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We illustrate some numerical applications of a recently derived semianalytic method for calculating the 7' ma-
trix of a sphere composed of an arbitrary anisotropic medium with or without losses. This theory is essentially
an extension of Mie theory of the diffraction by an isotropic sphere. We use this theory to verify a long-standing
conjecture by Bohren and Huffman that the extinction cross section of an orientation-averaged anisotropic
sphere is not simply the average of the extinction cross sections of three isotropic spheres, each having a re-
fractive index equal to that of one of the principal axes. © 2007 Optical Society of America
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1. INTRODUCTION

We recently formulated a semianalytic solution to the
problem of diffraction (scattering) by a sphere composed
of a material with a uniform anisotropic dielectric tensor
£ immersed in a homogeneous isotropic medium.! Due to
the length of the detailed derivation, no numerical appli-
cations were presented at that time. One of the goals of
this paper is to present some previously absent details
necessary to the construction of numerical algorithms for
generating the 7' matrix of an anisotropic sphere using
this method and to provide some modified derivations of
some of the formulas in the interest of improved clarity in
numerical applications. Since our method can generate
the T matrix for arbitrary anisotropic scatterers, we also
begin to explore possible applications to multiple scatter-
ing, notably by calculating orientation averaged cross sec-
tions for use in independent scattering approximations.

Due to the previous lack of solutions for anisotropic
scatterers, it has been commonplace in the literature to
approximate the orientation average of the extinction
cross section of an anisotropic sphere (denoted (0, ext),) by
the “one-third rule” of averaging in which one simply av-
erages the extinction cross sections of three isotropic
spheres, i.e.,

_ 1 1 1
<Ua,ext>o = <0'a,ext1/3> = 301ext + 302, ext + 303 ext> (1)

where each of these extinction cross sections o; ¢y is the
extinction cross section of a homogeneous sphere com-
posed of a material of dielectric constant ¢;, 1=1,2,3 cor-
responding to the dielectric constant of each of the three
principal axes. Although one can demonstrate that this
formula holds true for anisotropic scatterers in the dipole
approximation,z’3 in practice, it has, in fact, been extrapo-
lated considerably beyond this domain. Bohren and Huff-
man conjectured in their book that this relation, in fact,
does not hold true outside of the dipole approximation.2
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We will demonstrate that they were correct in this regard
as far as precise geometric resonant structures in the
cross sections are concerned. Nevertheless, we find that in
certain situations at least, the % averaging rule frequently
yields a reasonable approximation to overall trends in
cross sections, and in certain circumstances, even quanti-
tatively reproduces low-frequency resonance structures
well beyond the regime in which the dipole approximation
is valid. On the other hand, the é averaging rule is much
less reliable when applied to metallic or semiconductor
materials.

Sections 2 and 3 review how to obtain general vector
spherical harmonic expansions of both the external fields
and the fields inside the anisotropic medium. In Section 3,
we arrange for the internal and scattered fields to depend
on the same number of independent expansion param-
eters through a Fourier-space discretization procedure
that is somewhat different than that presented in our pre-
vious palper.1 In Section 4, we show that the satisfaction of
the boundary conditions can be obtained by inverting a
matrix whose elements are given by analytical expres-
sions. Finally, some numerical applications are presented
in Section 5, together with a summary of the algorithm
for determining the anisotropic sphere 7' matrix. We find
that one can quite routinely calculate up to size param-
eters of the order of 27R/\=5. One can go to even higher
size parameters provided that one invokes sufficiently so-
phisticated linear equation solvers (results for size pa-
rameters of 2mR/\~12 appear in Fig. 2 and Table 2). All
calculations are carried out in SI units, in the time-
harmonic domain with an exp(-iwt) time dependence.

2. PLANE-WAVE SOLUTIONS IN A
HOMOGENOUS ANISOTROPIC MEDIUM

We assume a sphere composed of a uniform anisotropic,
nonmagnetic media (u=pwg), and allow the relative dielec-
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tric tensor, €, expressed in Cartesian coordinates, to have
the most general possible form,

Exx Exy Exz
e=|8&x &y &y, (2)
€ € €

where no special symmetry relations are assumed and the
various tensor elements may be complex numbers.

Inside a homogenous anisotropic medium, the Maxwell
equations result in the propagation equation,

curl(curl E) - £25E = 0, (3)

where ky=w/c is the vacuum wavenumber with ¢ as the
speed of light in vacuum. It is well known that this equa-
tion allows solutions in the form of plane waves,

E(r) =A(k)exp(ik - r), (4)

where r=0M is the radius vector of an arbitrary obser-
vation point M and k is the wave vector. Any solution to
Eq. (3) can then be expressed as a superposition of plane
waves.

Putting the plane-wave form of Eq. (4) into Eq. (3) im-
poses that

(R21 - (kk) - k25)A =0, (5)

where we introduced a tensor (kk), with elements (kk); ;
=k/k;, defined k%= [k[?=Tr(kk), and represented the unit
matrix as [. We showed in detail in Ref. 1 how to solve this
equation in a spherical coordinate system. Summarizing
the principal results, we saw that the dielectric tensor in
spherical coordinates, £,
Err €rp 8r¢
E=ReNR = | €y €go €9 |, (6)
Eor Ego Egg

was obtained using the Cartesian to spherical transfor-
mation matrix, R,

sin 0, cos ¢,  sin 6, sin ¢, cos 6
M =|cosf,cos¢, cosb,sin ¢, -sin6,|, (7)
—sin ¢y, cos ¢y, 0

where 6, and ¢, designate the spherical coordinate angles
that define the direction of the vector k and R is the
transpose of this matrix.

