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Simulation of two-dimensional Kerr photonic
crystals via fast Fourier factorization
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We present an adaptation of the fast Fourier factorization method to the simulation of two-dimensional (2D)
photonic crystals with a third-order nonlinearity. The algorithm and its performance are detailed and illus-
trated via the simulation of a Kerr 2D photonic crystal. A change in the transmission spectrum at high inten-
sity is observed. We explain why the change does not reduce to a translation (redshift) but rather consists in a
deformation and why one side of the bandgap is more suited to a switching application than the other one.
© 2006 Optical Society of America
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. INTRODUCTION
hotonic crystals (PCs) are dielectric materials arranged
eriodically. This periodicity leads to remarkable proper-
ies of the dispersion relation: Light can propagate (per-
itted band) or cannot propagate (forbidden band) in PCs

t some frequency ranges.1 Dispersion relation features
re linked to the parameters of the PCs (lattice constant,
aterials). It is then possible to tailor properties of PCs

y playing with these parameters. The discovery of the lo-
alized modes that occurr when a defect is inserted in the
C completed the first intuitive analogy between photons

n PCs and electrons in semiconductors. Since their intro-
uction in 1987,2 PCs are still under intensive
nvestigations.3 The challenge is to perfectly control the
ropagation of light, a control that offers a vast implica-
ion in both quantum optics and passive optical devices.
n advanced high-technology potential of PCs can be
chieved with a dynamic tunability of their bandgaps. Ac-
ive optical design could then be envisaged. The first basic
dea was to couple PCs with materials whose optical prop-
rties change under the influence of an external stimula-
ion. In that aim, several materials have been recently
roposed (see, for instance, Ref. 4). Alternative materials
resenting an electro-optic effect or temperature-induced
hange in the refractive index were proposed.5,6 However,
hese schemes are usually rather slow compared with the
ime scale required for an all-optical high-speed operabil-
ty for modern communications. Moreover, they do not
rovide tunability without an external function (as re-
uired for passive all-optical limiters, for instance). To
ope with these difficulties, Kerr nonlinear materials
ave been suggested.7–9 For such materials, relaxation
ime scales can be very short ���10−15 s� and it is pos-
ible to control the optical properties of the material di-
ectly via the input optical light. In a Kerr material, the
ielectric constant � depends on the product of intensity
nd electric susceptibility ��3�. Components of ��3� have
1084-7529/06/040842-6/$15.00 © 2
eak values, and nonlinear effects usually appear only
or very large values of the intensity associated with
ulsed lasers. For PCs, however, the situation differs
rastically because of the diffraction phenomenon. The
ight field can be extremely enhanced in some area inside
he PC due to a low group velocity. In particular, a light
eld localized in the defect modes is intense,10 leading to
lower threshold for, e.g., an optical switch. The exalta-

ion of the field contributes to an increase in the apparent
onlinearity that can become much more important than

n the bulk material.
The first numerical analyses of nonlinear photonic

rystals (NPCs) have been on one-dimensional (1D) (di-
lectric periodic multilayers) structures.7–9 Since these
rst analyses, extensive studies have adopted this geom-
try. The simplicity of this model (invariant in two direc-
ions) permits an analytical solution. Simulations are
apid and do not require a large storage capacity com-
uter. Dynamical shift in the location of the bandgap,9 ex-
stence of optical bistability in defect layers,11–13 or even
ap solitons7,14–19 were predicted in 1D NPCs. The feasi-
ility of all-optical limiters was also addressed.9,20–22

owever, 1D structures do not allow us to either demon-
trate the existence of propagation of light without loss in
sharp bend waveguide or to eliminate guided modes in

omogeneous layers. Extension of properties from a 1D
odel toward a two-dimensional (2D) or three-

imensional (3D) model is not so straightforward and a
reater potential is expected from multidimensionality. In
ther words, 2D and 3D structures capture the same
roperties, although 3D structures provide their generali-
ation in the whole space. Moreover, 2D PC fabrication
enefits from a more mature technology than the 3D PCs.
tudies that focus on 2D nonlinear structures are then of
reat interest and have attracted more scientists since
000. Most studies on 2D Kerr NPCs use the Bloch-wave
ecomposition and are devoted to infinite structures23 or
006 Optical Society of America
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se the finite-difference time-domain algorithm that re-
uires large storage and time-consuming computing.24

