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We illustrate some numerical applications of a recently derived semianalytic method for calculating the T ma-
trix of a sphere composed of an arbitrary anisotropic medium with or without losses. This theory is essentially
an extension of Mie theory of the diffraction by an isotropic sphere. We use this theory to verify a long-standing
conjecture by Bohren and Huffman that the extinction cross section of an orientation-averaged anisotropic
sphere is not simply the average of the extinction cross sections of three isotropic spheres, each having a re-
fractive index equal to that of one of the principal axes. © 2007 Optical Society of America
OCIS codes: 290.5850, 050.1940, 000.3860, 000.4430.
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. INTRODUCTION
e recently formulated a semianalytic solution to the

roblem of diffraction (scattering) by a sphere composed
f a material with a uniform anisotropic dielectric tensor
immersed in a homogeneous isotropic medium.1 Due to

he length of the detailed derivation, no numerical appli-
ations were presented at that time. One of the goals of
his paper is to present some previously absent details
ecessary to the construction of numerical algorithms for
enerating the T matrix of an anisotropic sphere using
his method and to provide some modified derivations of
ome of the formulas in the interest of improved clarity in
umerical applications. Since our method can generate
he T matrix for arbitrary anisotropic scatterers, we also
egin to explore possible applications to multiple scatter-
ng, notably by calculating orientation averaged cross sec-
ions for use in independent scattering approximations.

Due to the previous lack of solutions for anisotropic
catterers, it has been commonplace in the literature to
pproximate the orientation average of the extinction
ross section of an anisotropic sphere (denoted ��a,ext�o) by
he “one-third rule” of averaging in which one simply av-
rages the extinction cross sections of three isotropic
pheres, i.e.,

��a,ext�o � ��a,ext1/3� � 1
3�1,ext + 1

3�2,ext + 1
3�3,ext, �1�

here each of these extinction cross sections �i,ext is the
xtinction cross section of a homogeneous sphere com-
osed of a material of dielectric constant �i, i=1,2,3 cor-
esponding to the dielectric constant of each of the three
rincipal axes. Although one can demonstrate that this
ormula holds true for anisotropic scatterers in the dipole
pproximation,2,3 in practice, it has, in fact, been extrapo-
ated considerably beyond this domain. Bohren and Huff-

an conjectured in their book that this relation, in fact,
oes not hold true outside of the dipole approximation.2
1084-7529/07/041120-11/$15.00 © 2
e will demonstrate that they were correct in this regard
s far as precise geometric resonant structures in the
ross sections are concerned. Nevertheless, we find that in
ertain situations at least, the 1

3 averaging rule frequently
ields a reasonable approximation to overall trends in
ross sections, and in certain circumstances, even quanti-
atively reproduces low-frequency resonance structures
ell beyond the regime in which the dipole approximation

s valid. On the other hand, the 1
3 averaging rule is much

ess reliable when applied to metallic or semiconductor
aterials.
Sections 2 and 3 review how to obtain general vector

pherical harmonic expansions of both the external fields
nd the fields inside the anisotropic medium. In Section 3,
e arrange for the internal and scattered fields to depend
n the same number of independent expansion param-
ters through a Fourier-space discretization procedure
hat is somewhat different than that presented in our pre-
ious paper.1 In Section 4, we show that the satisfaction of
he boundary conditions can be obtained by inverting a
atrix whose elements are given by analytical expres-

ions. Finally, some numerical applications are presented
n Section 5, together with a summary of the algorithm
or determining the anisotropic sphere T matrix. We find
hat one can quite routinely calculate up to size param-
ters of the order of 2�R /��5. One can go to even higher
ize parameters provided that one invokes sufficiently so-
histicated linear equation solvers (results for size pa-
ameters of 2�R /��12 appear in Fig. 2 and Table 2). All
alculations are carried out in SI units, in the time-
armonic domain with an exp�−i�t� time dependence.

. PLANE-WAVE SOLUTIONS IN A
OMOGENOUS ANISOTROPIC MEDIUM
e assume a sphere composed of a uniform anisotropic,

onmagnetic media ��=� �, and allow the relative dielec-
0

007 Optical Society of America
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ric tensor, ��, expressed in Cartesian coordinates, to have
he most general possible form,

�� = �
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
	 , �2�

here no special symmetry relations are assumed and the
arious tensor elements may be complex numbers.

Inside a homogenous anisotropic medium, the Maxwell
quations result in the propagation equation,

curl�curl E� − k0
2��E = 0, �3�

here k0=� /c is the vacuum wavenumber with c as the
peed of light in vacuum. It is well known that this equa-
ion allows solutions in the form of plane waves,

E�r� = A�k�exp�ik · r�, �4�

here r�OM is the radius vector of an arbitrary obser-
ation point M and k is the wave vector. Any solution to
q. (3) can then be expressed as a superposition of plane
aves.
Putting the plane-wave form of Eq. (4) into Eq. (3) im-

oses that

�k2I − �kk� − k0
2���A = 0, �5�

here we introduced a tensor �kk�, with elements �kk�i,j
kikj, defined k2�
k
2=Tr�kk�, and represented the unit
atrix as I. We showed in detail in Ref. 1 how to solve this

quation in a spherical coordinate system. Summarizing
he principal results, we saw that the dielectric tensor in
pherical coordinates, �5 ,

�5 = R��Rt � �
�rr �r� �r�

��r ��� ���

��r ��� ���

	 , �6�

as obtained using the Cartesian to spherical transfor-
ation matrix, R,

R = �
sin �k cos �k sin �k sin �k cos �k

cos �k cos �k cos �k sin �k − sin �k

− sin �k cos �k 0
	 , �7�

here �k and �k designate the spherical coordinate angles
hat define the direction of the vector k and Rt is the
ranspose of this matrix.

