,m

H − Mm
H = i

ZDM

8�
kkmkmz

. �E11�

he other two spectral amplitudes are obtained by using
elations (27) and (30), so that

Mm
E =

1

ikmz

Pm
H = kmk

ZDM

8�
,

Pm
E =

ikmz

k2 Mm
H = − kmk

ZDM

8�
. �E12�
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