We propose in this paper a highly efficient method to
eal with 2D NPCs that consist of a stack of rod gratings
ade of parallel nonlinear and linear cylinders embedded

n a linear or nonlinear medium. This method is derived
rom the most recent version of the classical differential
heory.25 This method has been used recently by one of
he authors26 to study overlapping stacks of linear grat-
ngs, but also to study deep metallic gratings with grooves
lled with a nonlinear material illuminated in TM polar-

zation (H along the grooves).27 In both cases, convergence
f the numerical result turned out to be fast.

The paper is organized as follows: First we briefly de-
cribe the fast Fourier factorization (FFF) theory and pro-
ess; then we show some possibilities of this tool to ex-
lore properties of 2D Kerr nonlinear PCs and propose a
hysical explanation of the strong modification of the
ransmission spectrum induced by the nonlinearity.

. RESOLUTION OF NONLINEAR MAXWELL
QUATIONS USING THE FACTORIZATION
ULES IN A TRUNCATED FOURIER
ASIS: THE FAST FOURIER
ACTORIZATION METHOD
he FFF method is a highly efficient differential method
elying in essence on Li’s factorization rules27 that can be
sed to obtain both the transmission and the field map of
Cs. Here we will briefly describe the theory (the inter-
sted reader can find a detailed presentation of this
ethod in Refs. 25 and 28).
The periodic structure to model is infinite along its x

xis and is illuminated by a plane wave where the ky com-
onent is not null (see Fig. 1). All the relevant physical
uantities such as the fields, permittivities, and wave vec-
ors are described by their truncated Fourier series. Then,
sing the classical differential theory, we can obtain from
axwell’s equations the following matrix differential set:

d

dy�
�Ex�

�Ez�

�Hx�

�Hz�
� = M�y��

�Ex�

�Ez�

�Hx�

�Hz�
� . �1�

s this set describes the electromagnetic behavior of the
iffracting object, its resolution via a shooting method
hould provide the transfer matrix of the structure. But
his method cannot be used because it is on thick objects
nd numerical contamination would occur. To bypass this
ifficulty, a thick object has to be cut into several thin lay-
rs so that each transfer matrix can be calculated via the
bove method without significant contamination. Then
he S-matrix propagation algorithm aggregates the re-
ults to obtain the global transfer matrix of the stack.25

The difference between the classical differential theory
nd the FFF relies on a better understanding of how to
alculate the Fourier series of a product. Indeed, Lau-
ent’s rule states that the Fourier components of f and g
bey �fg�n=�m=−�

+� fn−mgm. But this equation can become in-
ccurate if truncated and used on discontinuous functions
uch as the permittivity and the electromagnetic field. On
he contrary, the inverse rule provided by Li27 converges
apidly if �fg� is continuous while f and g are not. This
ule states that �fg�n

	N
=�m=−N
+N ��1/ f�	N
�n,m

−1 gm, where N is
he truncation coefficient and �X� is a Toeplitz matrix
hose �n ,m� entry is the �n−m�th Fourier component of
. Noticing that �Ex and �1/���Hz /�x� remain continuous
hile the object’s profile is a lamellar grating allowed Li

o account for a better, faster converging rigorous coupled-
ave theory. However, these two quantities will not re-
ain continuous if we are to consider arbitrary-shaped

bjects and so they cannot be used here for our PCs.
The FFF adds further refinement26 as it decomposes

he field upon an �N ,T� basis, where N and T are vectors
ormal and tangential to the object’s surface, respectively.
t then uses the quantities ET and �EN that are continu-
us, the latter being treated via Li’s inverse rule. This lo-
ally variable �N ,T� basis allows better convergence.
ere, either better convergence means faster simulations

f objects that could already be simulated with other
ethods or it will allow us to simulate thick, strongly

ndex-contrasted structures such as real metal mixed
ith dielectrics in a nontrivial geometry that were previ-
usly forbidden. The FFF method then provides a differ-
nt M�y� matrix to be used in Eq. (1), an M�y� matrix that
llows accurate results with a more severe truncation.