We then showed that the four eigenvalues of the propa-
ation equation in spherical coordinates, kj �j=1,4�, were
iven by

k1

k0
� k̃1 � ��k̃2�� = − k̃3 = −

k3

k0
,

k2

k0
� k̃2 � ��k̃2�� = − k̃4 = −

k4

k0
, �8�

here
�k̃2�� =
	 + �


2�
, �k̃2�� =

	 − �


2�
, �9�

ith


 � 	2 − 4��, � = �rr,

	 = ����� + ���� − �r���r − �r���r, � = det��5 � = det����.

�10�

or lossy materials, �5 is necessarily non-Hermitian, and
he classical theory of crystal optics no longer holds. Nev-
rtheless, Eqs. (8)–(10) remain valid, the only difference
eing that k̃1 , k̃2, and �
 are now complex and are chosen
o have positive imaginary parts. Taking A�kjr̂k� to yield
he eigenvector A�j� corresponding to an eigenvalue kj, we
aw in Ref. 1 that A�k3r̂k�=A�−k1r̂k� and A�k4r̂k�=A�
k2r̂k�. Since our goal is to represent arbitrary field solu-
ions on a set of independent eigenvectors, in plane-wave
epresentations, such as those of Eq. (31) below, we will
onsequently integrate over the full k-space, keeping only
he j=1,2 eigenvectors.

Since the eigenvectors are solutions of a system of lin-
ar homogenous equations, they are determined by the
nterrelations of their components. Denoting the projec-
ions of an eigenvector A�j� on the unit vectors r̂k, �̂k, and
ˆ

k, respectively, by Ar
�j�, A�

�j� and A�
�j�, Eq. (5) in spherical

oordinates leads to

�rrAr
�j� + �r�A�

�j� + �r�A�
�j� = 0,

��rAr
�j� + ���� − k̃j

2�A�
�j� + ���A�

�j� = 0,

��rAr
�j� + ���A�

�j� + ���� − k̃j
2�A�

�j� = 0. �11�

. Eigenvector Algorithm
he solutions to Eqs. (11) for arbitrary anisotropy and
ropagation directions can be broken up into three prin-
ipal cases.

Case 1: The condition

��r� �r�

��� ��� − k̃j
2� � 0 �12�

s satisfied for both k̃1 and k̃2. Both eigenvectors then con-
ain radial components and can be expressed as

A�j� = Ã�j���j�, ��j� � �r̂k + 
�
�j��̂k + 
�

�j��̂k�, �13�

ith


�
�j� =

��rr �r�

��r ���
�

��r� �r�

��� ��� − k̃j
2� , 
�

�j� = −

��rr �r�

��r ��� − k̃j
2�

��r� �r�

��� ��� − k̃j
2� .

�14�

Case 2: There is one and only one of the eigenvalues k1
r k for which
2
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��r� �r�

��� ��� − k̃j
2� � 0. �15�

hen this case presents itself, we rename the eigenval-
es if necessary so that k1 is associated with the nonzero
eterminant.
If the following additional condition is satisfied,

��rr �r�

��r ���
� = 0, �16�

hen the eigenvectors are

A�1� = Ã�1���1�, ��1� = −
�r�

�rr
r̂k + �̂k,

A�2� = Ã�2���2�, ��2� = �̂k. �17�

If, on the other hand,

��rr �r�

��r ���
� � 0, �18�

hen �1 is determined from Eqs. (13) and (14), while A�2�

s given by

A�2� = Ã�2���2�, ��2� = �̂k −
�r�

�r�

�̂k. �19�

Case 3: The condition

��r� �r�

��� ��� − k̃j
2� = 0 �20�

s satisfied for both k̃1 and k̃2. The eigenvectors are given
y

A�1� = Ã�1���1�, ��1� = �̂k,

A�2� = Ã�2���2�, ��2� = −
�r�

�rr
r̂k + �̂k. �21�

niaxial and isotropic materials correspond to Case 3 of
he above general procedure, and were already discussed
n Ref. 1.

. FIELD DEVELOPMENTS IN A VECTOR
PHERICAL HARMONIC BASIS
ny general vector field can be developed by radial func-

ions multiplying a spherical harmonic basis:

E�r� = 

n=0

�



m=−n

m=n

�Enm
�Y� �r�Ynm��,��

+ Enm
�X� �r�Xnm��,�� + Enm

�Z� �r�Znm��,���

= 

p=0

�

�Ep
�Y��r�Yp��,��

+ Ep
�X��r�Xp��,�� + Ep

�Z��r�Zp��,���, �22�

here we have denoted by Y , X , and Z , the nor-
nm nm nm
alized vector spherical harmonics4 (see Appendix A).
he last line of Eq. (22) introduces the now common pro-
edure of reducing to a single summation by defining a
eneralized index p for which any integer value of p cor-
esponds to a unique n, m pair5: p=n�n+1�+m. The in-
erse relations between a value of p and the correspond-
ng n, m are given by

n�p� = Int�p,

m�p� = p − n�p��n�p� + 1�. �23�

ne should remark that the summation begins in Eq. (22)
ith n=m=0 since the vector spherical harmonic Y00 is
onzero even though X00 and Z00 are identically zero (cf.
ppendix A).
The scattering problem for any spherical scatterer can

e readily solved provided that we can determine the Ep
�Y�,

p
�X�, Ep

�Z� functions and their magnetic field counterparts

p
�Y�, Hp

�X�, Hp
�Z� for all p both inside and outside the scat-

erer. This is the objective of the remainder of this section.