We then showed that the four eigenvalues of the propa-
gation equation in spherical coordinates, k; (j=1,4), were
given by

ko ko
ST SN Y (®)
ko = 2= = 4= ko >

where
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- B + \J’Z - ﬁ — V/K
B =", &)=, (9)
@ 2«
with
AEB2_4a7> A= Epp,
B=alegg+ €4y) = Er8or — ErgByr, ¥ = det(€) = det(s).
(10)

For lossy materials, € is necessarily non-Hermitian, and
the classical theory of crystal optics no longer holds. Nev-
ertheless, Eqs. (8)—(10) remain valid, the only difference

being that %1, %9, and A are now complex and are chosen
to have positive imaginary parts. Taking A(k;t;) to yield
the eigenvector AY) corresponding to an eigenvalue kj, we
saw in Ref. 1 that A(kst;)=A(-kr;) and A(k.r,)=A(
—koTy,). Since our goal is to represent arbitrary field solu-
tions on a set of independent eigenvectors, in plane-wave
representations, such as those of Eq. (31) below, we will
consequently integrate over the full k-space, keeping only
the j=1,2 eigenvectors.

Since the eigenvectors are solutions of a system of lin-
ear homogenous equations, they are determined by the
interrelations of their components. Denoting the projec-

tions of an eigenvector AY on the unit vectors &, bk, and
&, respectively, by Ay), A((,’) and Ag), Eq. (5) in spherical
coordinates leads to

ar,Ay) + srgAg) + sr¢Ag) =0,
egAY + (e4y— kDAY +£4,AY =0,
e AY + £4AY + (84— EDAY = 0. (11)

A. Eigenvector Algorithm
The solutions to Eqs. (11) for arbitrary anisotropy and
propagation directions can be broken up into three prin-
cipal cases.

Case 1: The condition

Erg Ero
0 (12)

72
Sop  ego—k;

is satisfied for both & 1 and 1;2. Both eigenvectors then con-
tain radial components and can be expressed as

AV=AVTV, TO=@,+IP0,+T9d,),  (13)

with

Epp 8rd) Epp Ero
72
€ € Egr gg9— k:
0 - or 0 - _ 09— Rj

0 ’ [

Erg Ero Erg Erg
€ %2 € %2
6 Epp— R (2 g9~ R

(14)

Case 2: There is one and only one of the eigenvalues k;
or ko for which
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Srd) €ro
~ | #0. (15)
€o¢ See—ka

When this case presents itself, we rename the eigenval-
ues if necessary so that &, is associated with the nonzero
determinant.

If the following additional condition is satisfied,

Erp srq&
=0, (16)

Eor €o¢

then the eigenvectors are
AV = AOP® PO _ —”ﬁ-k + &,
rr
AP =AOr@ 1r@-g, (17)
If, on the other hand,
e &

S (18)

Eor €o¢

then I'; is determined from Eqgs. (13) and (14), while A®
is given by

Erg 4

A =A(2)l“(2)’ re = 0k -— . (19)
Srd)
Case 3: The condition
8r¢ Ero
| =0 (20)
€ Egg—k;

is satisfied for both % 1 and Eg. The eigenvectors are given
by

AVZZOr® pO_ g

AP ZAOr@ pe__ i)f-k + 6. (21)

87’7’

Uniaxial and isotropic materials correspond to Case 3 of
the above general procedure, and were already discussed
in Ref. 1.

3. FIELD DEVELOPMENTS IN A VECTOR
SPHERICAL HARMONIC BASIS

Any general vector field can be developed by radial func-
tions multiplying a spherical harmonic basis:

®  m=n

E(r) =, E [ED) ()Y (6, )

n=0 m=

+ED(1X,n(0,0) + EZ) (1) 2,16, )]

=D [EV(1)Y,(6,¢)
p=0

+E0(nX,(6,¢) + EV(n)Z,(6,4)], (22)

where we have denoted by Y,,,,, X,,,, and Z,,,, the nor-
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malized vector spherical harmonics* (see Appendix A).
The last line of Eq. (22) introduces the now common pro-
cedure of reducing to a single summation by defining a
generalized index p for which any integer value of p cor-
responds to a unique n, m pair5: p=n(n+1)+m. The in-
verse relations between a value of p and the correspond-
ing n, m are given by

n(p) = Int\,r,

m(p) =p - n(p)ln(p) +1]. (23)

One should remark that the summation begins in Eq. (22)
with n=m=0 since the vector spherical harmonic Y, is
nonzero even though X and Z, are identically zero (cf.
Appendix A).

The scattering problem for any spherical scatterer can
be readily solved provided that we can determine the E(Y)
E(X) E(Z) functions and their magnetic field counterparts
H, id H;X) H;Z) for all p both inside and outside the scat-
terer This is the objective of the remainder of this section.