. ALGORITHMIC STRUCTURE TO
MPLEMENT THE KERR EFFECT IN A
HOTONIC CRYSTAL
permittivity map is created for the PC (see Fig. 1). One

eriod of the PC is meshed with Q layers, each one being
onstituted by 2N cells [to optimize use of the fast Fourier
ransform (FFT)]. For each layer, the FFF is applied and
he M�y� matrix in Eq. (1) is calculated. The layers are
hosen thin enough that a single Runge–Kutta integra-
ion of the fourth order will be sufficient to solve Eq. (1)
nd that the M�y� matrix can be considered constant in
ach layer. In fact, from a computational point of view,
ore layers, needing only one integration with a constant
, are preferable to fewer thicker layers, which need a

ubtler (and slower) integration technique because the
�y� matrix can no longer be considered constant in the

ayer.
The field map, obtained via the S-matrix propagation

lgorithm, is then used to calculate the new Kerr-induced
ermittivity map. In each cell of the mesh, the new per-
ittivity becomes ��linear+��3��E2��. A new iteration of the
hole process is then done by applying the FFF on these
ew permittivity values. It is expected that after several
uch iterations, the permittivity maps will converge.

Fig. 1. Structure of the PC and mesh used for its simulation.
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In reality, convergence would have seldom happened if
e had applied the above method as it is. The conver-
ence usually needs enforcement of a slow modification of
he permittivity map for each iteration. This is done by
rbitrarily imposing as a new permittivity the weighted
um of the old and the new permittivities. For example,
e often observed a pseudoperiodic oscillation of our algo-

ithm toward two stable points that were numeric arti-
acts rather than real physical solutions.

If we consider �U�n a sequence describing the permit-
ivity map for each nth iteration, a convergence such as

lim
→�

Un=Ulimit is expected, but a pseudo-convergence such

s (lim
n→�

U2n=Ulimit,1, lim
n→�

U2n+1=Ulimit,2, with Ulimit,1

Ulimit,2) where the even and odd subsequences that con-
erge toward different limits can sometimes appear. In
his case defining the sequence �W�n such as Wn+1
1/2�Un+Un+1� and using it as the new permittivity map
revents the oscillation between two nonphysical equilib-
ium points Ulimit,1 and Ulimit,2. The use of such weighting
an be seen as similar to the introduction of a relaxation
actor to stabilize the numerical resolution of some non-
inear equations29 and is commonly used when studying
onlinear optics.30

It is of interest to note that in this example we used a
0:50 ratio in the weighting but that other ratios are pos-
ible, 70:30 being the most effective if we have to trade
etween speed and robustness. The convergence usually
ccurs within less than ten iterations, except when the PC
tate switches between opaque and transparent.

. RESULTS AND DISCUSSION
he FFF of the electromagnetic components permits us to
btain, among other information, the transmission versus
he wavelength for 2D PCs that constitute a stack of rod
ratings made of parallel circular cylinders. We will
resent results obtained with the geometry depicted in
ig. 1. The structure is a 336 nm period square lattice
ade of 94 nm radius dielectric rods with a refractive in-

ex equal to 3, standing in vacuum. There are four layers
f rods as the PC is unlimited in only two directions (y

ig. 2. Field map at a 968 nm wavelength of our structure illum
nhomogeneities in the rods are obvious.
nd z). We assume that the rods are made of a Kerr ma-
erial. In this case, the strongly inhomogeneous electro-
agnetic field produces an inhomogeneous permittivity

see the example shown in Fig. 2). As a consequence, regu-
ar rigorous frequential methods31,32 for which the rods

ust be homogeneous become inefficient here. The pur-
ose of this paper is to provide information on the nu-
erical implementation of a theory25 that we hope would