. Partial Wave Expansions of the External Fields
he dielectric behavior of the isotropic and homogenous
xternal medium is not described by a tensor, but by a
possibly complex) scalar, �e, and the propagation equa-
ion in the external medium is

curl�curl E� − ke
2E = 0, �24�

here ke�k0��e is the wavenumber in the external me-
ium. The vector partial waves, conventionally denoted

n,m and Nn,m are solutions of this equation that obey
utgoing wave conditions and are defined only starting
ith n=1. In terms of the vector spherical harmonics, the
ormalized partial waves, Mn,m�ker� and Nn,m�ker� can be
xpressed as4

Mnm�ker� � hn
+�ker�Xnm��,��,

Nnm�ker� �
1

ker
��n�n + 1�hn

+�ker�Ynm��,��

+ �kerhn
+�ker���Znm��,���, �25�

here hn
+��� is the outgoing spherical Hankel function de-

ned by hn
+���� jn���+ iyn���.

Since Mnm and Nnm form a complete basis set for out-
oing electromagnetic waves in an isotropic medium, the
cattered field, Escat, can be expressed as

Escat�r� = E

p=1

�

�Mp�ker�fp
�h� + Np�ker�fp

�e��, �26�

here fp
�h� and fp

�e� are dimensionless expansion coefficients
f the field and E is a real coefficient with the dimension
f the electric field and whose value will be fixed by the
ncident field strength [see Eq. (27)].

The nondivergent (i.e., regular) incident field can be ex-
ressed in terms of the regular partial waves Rg�Mnm�,
g�Nnm�, which are obtained by replacing the spherical
ankel hn

+��� function in the outgoing partial waves of Eq.
25) by spherical Bessel functions j ���. An arbitrary inci-
n
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ent field can, in turn, be expressed in terms of these
egular vector partial waves:

Einc�r� = E

p=1

�

�Rg�Mp�ker��ep
�h� + Rg�Np�ker��ep

�e��,

�27�

here ep
�h� and ep

�e� are dimensionless expansion coeffi-
ients of the locally incident or excitation field on the par-
icle. If the incident field is a plane wave, then the con-
tant E with the dimension of an electric field is typically
hosen such that �Einc�2=E2 (for more general incident
elds see Ref. 6).
Since the field in the external medium is Einc+Escat, the

eld developments in Eqs. (26) and (27) taken together
ith the partial-wave expression of Mnm and Nn,m [see
q. (25)], shows that the radial functions Ep

�X�, Ep
�Z�, and

p
�Y� of a general electric field [cf. Eq. (22)] must have the

orm

Ep
�Y��r� =

E

ker
�n�n + 1��jn�ker�ep

�e� + hn
+�ker�fp

�e��, p � 1,

Ep
�X��r� =

E

ker
��n�ker�ep

�h� + �n�ker�fp
�h��, p � 1,

Ep
�Z��r� =

E

ker
��n��ker�ep

�e� + �n��ker�fp
�e��, p � 1, �28�

here the functions are determined by the known coeffi-
ients of the incident field, ep

�h� and ep
�e�, and the unknown

oefficients fp
�h� and fp

�e� of the scattered field. In Eq. (28),
e have invoked the Riccati–Bessel functions, �n�x�
xjn�x� and �n�x��xhn

+�x� and taken the prime to express
derivative with respect to the argument, i.e., �n��x�

jn�x�+xjn��x�, etc.
We recall at this point that the goal is to obtain the T
atrix in the partial wave basis, which by definition is ex-

ressed as the linear relationship between the incident
nd scattering coefficients:

f � Te. �29�

o obtain this T matrix, we need, in addition to the gen-
ral external field development of Eq. (28), the general
lectromagnetic field development [i.e., of the form of Eq.
22)] within the anisotropic material. The remainder of
his section is devoted to this goal, and the result is given
n Eq. (44) below.

Before embarking on the development of the internal
eld, we remark that the utility in numerical applications
f the field expansions of the type encountered in Eqs.
22), (26), and (27) arises from the fact the field at any fi-
ite 
r
 can be described to essentially arbitrary accuracy
y keeping only a finite number of terms in the multipole
xpansion:


n=0

nmax



m=−n

m=n

→ 

p=0

pmax=nmax
2 +2nmax

. �30�

he value of nmax will determine the accuracy of the field
evelopments at the surface of the sphere, 
r 
 =R, where
he boundary conditions have to be imposed.

. Field Development in the Anisotropic Medium
n our previous paper, we showed that one can approxi-
ate the radial functions Ep

�Y�, Ep
�X�, Ep

�Z� in a finite domain
s a superposition of appropriately defined Bessel func-
ions. This development is determined by appealing to the
act that the regular field in the interior of a homogenous
pherical domain can be developed on a plane-wave basis
i.e., by a three-dimensional Fourier transform). Explic-
tly, the electric field inside a homogenous region can be
eveloped as

Eint�r� = E

j=1

2 �
0

4�

d�kA�j� exp�ikjr̂k · r�

= E

j=1

2 �
0

�

sin �kd�k�
0

2�

d�kÃ�j���j���k,�k�

�exp�ikj��k,�k�r̂k · r�. �31�

Although the continuum basis is necessary to develop
he electric field in the full three-dimensional space, we
nly need to describe the electric field within a finite-sized
pherical region. As will be demonstrated in our treat-
ent below, an arbitrary field in such a finite region may

e described by a discrete subset of the full plane-wave
ontinuum. A satisfactory phase-space discretization pro-
edure is outlined below (this discretization is similar to
hat which we proposed previously,1 but it appears more
ractical for numerical applications).

. Fourier Space Discretization Index
he following discretization procedure was designed so

hat the discretized directions are relatively evenly dis-
ributed throughout the full 4� space of solid angles. A
imple discretization in �k and �k would have clustered
he discretized angles around the poles. Furthermore,
ince the discretization of the Fourier integral is inti-
ately related to the size of the spherical region under

tudy (i.e., the size of the scatterer) and thereby nmax, we
etermine the Fourier space discretization scheme such
hat it will automatically adjust itself to the choice of a
iven nmax necessary for describing the external fields at
he boundary surface [see Eq. (30)].