A. Partial Wave Expansions of the External Fields

The dielectric behavior of the isotropic and homogenous
external medium is not described by a tensor, but by a
(possibly complex) scalar, ¢,, and the propagation equa-
tion in the external medium is

curl(curl E) - 2’E =0, (24)

where keEko\ﬁ's—e is the wavenumber in the external me-
dium. The vector partial waves, conventionally denoted
M, ,, and N,, ,, are solutions of this equation that obey
outgoing wave conditions and are defined only starting
with n=1. In terms of the vector spherical harmonics, the
normalized partlal waves, M, ,,(k,r) and N,, ,,,(k.r) can be
expressed as?

M, (k.x) = h;(k,)X,,(0,),

1 _
Num(ker) = o= {\n(n + Dhy(ker) Y (6, ¢)

+[korhy(ker)' 2, (60, 8)}, (25)

where h; (p) is the outgoing spherical Hankel function de-
fined by h;(p) =j,.(p) +iy,(p).

Since M,,,,, and N,,,,, form a complete basis set for out-
going electromagnetic waves in an isotropic medium, the
scattered field, E.,;, can be expressed as

Escat(r) = EE [Mp(ker)f;)h) + Np(ker)f;)w] ’ (26)
p=1

where ffnh) and f;f) are dimensionless expansion coefficients
of the field and E is a real coefficient with the dimension
of the electric field and whose value will be fixed by the
incident field strength [see Eq. (27)].

The nondivergent (i.e., regular) incident field can be ex-
pressed in terms of the regular partial waves Rg{M,,,,},
Rg{N,,,,.,}, which are obtained by replacing the spherical
Hankel A (p) function in the outgoing partial waves of Eq.
(25) by spherical Bessel functions j,(p). An arbitrary inci-
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dent field can, in turn, be expressed in terms of these
regular vector partial waves:

Ein(r) = E, [Rg{M, (k1)}e!"” + Rg{N, (kx)eld],
p=1

(27)

where ¢ and efue) are dimensionless expansion coeffi-

cients of the locally incident or excitation field on the par-
ticle. If the incident field is a plane wave, then the con-
stant E with the dimension of an electric field is typically
chosen such that |E;,|?*=E? (for more general incident
fields see Ref. 6).

Since the field in the external medium is E;,.+ Eg.4t, the
field developments in Egs. (26) and (27) taken together
with the partial-wave expression of M,,,, and N, ,,, [see
Eq. (25)], shows that the radial functions E}()X) , EZ(,Z), and
E;Y) of a general electric field [cf. Eq. (22)] must have the
form

E
EX(r) = —\n(n + D[j,(kr)el + ik A, p=1,
kor

E

X)) —
By n = k,r

[(ker)ed) + &,(k,AP], p=1,

E
E;Z)m=E[w,;(ker)e;f)+§;<ker)ﬂ;>], p=1, (28

where the functions are determined by the known coeffi-
cients of the incident field, e™ and e;f), and the unknown
coefficients f;,h) and f;f) of the scattered field. In Eq. (28),
we have invoked the Riccati-Bessel functions, ,(x)
=xj,(x) and &,(x)=xh,(x) and taken the prime to express
a derivative with respect to the argument, ie., ) (x)
=j,(x) +xj,(x), ete.

We recall at this point that the goal is to obtain the T'
matrix in the partial wave basis, which by definition is ex-
pressed as the linear relationship between the incident
and scattering coefficients:

f=Te. (29)

To obtain this 7" matrix, we need, in addition to the gen-
eral external field development of Eq. (28), the general
electromagnetic field development [i.e., of the form of Eq.
(22)] within the anisotropic material. The remainder of
this section is devoted to this goal, and the result is given
in Eq. (44) below.

Before embarking on the development of the internal
field, we remark that the utility in numerical applications
of the field expansions of the type encountered in Egs.
(22), (26), and (27) arises from the fact the field at any fi-
nite |r| can be described to essentially arbitrary accuracy
by keeping only a finite number of terms in the multipole
expansion:
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— . (30)

The value of n,,, will determine the accuracy of the field
developments at the surface of the sphere, |r|=R, where
the boundary conditions have to be imposed.

B. Field Development in the Anisotropic Medium

In our previous paper, we showed that one can approxi-
mate the radial functions E;,Y), EX , E? in a finite domain
as a superposition of appropriately defined Bessel func-
tions. This development is determined by appealing to the
fact that the regular field in the interior of a homogenous
spherical domain can be developed on a plane-wave basis
(i.e., by a three-dimensional Fourier transform). Explic-
itly, the electric field inside a homogenous region can be
developed as

2 47
Epn(@=E> [ d0AY exp(iky, 1)
J=1Jo
2 r 2
=EY, | sin6,do, f A AVT (6, ¢y)
J=1Jo 0
X exp(ik;( O, dp)Ty, - T). (31)

Although the continuum basis is necessary to develop
the electric field in the full three-dimensional space, we
only need to describe the electric field within a finite-sized
spherical region. As will be demonstrated in our treat-
ment below, an arbitrary field in such a finite region may
be described by a discrete subset of the full plane-wave
continuum. A satisfactory phase-space discretization pro-
cedure is outlined below (this discretization is similar to
that which we proposed previously,1 but it appears more
practical for numerical applications).