e an efficient tool for researchers.
Linear PCs as depicted in Fig. 1 have been extensively

tudied during the past two decades. The transmission
ersus � shows a large bandgap from 0.9 to 1.6 �m.1

roperties of these perfect structures have been widely
xplored numerically, so it is easy to compare our results
ith the literature.
Figure 3 shows the evolution of the transmission fea-

ure when the energy of the incident field increases. Ac-
ually, the permittivity varies locally as ��linear+��3��E2��
ith ��3� being the nonlinear cubic susceptibility param-
ter and �E�2 being proportional to the local energy. The
ods are filled with a positive Kerr material ���3��0�, i.e.,
he refractive index increases proportionally to the inten-

d with intensity (a) 0.5320 and (b) 0.5321 (arbitrary units). The

ig. 3. Transmission versus � for different values of the inten-
ity I (arbitrary units) of the incident field.
inate
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ity. At low intensity, the Kerr effect has a negligible effect
n the refractive index and we find the same behavior as
n linear optics. When the magnitude of the incident
lane wave increases, the refractive index of the rods also
ncreases and becomes more inhomogeneous. Following a
rst intuitive reasoning, we should expect a redshift of
he band edges, since it is known that for a stronger index
ontrast, bandgaps present a shift toward larger
avelengths.1 The direct study of the transmission versus
permits us to clearly reveal the shift of the band edges.
ut there is more than a uniform shift here: Contrary to a

heoretical experience in which all the rods’ index would
ncrease, here only the illuminated rods are affected by
he Kerr effect. As a consequence, at the bottom of the
andgap, where the PC is totally reflective, the light can-
ot penetrate inside the PC and no Kerr effect occurs.
hus increasing the incoming intensity leaves unchanged
he bottom position of the bandgap transmission. On the
ontrary, when the PC is transparent, all the rods are il-
uminated and we observe the expected redshift. At the
dges of the bandgap, as the PC is neither totally reflec-
ive nor transparent, only the first layers of the cylinders
re illuminated by the incident wave while the deeply
urrowed layers remain in the dark, unaffected by the
err effect. We then have a partial redshift due to the
odification of the index of the superficial layers.
It is then of interest to note that the blue edge and the

ed edge of the bandgap do not behave in the same way
hile illuminated. On the blue edge of the gap, the super-
cial layer shifts from opaque to transparent while illu-
inated, allowing the following layer to be illuminated

nd become in turn transparent. This process continues
ntil the whole stack of layers in the PC have switched
rom opaque to transparent. We then have on the blue
ide of the gap an abrupt change of transparency with a
ery steep slope, becoming steeper while the incoming in-
ensity increases. On the contrary, the PC switches from
ransparent to opaque on the red side of the bandgap
hile the incoming intensity increases. As a consequence,

he deeply burrowed rods that were illuminated in the
ransparent state are deprived of energy as the superficial
ayers become reflective. As a consequence, those bur-
owed layers become unaffected by the Kerr effect. Unlike
n the blue edge of the bandgap where the switching from
paque to transparent of the superficial layers triggers
he illumination and switching of the whole stack of lay-
rs, on the red side of the bandgap the switching from
ransparent to opaque restrains the Kerr effect to the su-
erficial layers of the PC. As a consequence, the slope of
he transmission curve on the red side of the bandgap be-
omes less abrupt. So, unlike what was expected from the
inear experience, the illumination of a Kerr PC does not
roduce exactly a redshift but a deformation of the trans-
ission curve. The bottom of the curve remains fixed as

he intensity increases while the upper part of the curve
hifts toward the red. Meanwhile the edges’ slopes of the
andgap change, becoming steeper on the blue side and
entler on the red side. This difference in slope evolution
s of interest for future application as it appears that the
lue edge is far more suited for efficient switching than
he red one.