We discretize the Fourier integral over a half-space by
efining a generalized Fourier space discretization index
� �1, . . . ,pmax�, where pmax is the p index truncation de-
ermined by the multipolar truncation, nmax, via Eq. (30).
ach value of � will specify a unique direction in k space
ssociated with a unique pair of indices n� and n�. The po-
ar index n� goes over a range

n� = 0,1, . . . ,2nmax
−1, �32�

ith the Fourier polar angle �� associated with the dis-
retization index n given by
�
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�� =
�n�

2nmax
,

.e.,

�� = 0,
�

2nmax
,

2�

2nmax
, . . . ,� −

�

2nmax
, �33�

hus evenly spacing �� in the interval �� �0,��. Provided
hat the polar index, n�, is in the range n��nmax, the azi-
uthal index n� covers the range

n� = 0, . . . ,n�,

ith

�� = �
2n� + 1

n� + 1
. �34�

he generalized index � for n��nmax is given by

� =
n��n� + 1�

2
+ n� + 1, n� � nmax. �35�

he inverse relations for going from the generalized index
to �n� ,n�� provided that the index � is in the range �
�nmax+1��nmax+2� /2 are

n� = Int��2� − 1 −
1

2�, n� = � −
n��n� + 1�

2
− 1. �36�

For n��nmax, the azimuthal index, n�, covers the range

n� = 0, . . . ,2nmax − n�,

ith

�� = �
2n� + 1

2nmax − n� + 1
. �37�

he generalized index � for n��nmax is given by the ex-
ression

� = �nmax + 1�2 −
�2nmax − n���2nmax − n� + 3�

2
+ n�.

�38�

he inverse relations for �� �n +1��n +2� /2 are

Table 1. Fourier Space Discretization Inde
Numbers „n� ,n�… and Angles „�� ,��… for Diff

n
1

n� ,n�� (0,0)
�� ,��� �0,��

n

1 2 3

n� ,n�� (0,0) (1,0) (1,1)
�� ,��� �0,�� � �

4 , �
2 � � �

4 , 3�
2 �
max max
n� = 2nmax − Int��2�nmax + 1�2 − 2� + 1 −
1

2� ,

n� = � +
�2nmax − n���2nmax − n� + 3�

2
− �nmax + 1�2.

�39�

ne can appreciate the rather symmetric sampling of the
hase-space integral of this discretization by explicitly
riting out the pmax values of the � index and its corre-

ponding n� and n� values as illustrated in Table 1.

. Discretized Internal Field Expansion
sing the above index notation, the internal field in a fi-
ite region can be described by

Eint�r� � E

j=1

2



�=1

pmax

Ã�
�j���

�j� exp�ik�
�j�r̂� · r�, �40�

here

Ã�
�j� � Ã�j����,���sin ��, ��

�j� � ��j����,���,

k�
�j� � kj���,���, r̂� � r̂���,���. �41�

e remark in the field development of Eq. (40) that there
re 2pmax basis functions, ��

�j� exp�ik�
�j�r̂� ·r�, which are

eighted by their corresponding expansion coefficients
˜

�
�j�. It is important to note that the number of discretized
irections, pmax=nmax

2 +2nmax is the same as that adopted
n the multipole cutoff for the external fields. We will see
elow that this choice naturally leads to a unique solu-
ion.

. Projection onto the Vector Spherical Harmonic Basis
ne can produce exactly satisfied boundary conditions by

ransforming Eq. (40) into a form involving vector spheri-
al harmonics. This is accomplished by the formula1

nd the Associated Angular Discretization
Values of the Multipole Space Cutoff, nmax

2 3

(1,0) (1,1)
� �

2 , �
2 � � �

2 , 3�
2 �

5 6 7 8

(2,1) (2,2) (3,0) (3,1)
� �

2 ,�� � �
2 , 5�

3 � � 3�
4 , �

2 � � 3�
4 , 3�

2 �
x, �, a
erent

max=1

max=2

4

(2,0)
� �

2 , �
3 �
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exp�ik�
�j�r̂� · r��j,� = 


p=0

� �ap,�
�h,j�jn�k�

�j�r�Xp�r̂�

+ �apap,�
�e,j�

jn�k�
�j�r�

k�
�j�r

+ ap,�
�o,j�jn��k�

�j�r��Yp�r̂��
+ �ap,�

�e,j�
�n��k�

�j�r�

k�
�j�r

+ apap,�
�o,j�

jn�k�
�j�r�

k�
�j�r �Zp�r̂�,

�42�

here we have defined ap��n�p��n�p�+1� and the coeffi-
ients ap,�

�e,j�, ap,�
�h,j�, and ap,�

�o,j� are given by

ap,�
�h,j� = 4�inXp

*�r̂�� · ��
�j�, ap,�

�e,j� = 4�in−1Zp
*�r̂�� · ��

�j�,

ap,�
�o,j� = 4�in−1Yp

*�r̂�� · ��
�j�. �43�

Inserting Eq. (42) into Eq. (40), we find that the expres-
ions for the radial functions for the internal field,
int �r�, are

p
�Y��r� = E


j=1

2



�=1

pmax�apap,�
�e,j�

jn�k�
�j�r�

k�
�j�r

+ ap,�
�o,j�jn��k�

�j�r��Ã�
�j�,

p � 0,

p
�X��r� = E


j=1

2



�=1

pmax

ap,�
�h,j�

�n�k�
�j�r�

k�
�j�r

Ã�
�j�, p � 1,

p
�Z��r� = E


j=1

2



�=1

pmax�ap,�
�e,j�

�n��k�
�j�r�

k�
�j�r

+ apap,�
�o,j�

�n�k�
�j�r�

�k�
�j�r�2 �Ã�

�j�,

p � 1. �44�

. Magnetic Field
ntil now, we have concentrated our attention on the

lectric field. Just as in isotropic Mie theory, the boundary
onditions that we will impose are the continuity of the
angential components of the electric field and the H
B /�0 field. Like the electric field, any H field can be de-
eloped in terms of a vector spherical harmonic decompo-
ition:

H�r� = 

p=0

�

�Hp
�Y��r�Yp��,�� + Hp

�X��r�Xp��,��

+ Hp
�Z��r�Zp��,���. �45�

The H field is deduced from the electric field via the
axwell–Faraday relation:

H =
1

i��0
curl E. �46�

nserting the partial wave developments of Eqs. (26) and
27) into this equation and using the relations curl M
keN and curl N=keM, we find that the functions in Eq.