1. Fourier Space Discretization Index

The following discretization procedure was designed so
that the discretized directions are relatively evenly dis-
tributed throughout the full 47 space of solid angles. A
simple discretization in 6, and ¢, would have clustered
the discretized angles around the poles. Furthermore,
since the discretization of the Fourier integral is inti-
mately related to the size of the spherical region under
study (i.e., the size of the scatterer) and thereby n .y, we
determine the Fourier space discretization scheme such
that it will automatically adjust itself to the choice of a
given n,, necessary for describing the external fields at
the boundary surface [see Eq. (30)].

We discretize the Fourier integral over a half-space by
defining a generalized Fourier space discretization index
vell,...,Pmaxl, Where p.. is the p index truncation de-
termined by the multipolar truncation, n ., via Eq. (30).
Each value of v will specify a unique direction in & space
associated with a unique pair of indices n4 and n 4. The po-
lar index n4 goes over a range

ny=0,1,...,20. ", (32)

with the Fourier polar angle 6, associated with the dis-
cretization index n, given by
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Table 1. Fourier Space Discretization Index, v, and the Associated Angular Discretization
Numbers (ny,n,) and Angles (0,, ¢,) for Different Values of the Multipole Space Cutoff, 7,
nmaxz 1

v 1 2 3
(ng,ny) (0,0) (1,0 (1,1
G d) ©,m (7.3 3.5
nmax=2
v 1 2 3 5 6 7 8
(ng,ny) (0,0) (1,0) (1,1 (2,0) 2,1 (2,2 (3,0) (3,1)
(6, 6,) 0, (z,17) (z,33) 1z (=, (z,53) (32, 3) (32, 22)
TN 1
6,= , Ng=2nmax — Int| \2(pax + 12 =20+ 1= |,
21N ax 2
ie.,
T 2 m (2nmax - nﬁ)(znmax —ng+ 3) 2
6,=0,—, R , (33) ng=v+ — (Nmax+ 1.
znmax anax anaX 2
(39)

thus evenly spacing 6, in the interval 6 [0, 7]. Provided
that the polar index, n, is in the range ny=n,,, the azi-
muthal index 74 covers the range

ng=0,...,n,,
with
2n¢+ 1
b= . (34)
ng+ 1
The generalized index v for ny=n,, is given by
nyng+1)
V=T+n¢+ 1, ny=npax- (35)

The inverse relations for going from the generalized index
v to (ng,n,) provided that the index v is in the range »
= (Mpax+ 1) (npax+2)/2 are

na(n9+ 1)

|
n€=Int(\r’2V—1—§), ng=v-————-1. (36)

2
For ny>np,y, the azimuthal index, n 4, covers the range
ng=0,...,20 5, — Ny,
with

2n¢+ 1

b= (37)

2N pax— N+ 1

The generalized index v for n,>n,, is given by the ex-
pression

(2nmax - nﬂ)(znmax —ng+ 3)

2

v=(Mpae + 1) - +n,.
(38)

The inverse relations for v> (nx+1)(npac+2)/2 are

One can appreciate the rather symmetric sampling of the
phase-space integral of this discretization by explicitly
writing out the p., values of the v index and its corre-
sponding n4 and n 4 values as illustrated in Table 1.

2. Discretized Internal Field Expansion
Using the above index notation, the internal field in a fi-
nite region can be described by

E(r) = Eil pifA'@FY) exp(ikVF, 1),  (40)
J=1 v=
where
A)=A0(9,,¢,)sin 6, TV=T190,4,),
B =ki(0,,,), £,=%0,0,). (41)

We remark in the field development of Eq. (40) that there
are 2pn.x basis functions, Fg) exp(ik(,f)f'v-r), which are
weighted by their corresponding expansion coefficients
A(J). It is important to note that the number of discretized
directions, pmax=n?nax+2nmaX is the same as that adopted
in the multipole cutoff for the external fields. We will see
below that this choice naturally leads to a unique solu-
tion.

3. Projection onto the Vector Spherical Harmonic Basis
One can produce exactly satisfied boundary conditions by
transforming Eq. (40) into a form involving vector spheri-
cal harmonics. This is accomplished by the formula®



Stout et al.

exp(ikVE, - r)l;,= >
p=0

alj, (R)r)X, (®)

n(Rr)
+| a0l v +alir (kV'r) | Y, (®)
» T

[ o VAR (o,,)jn<k8'>r)]z @

+l1a +a,a r

p,v j PTp,v j P ?
kY kY

(42)

where we have defined a,= \n(p)(n(p)+1) and the coeffi-

cients a(e") a;)h”) and a("") are given by

ald = 4mi"X)(#,) TV, ) = 4m"Z0(,) - TV,
al) = 4mr Y (#,) - TV (43)

Inserting Eq. (42) into Eq. (40), we find that the expres-
sions for the radial functions for the internal field,
Ejy (r), are

2 Pmax ) L
EY(r=EX > |a k—>+a;°ib;,<k8>r> AY,
»

Jj=1 v=1

p=0,

2 P %( k)

E(X)(r) EE 2 a(h./) A(V])’ p=1,
Jj=1 »=1
2 p )A% ()
max tﬂn( r) (R
(Z) (EJ) (0.)) ")
Ep (r EJEI VZ [ +apap’v (k(lf)r)z v
p=1. (44)

C. Magnetic Field

Until now, we have concentrated our attention on the
electric field. Just as in isotropic Mie theory, the boundary
conditions that we will impose are the continuity of the
tangential components of the electric field and the H
=B/ u, field. Like the electric field, any H field can be de-
veloped in terms of a vector spherical harmonic decompo-
sition:

H(r) = D) [HY(1)Y,(6,6) + Hy(r)X,(6, $)

p=0
+HP(r)Z,(6,4)]. (45)

The H field is deduced from the electric field via the
Maxwell-Faraday relation:

1
H-=-
oty

curl E. (46)

Inserting the partial wave developments of Egs. (26) and
(27) into this equation and using the relations curl M
=k,N and curl N=£,M, we find that the functions in Eq.
(45) for the external H field must be of the form
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M () =
H,; (r)—l

P E h h
(o) + h, (k] p=1,
0 r
1 E
HO(r) = ———[4,(kr)eld + &, (k] p=1,
p iouy r p p

Hr) = (kor)ey” + & (ko))" p=1.

