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A fully analytical theory is developed to derive the field diffracted by an infinitely long circular cylinder made
of an arbitrary anisotropic homogeneous material, illuminated by an arbitrary plane wave. © 2006 Optical
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. INTRODUCTION
he problem of diffraction of a plane wave by an infinitely

ong circular cylinder made of optically isotropic material
as resolved more than a century ago in terms of Bessel

unctions.1 However, only recently have studies of diffrac-
ion by cylinders composed of anisotropic materials ap-
eared in the scientific literature. Reference 1 deals with
cylinder made of a uniaxial material with the optic and

ylindrical axes coinciding and illuminated under inci-
ence perpendicular to the axis. In this case, the cylinder
iffracts light as if it were isotropic with two different per-
ittivity values �� and ��, depending on the polarization

f the incident light, respectively, parallel or perpendicu-
ar to the cylindrical axis.

For more general anisotropy, the analysis becomes
uch more difficult. Several works deal with gyrotropic

r uniaxial media where the optic axis does not coincide
ith the cylindrical axis.2,3 In particular, Ref. 3 presents a
etailed analysis in the case when the optic axis is per-
endicular to the cylindrical axis. The approach presents
n extension to conical (out-of-cross-section plane) inci-
ence of the two-dimensional spectral approach, devel-
ped in Ref. 2. It will serve as a reference to validate the
esults presented in this paper.

As far as we know, there is no known solution of the
roblem of diffraction by a cylinder characterized by an
rbitrary complex permittivity tensor ��. In a recent
aper4 we developed a theory of diffraction by a homoge-
eous arbitrary anisotropic sphere, based on the general
xpression of the field inside a general anisotropic
aterial,5 developed in terms of plane waves. Here we ap-

ly a similar approach in cylindrical coordinates, which
re well adapted to applying the boundary conditions on
he cylinder surface. However, the invariance of the object
long its axis makes a big difference when compared with
sphere.

. PRESENTATION OF THE PROBLEM
e consider an infinitely long circular cylinder with axis
z and radius R. Figure 1 represents its truncated part.
1084-7529/06/071731-10/$15.00 © 2
he exterior is a homogeneous isotropic medium with ab-
olute permittivity �ext. An incident plane wave with unit
mplitude and with wave vector kinc propagates in the di-
ection r̂inc=kinc/ �kinc�, defined by the angles �inc� �0,��
nd �inc� �0,2��. Its polarization vector êinc can be arbi-
rary oriented in the plane transverse to kinc. The interior
f the cylinder is filled with an arbitrary (lossy or lossless)
nisotropic homogeneous material, characterized by the
elative permittivity tensor,

�� = �
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
� , �1�

n which no symmetry relation is assumed a priori. We
nly notice that the homogeneity of the material implies
he independence of the components of �� with respect to
he Cartesian coordinates.

By introducing the transformation matrix R, which
inks Cartesian to cylindrical coordinates, the expression
f the permittivity tensor in cylindrical coordinates is
iven by the relation

�5 = R��RT, �2�

here T stands for transpose. If the circumflex denotes
he unit vectors, the transformation matrix components
re given by the scalar products between the basis vectors
x̂ , ŷ , ẑ
 and 	�̂ , �̂ , ẑ
:

R = �
�̂ · x̂ �̂ · ŷ �̂ · ẑ

�̂ · x̂ �̂ · ŷ �̂ · ẑ

ẑ · x̂ ẑ · ŷ ẑ · ẑ
� = �

cos � sin � 0

− sin � cos � 0

0 0 1
� . �3�

Since the cylindrical coordinate system is orthogonal, it
s not necessary to distinguish between covariant and
ontravariant tensorial components and thus they will be
enoted by subscripts. It is worth noting that while �ij are
ndependent of x ,y ,z, they depend on � through Eq. (3).

Because of the invariance of the diffraction problem
ith respect to the z coordinate, the z dependence of the
006 Optical Society of America
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cattered field is determined by the z dependence of the
ncident field,6 given by exp�ikinc,zz� with

kinc,z = kinc cos �inc. �4�

. EXPRESSION OF THE FIELD INSIDE A
OMOGENEOUS ANISOTROPIC MEDIUM

et us at first find the form of a single plane wave propa-
ating inside a homogeneous anisotropic material, ex-
ressed in cylindrical coordinates, and presenting a z de-
endence given by Eq. (4).