45) for the external H field must be of the form
Hp
�Y��r� =

ap

i��0

E

r
�jn�ker�ep

�h� + hn�ker�fp
�h��, p � 1,

Hp
�X��r� =

1

i��0

E

r
��n�ker�ep

�e� + �n�ker�fp
�e��, p � 1,

Hp
�Z��r� =

1

i��0

E

r
��n��ker�ep

�h� + �n��ker�fp
�h��, p � 1.

�47�

For the internal magnetic field, Hint, we appeal to the
rojection of Eq. (46) onto the vector spherical harmonic
asis [see Ref. 4 and Eqs. (37)–(39) therein for a detailed
erivation]:

Hp
�Y� =

ap

i��0

Ep
�X�

r
,

Hp
�X� =

1

i��0
�ap

Ep
�Y�

r
−

Ep
�Z�

r
−

dEp
�Z�

dr
� ,

Hp
�Z� =

1

i��0
�Ep

�X�

r
+

dEp
�X�

dr
� . �48�

Inserting the developments of the internal electric
eld, Eq. (44), into equations (48), we find, after some ma-
ipulation,

Hp
�Y��r� =

apE

i��0


j=1

2



�=1

pmax

Ã�
�j� ap,�

�h,j�
jn�k�

�j�r�

r
, p � 1,

Hp
�X��r� =

E

i��0


j=1

2



�=1

pmax

Ã�
�j� ap,�

�e,j�
�n�k�

�j�r�

r
, p � 1,

Hp
�Z��r� =

E

i��0


j=1

2



�=1

pmax

Ã�
�j� ap,�

�h,j�
�n��k�

�j�r�

r
, p � 1. �49�

. BOUNDARY CONDITIONS AND
-MATRIX FORMULATION
e recall from Eqs. (28) and (47) above that the external

eld depends on the unknown scattering coefficients, la-
eled fp

�e� and fp
�h�, for p=1, . . . ,pmax. The internal fields in

qs. (44) and (49), on the other hand, depend on the un-
nown coefficients, Ã�

�1� and Ã�
�2� for �=1, . . . ,pmax. The in-

ernal and external fields are, respectively, described by
pmax unknowns.
From the orthogonality of the vector spherical harmon-

cs and Eqs. (28), (44), (47), and (49), the continuity of the
ndependent transverse field components, Ep

�X�, Ep
�Z�, Hp

�X�,
nd Hp

�Z� at the r=R spherical interface results in four
ets of equations for each p� �1, . . . ,p �:
max
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�n�keR�ep
�h� + �n�keR�fp

�h� = 

j=1

2



�=1

pmax

ap,�
�h,j�

ke

k�
�j�

�n�k�
�j�R�Ã�

�j�,

�50�

�n��keR�ep
�e� + �n��keR�fp

�e� = 

j=1

2



�=1

pmax�ap,�
�e,j�

ke

k�
�j�

�n��k�
�j�R� + apap,�

�o,j�

�� ke

k�
�j��2�n�k�

�j�R�

keR
�Ã�

�j�, �51�

�n�keR�ep
�e� + �n�keR�fp

�e� = 

j=1

2



�=1

pmax

ap,�
�e,j��n�k�

�j�R�Ã�
�j�,

�52�

�n��keR�ep
�h� + �n��keR�fp

�h� = 

j=1

2



�=1

pmax

ap,�
�h,j��n��k�

�j�R�Ã�
�j�.

�53�

Eliminating the scattering coefficients fp
�h� in Eqs. (50)

nd (53), we obtain

iep
�h� = 


�=1

pmax



j=1

2

ap,�
�h,j�� ke

k�
�j�

�n�k�
�j�R��n��keR�

− �n��k�
�j�R��n�keR��Ã�

�j�, �54�

here we invoked the Wronskian identity:

�n�x��n��x� − �n��x��n�x� = i. �55�

Similarly eliminating fp
�e� from Eqs. (51) and (52), and

gain invoking the Wronskian identity yields

iep
�e� = 


�=1

pmax



j=1

2 �ap,�
�e,j���n�k�

�j�R��n��keR�

−
ke

k�
�j�

�n��k�
�j�R��n�keR�� − apap,�

�o,j�

�� ke

k�
�j��2

�n�k�
�j�R�

�n�keR�

keR
�Ã�

�j�. �56�

he full set of equations (54) and (56) can be expressed in
matrix form,

��e�h��

�e�e��� = i�V�h,1� V�h,2�

V�e,1� V�e,2����Ã�1��

�Ã�2��
� , �57�

ith the blocks given by
�V�h,j��p,� = ap,�
�h,j���n��k�

�j�R��n�keR� −
ke

k�
�j�

�n�k�
�j�R��n��keR�� ,

�V�e,j��p,� = ap,�
�e,j�� ke

k�
�j�

�n��k�
�j�R��n�keR� − �n�k�

�j�R��n��keR��
+ apap,�

�o,j�� ke

k�
�j��2

�n�k�
�j�R�

�n�keR�

keR
. �58�

he solution for the internal field in terms of the incident
eld coefficients can in principal be found by a unique ma-
rix inversion:

i��Ã�1��

�Ã�2��
� = V−1��e�h��

�e�e��� . �59�

To derive a T matrix, it suffices to obtain a relation be-
ween the internal coefficients and the scattering coeffi-
ients. Eliminating ep