(47)

For the internal magnetic field, H;,;, we appeal to the
projection of Eq. (46) onto the vector spherical harmonic
basis [see Ref. 4 and Egs. (37)—(39) therein for a detailed
derivation]:

E(X)
g _ % 7r
P dopy T
(Y) (Z) (Z)
o L[ B ED
p = 7 I K
iy r r r
1 EX dE(X)
HY = —| 24 2 (48)
P dopg\ T dr

Inserting the developments of the internal electric
field, Eq. (44), into equations (48), we find, after some ma-
nipulation,

2 Pmax Jn(RY ") r)
HY(r) = EEA(” (’” , p=1,
I’wlU’OJ 1 v=1 r
2 Pmax o, (k(f)r)
H(X)(r) E 2 A(}) (e,l) , p=1,
lopjo =1 r
2 P U (k)r)
HP(r)= 2 DAV ——— p=1. (49)
wluO] 1 v=1 r

4. BOUNDARY CONDITIONS AND
T-MATRIX FORMULATION

We recall from Eqgs. (28) and (47) above that the external
field depends on the unknown scattering coefficients, la-
beled f;f ) and fg’), for p=1,...,pmax- The internal fields in
Egs. (44) and (49), on the other hand, depend on the un-
known coefficients, A(Vl) and AS/Z) for v=1,...,pmax- The in-
ternal and external fields are, respectively, described by
2P max Unknowns.

From the orthogonality of the vector spherical harmon-
ics and Eqgs. (28), (44), (47), and (49), the continuity of the
independent transverse field components, EX o > Hyos
and H? at the r=R spherical interface results in four

P
sets of equations for each p €[1,...,pmaxl:
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2 pmax
o, (ks R)e(")+§n(k R)f(h) 2 E a(h,])ke lﬂn(k(’)R)A(')
Jj=1 »=1
(50)
2 Pmax
UnkeR)ey + &, (kRIS = 2 > [ Y U RIR) + a0l
J=1 »=1
ko \*0nk)R) |
X k_(y” TR AV, (51)
2 Pmax
Uk R + &,k RO =, > Dy, (RPR)AY,
Jj=1 v=1
(52)
2 Pmax
Wk R + &R R =2 > ol (RIR)IAY.
Jj=1 v=1
(53)

Eliminating the scattering coefficients fjuh) in Egs. (50)
and (53), we obtain

Pmax

ke
(h) 2 Za(hJ)|:k(,)'//n k(])R)f (k R)

v=1 j=1

- d/;(ks‘)R)sn(keR)}A?, (54)

where we invoked the Wronskian identity:

() &, (x) = () &, (x) = 0. (55)

Similarly eliminating /\ from Egs. (51) and (52), and
again invoking the Wronskian identity yields

Pmax 2

ey = > > {aﬁi)l«ﬂn(kﬁ')ms;(kem

v=1 j=1

%(k(’)R)fn(keR)} — a0

ke \? 0
( kw) U (kR) ,iR )}A8>. (56)

The full set of equations (54) and (56) can be expressed in
a matrix form,

[e"] 1) yh2) [A(l)]
|:|:e(€)]:|=l|:v(e,1) V(E’z)} aen | (57)

with the blocks given by
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[V, ,=al) w,;<k9>R>§n<keR>—ﬁwAkY)R)s,;(keR)

k , .
Ve, ,=agy k(,)w;(k?R)gn(keR)—%(k?R)s,;(keR)

ool BN &k R)
+aai| o5 | IR (58)

The solution for the internal field in terms of the incident
field coefficients can in principal be found by a unique ma-

trix inversion:
[A0] [e*)]
il _ “|=Vv! . (59)
[A?] [e]
To derive a T matrix, it suffices to obtain a relation be-
tween the internal coefficients and the scattering coeffi-

cients. Eliminating e;)h) from Egs. (50) and (53), we obtain
pmax

k,
=i Ea(’”)[ S Un(RIR) i (k.R)

v=1 j=1
- w;(k@an(kem]A@. (60)

Similarly eliminating e ) from Egs. (51) and (52) yields
Pmax

V=i 2{ W’{wn(k@mw;(kem

v=1 j=1

k, .
- ﬁwuky’R)wn(keR)]

ko \? WkR) |
- (@) @)y, (kYR ’%}Ag)' (61)

We can write Eqgs. (60) and (61) in matrix form by de-
fining the matrix U such that

[f;,h)] U U2 [A(l)]
= A 2
£ ged e | Ao |’ (62)
with blocks of the U matrix given by

(o, ,=al ﬁw,,(k?Rw;(keR) - Y (RVR)y, (k,R)

[, ,=al %(kg)R)w;(keR)—ﬁw%m(kﬂ)

ke 2 n
- (@) apai,"i)wn(k°>R>¢ ( ERQR). (63)

Combining Eqgs. (59) and (62), we obtain the 7' matrix of
the anisotropic sphere,
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7]

where each of the T"-h) ke Tk and T blocks of
the T matrix are ppax X Pmax Matrices.