Figure 4 maps the evolution of the transmission for a
arge wavelength domain while the incident intensity var-
es between a negligible and a high value. For the sake of
implicity, in Fig. 4 we present the x axis as an arbitrary
nit for an intensity varying between 0 and 1. Without
he bistability, Fig. 4 would be symmetric with respect to
he median axis. This figure contains 313�21 points,
ach one being the result of an iterative process applied to
he (wavelength, intensity) couple characterizing the
oint position on the figure. This calculation was made
sing MATLAB 6.5 on ten Pentium IV 1.5 GHz processors

n one week. Such a brute force approach is usually un-
ecessary but was adopted to illustrate the speed of the
FF. It must also be said that lowering the convergence
riterion of our iterative FFF method gives us accurate
ransmission values five to ten times faster at the price of
slightly underestimated switching intensity. It is also of

nterest to know that it is possible to compute directly at
ny given incident intensity without having to compute at
ower intensities: The algorithm is robust enough to con-
erge even in those cases and of course it is faster (rang-
ng between a few seconds and five minutes, depending
n the behavior of the PC at a given wavelength and
ntensity).

Another illustration of the capacities of this code is to
eveal with a relatively short computer time (2 h for a 200
oint curve) the hysteresis phenomenon linked to the
resence of a cubic nonlinear material [see Fig. 5(a)]. We
an see in Fig. 5(b) that the number of iterations remains
ow except when the PC’s state switches between opaque
nd transparent. This switch is linked to a discontinuous
hange of the electromagnetic field map and in this case
everal tens of iterations are commonly required. Com-
are Figs. 2(a) and 2(b), which represent the field on each

ig. 4. Evolution of the transmission map for an increasing
alue of the magnitude of the incident field.
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ide of the rising front discontinuity in Fig. 5(a): The field
ap has totally changed although the incident intensity
as increased only by 1/5000th. The same iteration be-
avior near the discontinuities was also observed in Ref.
0, although it concerns a thin-film Kerr PC placed inside
Fabry–Perot cavity and not a bulk or thick one standing

n air.

. CONCLUSION
he FFF method when applied to Kerr NPCs is an effi-
ient tool. It is fast and needs few truncated Fourier se-
ies coefficients while it is able to cope with high-contrast
ermittivity structures. Although it is not discussed in
his paper, we simulated thick metallic-based PCs at op-
ical wavelengths without any numerical difficulties. Li’s
nverse rule applied on well-chosen continuous quantities
nsuring fast convergence.

The nonlinear effect itself is simulated via an iterative
rocess providing satisfying results if correctly weighted.
he results are quickly obtained outside the switching
ones, these zones being in the neighborhood of the trans-
ission’s discontinuities. Within these zones, the process

f nonlinear convergence slows down and needs a careful
eighting. It is to be noted that in some rare instances

not shown here), such as small wavelength and high in-
ensity, the iterative process never converges. Careful ex-
mination of the iteration process makes us suspect that
t is linked to the appearance in the crystal of a multista-
ility behavior different from the regular bistability, al-
hough this hypothesis will need further investigation.

The application of our Kerr-based FFF algorithm to the
ase of the square-lattice 2D PC illustrates the expected
edshift occurring with strong illumination of a positive
hird-order susceptibility material. But we showed that
he shift is in reality more complex and results in a defor-
ation of the gap, the bottom of the transmission curve

eing unmodified while the upper parts shift toward the
ed. This is a consequence of the penetrating length of the
ave inside the PC and produces a difference between the

Fig. 5. (a) and (b) Hysteresis
lue and the left side of the bandgap. In the case of a red-
hift (positive ��3�), the blue side slope becomes steeper
ith increasing illumination while the red side becomes
entler. The blue side is then more adaptable to a switch-
ng application than the red one and they can no longer be
onsidered as equivalent.

Another important point of our FFF-based Kerr algo-
ithm is that the inhomogeneities arising in the originally
omogeneous permittivities of the PC nonlinear inclu-
ions are perfectly taken into account. There are other
ethods, such as the multiple-scattering method, that
ave to rely on a homogeneous field approximation while
oping with such a Kerr simulation.32 We will reveal in a
ubsequent paper the limitations and artifacts linked to
uch an approximation.

J. J. Bonnefois can be reached by e-mail at
ean-Jacques.Bonnefois@u-paris10.fr.
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