�h� from Eqs. (50) and (53), we obtain

fp
�h� = i 


�=1

pmax



j=1

2

ap,�
�h,j�� ke

k�
�j�

�n�k�
�j�R��n��keR�

− �n��k�
�j�R��n�keR��Ã�

�j�. �60�

imilarly eliminating ep
�e� from Eqs. (51) and (52) yields

fp
�e� = i 


�=1

pmax



j=1

2 �ap,�
�e,j���n�k�

�j�R��n��keR�

−
ke

k�
�j�

�n��k�
�j�R��n�keR��

− � ke

k�
�j��2

apap,�
�o,j��n�k�

�j�R�
�n�keR�

keR
�Ã�

�j�. �61�

We can write Eqs. (60) and (61) in matrix form by de-
ning the matrix U such that

��fp
�h��

�fp
�e��� = �U�h,1� U�h,2�

U�e,1� U�e,2��i��Ã�1��

�Ã�2��
� , �62�

ith blocks of the U matrix given by

�U�h,j��p,� = ap,�
�h,j�� ke

k�
�j�

�n�k�
�j�R��n��keR� − �n��k�

�j�R��n�keR�� ,

�U�e,j��p,� = ap,�
�e,j���n�k�

�j�R��n��keR� −
ke

k�
�j�

�n��k�
�j�R��n�keR��

− � ke

k�
�j��2

apap,�
�o,j��n�k�

�j�R�
�n�keR�

keR
. �63�

ombining Eqs. (59) and (62), we obtain the T matrix of
he anisotropic sphere,
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��fp
�h��

�fp
�e��� = UV−1��e�h��

�e�e��� � �T�h,h� T�h,e�

T�e,h� T�e,e����e�h��

�e�e��� ,

�64�

here each of the T�h,h�, T�h,e�, T�e,h�, and T�e,e� blocks of
he T matrix are pmax�pmax matrices.

This procedure closely imitates a derivation of Mie
heory except that in Mie theory, all the matrices are di-
gonal and the corresponding matrix inversion is trivial.
n fact, the Mie theory for isotropic spheres emerges ana-
ytically from the above formulas.

. APPLICATIONS
he final algorithm for calculating the T matrix of a ho-
ogenous anisotropic sphere is relatively simple. We re-

ume the essential steps below.

. T-matrix Computation Algorithm
The first step is to select a multipole cutoff for nmax. We

enerally found that nmax needs to be larger than that re-
uired to obtain similar accuracy for an isotropic sphere
f the same size and comparable refractive index.

We then discretize the 4� solid angle directions in the
ourier k space with an index 1���pmax=nmax

2 +2nmax
s explained in Subsection 3.B.1.

For each discretized k-space direction ��� ,��� specified
y the � index [see Eqs. (33), (34), and (37)], we determine
he two eigenvalues, k̃�

�1� and k̃�
�2� from Eq. (8), and their

orresponding eigenvectors following the procedure in
ubsection 2.A.
The coefficients ap,�

�e,j�, ap,�
�h,j�, ap,�

�o,j� are obtained from Eq.
43) via scalar products of the ��1�, ��2� eigenvectors, and
he vector spherical harmonics [see Eqs. (A3)–(A5) of Ap-
endix A].

The elements of the V and U matrices are then ob-
ained, respectively, from Eqs. (58) and (63) using the k�

�1�

nd k�
�2�, eigenvalues, the known ap,�

�e,j�, ap,�
�h,j�, ap,�

�o,j�, ap coef-
cients, and the evaluation of Riccati–Bessel functions
n�x� and �n�x�.
The T matrix is obtained by matrix inversion followed

y matrix multiplication, Eq. (64). If one only requires the
cattering coefficients for a single given incident field, or
f the V matrix is difficult to invert, one can solve the set
f linear equations in Eq. (57) for the Ã vector and then
ultiply this solution by the U matrix [see Eq. (62)] in or-

er to obtain the scattering coefficients, f.

. Conservation Laws and Reciprocity
lthough our theory ensures the satisfaction of the
oundary conditions at the surface of the sphere, the de-
cription of the internal fields is correct only if enough
erms are included in the multipole development. Conse-
uently, underlying physical constraints like energy con-
ervation and reciprocity will only be satisfied provided
hat nmax is sufficiently high. Although this could be
ooked upon as a handicap from a general theoretical
oint of view, the nonsatisfaction of these laws when the
runcation is too severe provides quite useful tests for the
hoice of n .
max
In scattering from a lossless medium, energy conserva-
ion implies that �ext=�scat, and one can deduce that the T
atrix consequently satisfies5,7:

− 1
2 �T + T†� = T†T. �65�

eciprocity is another restriction on the form of the T ma-
rix, which is particularly useful in systems containing
osses for which Eq. (65) no longer holds true. The satis-
action of reciprocity implies that the T matrix must
atisfy5:

T−m�n�,�−m�n
�i,j� = �− 1�m+m�Tmn,m�n�

�i,j� . �66�

In all our numerical calculations carried out so far, the
atisfaction of energy conservation and/or reciprocity con-
traints was accompanied by numerically stable T-matrix
eterminations.

. Numerical Verifications
e remark that our code for evaluating the T matrix fol-

owing the procedure described in Subsection 5.A gener-
lly works with no problem as long as the sphere diam-
ter is not too much larger than a wavelength. For larger
pheres, the coupling to higher-order multipole elements
ends to render the V matrix ill conditioned for the re-
uired large multipole spaces. For such large spheres, it
as usually sufficient to solve the linear equations in Eq.