This procedure closely imitates a derivation of Mie
theory except that in Mie theory, all the matrices are di-
agonal and the corresponding matrix inversion is trivial.
In fact, the Mie theory for isotropic spheres emerges ana-
lytically from the above formulas.

. [e“')] B T(h.h) Th.e) [e(h)]
[e©1| | e e || [e©] |’

(64)

5. APPLICATIONS

The final algorithm for calculating the 7' matrix of a ho-
mogenous anisotropic sphere is relatively simple. We re-
sume the essential steps below.

A. T-matrix Computation Algorithm

e The first step is to select a multipole cutoff for n ... We
generally found that n,,,, needs to be larger than that re-
quired to obtain similar accuracy for an isotropic sphere
of the same size and comparable refractive index.

e We then discretize the 47 solid angle directions in the
Fourier k space with an index 1=v= pm‘,ﬂ:nfnax+2nmX
as explained in Subsection 3.B.1.

e For each discretized k-space direction (6,, ¢,) specified
by the v index [see Egs. (33), (34), and (37)], we determine

the two eigenvalues, 755/1) and 55/2) from Eq. (8), and their
corresponding eigenvectors following the procedure in
Subsection 2.A.

* The coefficients a}f") ag,‘;’), ©7) are obtained from Eq.
(43) via scalar products of the l"(l) I'® eigenvectors, and
the vector spherical harmonics [see Eqs. (A3)—(A5) of Ap-
pendix A].

e The elements of the V and U matrices are then ob-
tained, respectively, from Eqs. (58) and (63) using the k(l)
and k( ) eigenvalues, the known a(e‘]) a;,hg), a;"‘]) a, coef-
ﬁc1ents and the evaluation of Rlccatl—Bessel functions
() and &, (x).

e The T matrix is obtained by matrix inversion followed
by matrix multiplication, Eq. (64). If one only requires the
scattering coefficients for a single given incident field, or
if the V matrix is difficult to invert, one can solve the set

of linear equations in Eq. (57) for the A vector and then
multiply this solution by the U matrix [see Eq. (62)] in or-
der to obtain the scattering coefficients, f.

B. Conservation Laws and Reciprocity

Although our theory ensures the satisfaction of the
boundary conditions at the surface of the sphere, the de-
scription of the internal fields is correct only if enough
terms are included in the multipole development. Conse-
quently, underlying physical constraints like energy con-
servation and reciprocity will only be satisfied provided
that n,, is sufficiently high. Although this could be
looked upon as a handicap from a general theoretical
point of view, the nonsatisfaction of these laws when the
truncation is too severe provides quite useful tests for the
choice of 744
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In scattering from a lossless medium, energy conserva-
tion implies that oy = 0geat, and one can deduce that the T’
matrix consequently satisfies®’

- H(T+TH=T'T. (65)

Reciprocity is another restriction on the form of the 7' ma-
trix, which is particularly useful in systems containing
losses for which Eq. (65) no longer holds true. The satis-
faction of reciprocity implies that the 7" matrix must
satisfys:

T(h/) = (= 1)m+m T(hl L (66)

-m'n’',(-m)n mn,m'n

In all our numerical calculations carried out so far, the
satisfaction of energy conservation and/or reciprocity con-
straints was accompanied by numerically stable T-matrix
determinations.

C. Numerical Verifications

We remark that our code for evaluating the 7' matrix fol-
lowing the procedure described in Subsection 5.A gener-
ally works with no problem as long as the sphere diam-
eter is not too much larger than a wavelength. For larger
spheres, the coupling to higher-order multipole elements
tends to render the V matrix ill conditioned for the re-
quired large multipole spaces. For such large spheres, it
was usually sufficient to solve the linear equations in Eq.

(57) for the unknown A coefficients and then obtain the
scattering coefficients from Eq. (62).

The T matrix itself contains too much information to
report, so instead we use the 7' matrix to calculate cross
sections and orientation averaged cross sections. For dif-
ferential cross sections, we will follow Geng et al. and use
the radar cross section, oyqay,° Which is 47 times the or-
dinary differential scattering cross section, doeqi/d(:

dascat . 2 ”Esca\t”2

Uradar( Bincs Pines Yine; bscats Pscat) = 4m——— = 4rlimr P
dQ r—e® ”Einc”

(67)

We will also give values for the dimensionless scattering
and extinction efﬁc1enc1es (Qext, Rscat), Which are the to-
tal cross sections®’ divided by the corresponding geomet-
ric cross section, mR2 where R is the sphere radius.

We will compare our results for radar cross sections
with the published results of Geng et al.®, who formulated
a theory for calculating the radar cross sections from a
uniaxial sphere by parameterizing the amplitude func-
tions in a plane-wave expansion of the internal field but
without calculating the 7" matrix. Our radar cross sec-
tions are calculated from the 7' matrix (i.e., the scattering
coefficients, f) using the formulas developed in Refs. 5, 7,
and 9 and are displayed in Fig. 1. Following Geng et al.,8
we adopt a uniaxial material in which the ordinary or
transverse relative dielectric constant is ,=5.3495 while
the optic axis dielectric constant is ¢, , =4.9284. The ra-
dar cross sections in Fig. 1 correspond to that of a plane
wave propagating along the optic axis, while the E plane
denotes the plane where the scattered radiation is mea-
sured in the plane parallel to the plane containing the in-
cident polarization. The H plane refers to the plane per-
pendicular to the incident field polarization. For the

5
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sphere radius of k,R=m (i.e., R=\/2), we obtained @ .y
=Qcat=1.094 for an optic axis-oriented incident wave,
and (Quxt)o={Qscat)o=1.183 for the orientation-averaged
efficiencies [the % averaging of Eq. (1) yields (Qqxt)1/3
=(Qucat)1/3=1.243]. Geng et al.® reported that their results
had converged for n,,,,=6, and our calculations for the to-
tal cross section had indeed converged to better than 1%
accuracy at np,,=6. Nevertheless, it was necessary to
raise the cutoff to n,,,=9 in order to obtain an (Q.y
—Qqeat) = 1078 accuracy in energy conservation and obtain
five significant digits in the cross section.

Geng et al.® also reported radar cross sections for %2,.R
=2 spheres of the same composition and incident field
direction, reporting a convergence at n,,=10. Although
for this particular incident field direction, the radar cross
section is relatively well reproduced at n,,,=10, we found
that the cutoff for the T-matrix algorithm must be pushed
to n.=14 before it begins to converge, but that at this
model-space size, the V matrix in Eq. (57) begins to be-
come ill conditioned and difficult to invert. Solving the set
of linear equations and pushing n,, to 16 allowed us to

— 1
_opl E Plane .
= ==Hplane '
-30 ; ; .
45 90 135 180

Scattering angle (Degree)

Fig. 1. Radar cross sections versus scattering angle 6 (in de-
grees) in the E plane (solid curve) and in the H plane (dashed
curve). The size parameters are k,R=m and k,R=2m, while the
uniaxial permittivity tensor elements are taken as g,=5.3495
and g, , =4.9284.

40

30+
— E Plane

20l == =H plane

101

45 90 135 180
Scattering angle (Degree)

Fig. 2. Radar cross sections versus scattering angle 6 (in de-
grees), in the E plane (solid curve) and in the H plane (dashed
curve) for an absorbing uniaxial sphere with k.R=4m, ¢=2
+0.1{ and ¢,, =4+0.2i.
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Table 2. Total Efficiencies (Cross Sections) for a
Uniaxial Sphere with £=2+0.1i and ¢,, =4+0.2 ¢

keR <Qscat> <Qext> <Qext> 1/3 Qscat Qext <Qabs> Qabs

T 2.578 3.118 2.71 2.156 2.566 0.539 0.40
2m 2.08 2.94 3.03 2.27 3.15 0.86 0.88
4m 2.45 1.563 2.50 1.46 2.52 0.92 1.05

“The unaveraged efficiencies are calculated for a plane wave incident along the
optic axis while the averaged efficiencies average over all possible incident field di-
rections and polarizations.

obtain @ xi=Qsa;=2.379 for the incident-field direction
parallel to the optic axis, and (Qux)o={@scat)o=2.567. As
far as we can tell at this scale, our plotted on-axis results
for the radar cross section are essentially identical to
those obtained by Geng et al®

One can also apply this theory when absorption is
present. Again following Geng et al.,® we take an absorb-
ing model uniaxial sphere with &=2+0.1i and g, , =4
+0.2i. Energy is no longer conserved in this system, but
one can still test the calculations with reciprocity. Al-
though Geng et al.® reported that the radar cross section
had converged at n,,,=20 for on optic axis illumination,
we found that we had to go to 72,,,,=30 to obtain the 103
to 107 error in the total cross sections. We illustrate in
Fig. 2, the radar cross section with an on-optic axis illu-
mination for a k,R=4m sphere. These results are visibly
the same as those obtained by Geng et al.® The total scat-
tering efficiencies for the on-optic axis incidence and the
average total efficiencies are given in Table 2 for k,R =,
k.R=2m, and k,R =41 spheres.

D. Orientation Averaging and the Bohren-Huffman
Conjecture

In the dipole approximation, if the incident field is paral-
lel to a principal axis of a small lossless sphere, then the
scattering and extinction efficiencies of a lossless sphere
are given byZ’3

2

(k.R)*, (68)

g~ &

8
Qext=Qscat = 3

dipole 3 &g+ 283

where ¢; is the dielectric constant along the corresponding
principal axis. The (k,R)* factor in this equation yields
the famous Rayleigh inverse fourth power dependence on
wavelength, o<1/ %,

An orientation average of the extinction efficiency in
the dipole approximation immediately yields the formula

<Qext>o = <Qext>1/3 = %Qext,l + %Qext,2 + %Qext,S’ (69)

where Qext 1,®ext 2, and Qe 3, refer to extinction efficien-
cies for isotropic spheres composed of a material with
each of the three principal dielectric constants. Bohren
and Huffman however, rightly presumed that Eq. (69)
does not strictly apply outside of the dipole approxima-
tion.