57) for the unknown Ã coefficients and then obtain the
cattering coefficients from Eq. (62).

The T matrix itself contains too much information to
eport, so instead we use the T matrix to calculate cross
ections and orientation averaged cross sections. For dif-
erential cross sections, we will follow Geng et al. and use
he radar cross section, �radar,

8 which is 4� times the or-
inary differential scattering cross section, d�scat/d�:

�radar��inc,�inc,�inc;�scat,�scat� � 4�
d�scat

d�
= 4�lim

r→�

r2
�Escat�2

�Einc�2 .

�67�

e will also give values for the dimensionless scattering
nd extinction efficiencies, �Qext,Qscat�, which are the to-
al cross sections5,7 divided by the corresponding geomet-
ic cross section, �R2 where R is the sphere radius.

We will compare our results for radar cross sections5

ith the published results of Geng et al.8, who formulated
theory for calculating the radar cross sections from a

niaxial sphere by parameterizing the amplitude func-
ions in a plane-wave expansion of the internal field but
ithout calculating the T matrix. Our radar cross sec-

ions are calculated from the T matrix (i.e., the scattering
oefficients, f) using the formulas developed in Refs. 5, 7,
nd 9 and are displayed in Fig. 1. Following Geng et al.,8

e adopt a uniaxial material in which the ordinary or
ransverse relative dielectric constant is �t=5.3495 while
he optic axis dielectric constant is �o.a.=4.9284. The ra-
ar cross sections in Fig. 1 correspond to that of a plane
ave propagating along the optic axis, while the E plane
enotes the plane where the scattered radiation is mea-
ured in the plane parallel to the plane containing the in-
ident polarization. The H plane refers to the plane per-
endicular to the incident field polarization. For the
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phere radius of keR=� (i.e., R=� /2), we obtained Qext
Qscat=1.094 for an optic axis-oriented incident wave,
nd �Qext�o= �Qscat�o=1.183 for the orientation-averaged
fficiencies [the 1

3 averaging of Eq. (1) yields �Qext�1/3
�Qscat�1/3=1.243]. Geng et al.8 reported that their results
ad converged for nmax=6, and our calculations for the to-
al cross section had indeed converged to better than 1%
ccuracy at nmax=6. Nevertheless, it was necessary to
aise the cutoff to nmax=9 in order to obtain an �Qext
Qscat��10−6 accuracy in energy conservation and obtain
ve significant digits in the cross section.
Geng et al.8 also reported radar cross sections for keR

2� spheres of the same composition and incident field
irection, reporting a convergence at nmax=10. Although
or this particular incident field direction, the radar cross
ection is relatively well reproduced at nmax=10, we found
hat the cutoff for the T-matrix algorithm must be pushed
o nmax=14 before it begins to converge, but that at this
odel-space size, the V matrix in Eq. (57) begins to be-

ome ill conditioned and difficult to invert. Solving the set
f linear equations and pushing nmax to 16 allowed us to

ig. 1. Radar cross sections versus scattering angle � (in de-
rees) in the E plane (solid curve) and in the H plane (dashed
urve). The size parameters are keR=� and keR=2�, while the
niaxial permittivity tensor elements are taken as �t=5.3495
nd �o.a.=4.9284.

ig. 2. Radar cross sections versus scattering angle � (in de-
rees), in the E plane (solid curve) and in the H plane (dashed
urve) for an absorbing uniaxial sphere with keR=4�, �t=2
0.1i and � =4+0.2i.
o.a.
btain Qext=Qscat=2.379 for the incident-field direction
arallel to the optic axis, and �Qext�o= �Qscat�o=2.567. As
ar as we can tell at this scale, our plotted on-axis results
or the radar cross section are essentially identical to
hose obtained by Geng et al.8

One can also apply this theory when absorption is
resent. Again following Geng et al.,8 we take an absorb-
ng model uniaxial sphere with �t=2+0.1i and �o.a.=4
0.2i. Energy is no longer conserved in this system, but
ne can still test the calculations with reciprocity. Al-
hough Geng et al.8 reported that the radar cross section
ad converged at nmax=20 for on optic axis illumination,
e found that we had to go to nmax�30 to obtain the 10−3

o 10−4 error in the total cross sections. We illustrate in
ig. 2, the radar cross section with an on-optic axis illu-
ination for a keR=4� sphere. These results are visibly

he same as those obtained by Geng et al.8 The total scat-
ering efficiencies for the on-optic axis incidence and the
verage total efficiencies are given in Table 2 for keR=�,
eR=2�, and keR=4� spheres.

. Orientation Averaging and the Bohren–Huffman
onjecture
n the dipole approximation, if the incident field is paral-
el to a principal axis of a small lossless sphere, then the
cattering and extinction efficiencies of a lossless sphere
re given by2,3

Qext = Qscat �
dipole

8

3� �i − �e

�i + 2�e
�2

�keR�4, �68�

here �i is the dielectric constant along the corresponding
rincipal axis. The �keR�4 factor in this equation yields
he famous Rayleigh inverse fourth power dependence on
avelength, ��1/�4.
An orientation average of the extinction efficiency in

he dipole approximation immediately yields the formula

�Qext�o � �Qext�1/3 = 1
3Qext,1 + 1

3Qext,2 + 1
3Qext,3, �69�

here Qext,1 ,Qext,2, and Qext,3, refer to extinction efficien-
ies for isotropic spheres composed of a material with
ach of the three principal dielectric constants. Bohren
nd Huffman however, rightly presumed that Eq. (69)
oes not strictly apply outside of the dipole approxima-
ion.