Since we can now calculate the true (Q.y),, from the
trace of the T matrix,’® one can test Eq. (69) and see to
what extent this formula remains valid beyond the dipole
approximation. In the three graphs in Fig. 3, we compare
the true extinction average efficiency with that given by
the simple % averaging rule in the size range kR €[0,5]
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for three different sets of principal dielectric constants of
€1, €9, and e3. The results for the dipole approximation of
the cross section, i.e., results obtained from Eq. (68) and
the % rule are illustrated for comparison. It is immedi-
ately obvious in all three graphs of Fig. 3 that the % rule
approximation gives reasonable results well beyond the
domain of validity of dipole approximation.

In Fig. 3(a), we compare the % rule with both the dipole
approximation and the correct orientation average of the
total extinction (scattering efficiency) for the weakly an-
isotropic medium studied in Fig. 1. We remark that the %
rule reproduces very well the angle averaged (extinction)
scattering efficiency section for the resonances at low,
k.R =3 values, and that differences only begin to appear
at kR = 3 resonances involving high multipole orders. We
see in Fig. 3(b) that even for quite large anisotropies the é
averaging rule tends to follow the general amplitude of
the extinction (scattering) efficiencies even though it does
not do as well in reproducing the resonance peaks.

To find a notable failing of the % averaging rule, we in-
voked a scenario in which one of the principal dielectric
constants has gone to plasmon-type values, for example,
e3=-2.2 as shown in Fig. 3(c). Of course, there should be
at least some absorption as well as strong dispersion as-
sociated with such negative dielectric functions, but a
small absorption proved to be of little consequence in the
simulations, so we preferred to use real dielectric con-
stants in our example in order to preserve energy conser-

6_
4_
2_
0
5 T T T T
ar (b)
3_

— < Q>
oL ext”o

== =<0,
L Y R IARAY <Qe>d>dip 1
0 .

1 2 3 4 5

5_
4_
3_
2_
1_ -
0 1 L 1 1

2 3
Size parameter ke R

Fig. 3. Orientation-averaged extinction efficiencies of aniso-
tropic spheres, (@), (solid curve) are compared with the % av-
erage approximation, (@13 (dashed curve) and the orientation
averaged dipole approximation, (Qex)ai, (dotted curve). In (a), the
principal dielectric constants are e;=£9,=5.3495, £5=4.9284. In
(b), £1=3, g9=4, and e3=5. In (c), £1=3, 9=4, and g3=-2.2.
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vation. Dispersion is of course important for frequency
measurements but would complicate our simply demon-
strative calculations by eliminating scale invariance. In
the simulation of Fig. 3(c), we allowed the strong plasmon
resonance at k,R =0.28 to go off the scale (the maximum
1S Qey¢=25) since this simple resonance is well described
by the % rule.

6. CONCLUSIONS

There is a temptation at this point to conclude that weak
and even relatively strong anisotropy can usually be
treated with simple % averaging procedures. This may be
true for transparent anisotropic materials in some situa-
tions at least, although more studies concerning the an-
gular distribution of the scattered radiation should be
carried out before making this assertion. In physical situ-
ations where orientation averaging is not appropriate, the
semianalytic solution is useful in light of the fact that the
cross sections can vary considerably as a function of the
relative orientation between the principal axes and the
incident radiation. We also feel that the existence of semi-
analytic solutions is likely to be valuable when treating
exotic materials and phenomena. Another point to keep in
mind is that anisotropic particles in nature are not
spherical, and that anisotropic optical properties may
couple significantly to geometric nonsphericities. This
problem is largely unexplored, and one should keep in
mind that much of the interest of an anisotropic sphere
was as a starting point for more sophisticated theories
treating arbitrarily shaped anisotropic objects.'!

APPENDIX A: VECTOR SPHERICAL
HARMONICS

The scalar spherical harmonics Y,,,,(6, ¢) are expressed in
terms of associated Legendre functions P}’ (cos 6) as!?13

2n+1(n-m)!

1/2
Y, (6,¢) = { ] P}l (cos f)exp(im¢),

47 (n+m)!
(A1)

where the P;'(cos ) has a ()" factor in its definition.'® Tt
is convenient to define normalized associated Legendre

functions, an so that Eq. (A1) reads

Y, (6,¢) = Py(cos f)exp(im ). (A2)

Vector spherical harmonics are described in several ref-
erence books and papers,4’5’12_14 although their defini-
tions and notations vary with the authors. Our vector
harmonics Y,,,,, X,,,», and Z,,, have the numerically con-
venient expressions

Y,,,.(6,¢) = £P}(cos 6), (A3)

X, (0, ) =iu) (cos 9)exp(im¢)b— sy (cos 0)exp(im¢)é’>,
(A4)
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Z,,.(6,¢) =3 (cos fexp(imp) 0+ iuy(cos H)exp(im ) (}5,
(A5)

where normalized functions %' and 5} are defined by

1 m _
uy'(cos ) = ————=—P)(cos ), (A6)
yn(n+1)sin ¢
( ) . 5 (cos 6) (A7)
57'(cos ) = ———=—P/"(cos 6), 7
yn(n+1)dé

which like the P can readily be evaluated from recursive
algorithms.?

The authors may be contacted at brian.stout@fresnel.fr,
michel.neviere@fresnel.fr, and evgueni.popov@fresnel.fr.
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