Since we can now calculate the true �Qext�o, from the
race of the T matrix,10 one can test Eq. (69) and see to
hat extent this formula remains valid beyond the dipole
pproximation. In the three graphs in Fig. 3, we compare
he true extinction average efficiency with that given by
he simple 1 averaging rule in the size range k R� �0,5�

Table 2. Total Efficiencies (Cross Sections) for a
Uniaxial Sphere with �t=2+0.1i and �o.a.=4+0.2i a

eR �Qscat� �Qext� �Qext�1/3 Qscat Qext �Qabs� Qabs

2.578 3.118 2.71 2.156 2.556 0.539 0.40
� 2.08 2.94 3.03 2.27 3.15 0.86 0.88
� 2.45 1.53 2.50 1.46 2.52 0.92 1.05

aThe unaveraged efficiencies are calculated for a plane wave incident along the
ptic axis while the averaged efficiencies average over all possible incident field di-
ections and polarizations.
3 e
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or three different sets of principal dielectric constants of
1, �2, and �3. The results for the dipole approximation of
he cross section, i.e., results obtained from Eq. (68) and
he 1

3 rule are illustrated for comparison. It is immedi-
tely obvious in all three graphs of Fig. 3 that the 1

3 rule
pproximation gives reasonable results well beyond the
omain of validity of dipole approximation.
In Fig. 3(a), we compare the 1

3 rule with both the dipole
pproximation and the correct orientation average of the
otal extinction (scattering efficiency) for the weakly an-
sotropic medium studied in Fig. 1. We remark that the 1

3
ule reproduces very well the angle averaged (extinction)
cattering efficiency section for the resonances at low,
eR�3 values, and that differences only begin to appear
t keR�3 resonances involving high multipole orders. We
ee in Fig. 3(b) that even for quite large anisotropies the 1

3
veraging rule tends to follow the general amplitude of
he extinction (scattering) efficiencies even though it does
ot do as well in reproducing the resonance peaks.
To find a notable failing of the 1

3 averaging rule, we in-
oked a scenario in which one of the principal dielectric
onstants has gone to plasmon-type values, for example,
3=−2.2 as shown in Fig. 3(c). Of course, there should be
t least some absorption as well as strong dispersion as-
ociated with such negative dielectric functions, but a
mall absorption proved to be of little consequence in the
imulations, so we preferred to use real dielectric con-
tants in our example in order to preserve energy conser-

ig. 3. Orientation-averaged extinction efficiencies of aniso-
ropic spheres, �Qext�o (solid curve) are compared with the 1

3 av-
rage approximation, �Qext�1/3 (dashed curve) and the orientation
veraged dipole approximation, �Qext�dip (dotted curve). In (a), the
rincipal dielectric constants are �1=�2=5.3495, �3=4.9284. In
b), � =3, � =4, and � =5. In (c), � =3, � =4, and � =−2.2.
1 2 3 1 2 3
ation. Dispersion is of course important for frequency
easurements but would complicate our simply demon-

trative calculations by eliminating scale invariance. In
he simulation of Fig. 3(c), we allowed the strong plasmon
esonance at keR�0.28 to go off the scale (the maximum
s Qext�25) since this simple resonance is well described
y the 1

3 rule.

. CONCLUSIONS
here is a temptation at this point to conclude that weak
nd even relatively strong anisotropy can usually be
reated with simple 1

3 averaging procedures. This may be
rue for transparent anisotropic materials in some situa-
ions at least, although more studies concerning the an-
ular distribution of the scattered radiation should be
arried out before making this assertion. In physical situ-
tions where orientation averaging is not appropriate, the
emianalytic solution is useful in light of the fact that the
ross sections can vary considerably as a function of the
elative orientation between the principal axes and the
ncident radiation. We also feel that the existence of semi-
nalytic solutions is likely to be valuable when treating
xotic materials and phenomena. Another point to keep in
ind is that anisotropic particles in nature are not

pherical, and that anisotropic optical properties may
ouple significantly to geometric nonsphericities. This
roblem is largely unexplored, and one should keep in
ind that much of the interest of an anisotropic sphere
as as a starting point for more sophisticated theories

reating arbitrarily shaped anisotropic objects.11

PPENDIX A: VECTOR SPHERICAL
ARMONICS

he scalar spherical harmonics Ynm�� ,�� are expressed in
erms of associated Legendre functions Pn

m�cos �� as12,13

Ynm��,�� = �2n + 1

4�

�n − m�!

�n + m�!�1/2

Pn
m�cos ��exp�im��,

�A1�

here the Pn
m�cos �� has a �−�m factor in its definition.13 It

s convenient to define normalized associated Legendre
unctions, P̄n

m so that Eq. (A1) reads

Ynm��,�� � P̄n
m�cos ��exp�im��. �A2�

Vector spherical harmonics are described in several ref-
rence books and papers,4,5,12–14 although their defini-
ions and notations vary with the authors. Our vector
armonics Ynm, Xnm, and Znm have the numerically con-
enient expressions

Ynm��,�� = r̂P̄n
m�cos ��, �A3�

Xnm��,�� = iūn
m�cos ��exp�im���̂ − s̄n

m�cos ��exp�im���̂,

�A4�
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w
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m

R

1

1

1

1
1
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Znm��,�� = s̄n
m�cos ��exp�im���̂ + iūn

m�cos ��exp�im���̂,

�A5�

here normalized functions ūn
m and s̄n

m are defined by

ūn
m�cos �� �

1

�n�n + 1�

m

sin �
P̄n

m�cos ��, �A6�

s̄n
m�cos �� �

1

�n�n + 1�

d

d�
P̄n

m�cos ��, �A7�

hich like the P̄n
m can readily be evaluated from recursive

lgorithms.5

The authors may be contacted at brian.stout@fresnel.fr,
ichel.neviere@fresnel.fr, and evgueni.popov@fresnel.fr.
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