. Propagation Equation
n an anisotropic medium, the Maxwell equations lead to
he following propagation equation:

curl curl E − k0
2�5E = 0, �5�

here k0 is the vacuum wavenumber. Because of the ho-
ogeneity of the medium, in each point defined by its ra-

ius vector r we look for solutions in the form of a plane
ave with a wave vector k:

E�k,r� = A exp�ik · r�. �6�

he solution of the diffraction problem will be found as a
uperposition of such plane waves.

Recalling that curl�A exp�ik ·r��= ik�A exp�ik ·r�, Eq.
5) leads to

k � �k � A� + k0
2�5A = 0. �7�

y using a tensorial product of two vectors, we construct a
ensor �kk� whose �i , j� component is equal to kikj, and
hen Eq. (7) can be written in the form

�k2I − �kk� − k0
2�5�A = 0, �8�

here k= �k�= �Tr�kk��1/2 and I is the unit matrix.
To have a nontrivial solution of Eq. (8), it is necessary

o fulfill the following condition:

Fig. 1. Circular cylinder illuminated under oblique incidence.
det�k2I − �kk� − k0
2�5� = 0. �9�

his equation determines the wavenumbers k of the
lane waves propagating in a given direction in a homo-
eneous anisotropic medium. Then Eq. (8) gives the
roper vectors of polarization for each plane wave. It is in-
eresting to point out that k represents a nonlinear eigen-
alue of the tensor ��kk�+k0

2�5�.7

. Finding the Wavenumbers
quations (8) and (9) are valid in any coordinate system.
he determination of the wavenumbers k is especially
asy in spherical coordinates, since there the tensor �kk�
as a single nonnull component.5 In principle, it should be
ossible to use these values, obtained for each direction of
ropagation �� ,��; however, this would give different val-
es of kz. We need to fix this as long as the z dependence
f the field is equal to the z dependence of the incident
eld [Eq. (4)]. We are thus obliged to solve Eqs. (8) and (9)

n cylindrical coordinates. To this aim, we fix the angle of
ropagation � in the Oxy plane and we state that the ver-
ical component kz of the unknown wave vector k is equal
o kinc,z. The components of k can be expressed using the
nknown angle of propagation � with respect to the z axis.
enoting its tangent as t �t= tg��, we obtain

k� = kztg� = kzt, k� = 0, k = kz/cos � = kz�1 + t2,

"� � �/2,

k� = k, kz = 0, � = �/2. �10�

hus the tensor �kk� takes the form

�kk� = �
k�

2 0 kzk�

0 0 0

kzk� 0 kz
2 � = �

kz
2t2 0 kz

2t

0 0 0

kz
2t 0 kz

2 � , �11�

nd Eq. (9) is written as

det�kz
2�1 + t2�I − �

kz
2t2 0 kz

2t

0 0 0

kz
2t 0 kz

2 � − k0
2�5� = 0. �12�

his is a fourth-order algebraic equation for t. Its four so-
utions tj, j=1, . . .4, represent four possible directions of
ropagation for each fixed value of kz and �. However, as
ong as kz participates in Eq. (12) only through its square

z
2, two of the roots, say t1 and t2, correspond to positive
alues of kz and two roots (t3 and t4) correspond to nega-
ive kz. Once t1 and t2 are determined, two values k1 and
2 of k are deduced from Eqs. (10).
The case when the incident wave propagates in the Oxy

lane needs a special treatment. With kz=0 (and thus k�

k), Eq. (9) is simplified to

det��
0 0 0

0 k2 0

0 0 k2� − k0
2�5� = 0, �13�

hich is a biquadratic equation with respect to k. This
quation has four solutions k , j=1, . . .4, having, in
j
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ouples, opposite signs. The opposite signs correspond to
aves propagating in opposite directions, so that it is nec-
ssary to preserve only a single representative (say, k1
nd k2) of each couple, say the one with positive real
arts.

. Finding the Polarization Vectors
nce the wavenumbers k1 and k2 are chosen, Eq. (8) could
e used to obtain the polarization vectors A1 and A2. This
ould easily be done when we notice that A1 is the eigen-
ector of the matrix k1

2I− �k1k1�−k0
2�5, corresponding to the

ero eigenvalue of this matrix, which exists due to Eq. (9).
he same applies for A2 when k=k2 is chosen. In the case
hen k1�k2, each matrix kj

2I− �kjkj�−k0
2�5, j=1,2, has a

ingle zero eigenvalue (see Appendix A), so that the choice
f the corresponding vector Aj is unique. If k1=k2, the ma-
rices kj

2I− �kjkj�−k0
2�5 for j=1 and j=2 are identical, they

ave a double zero eigenvalue, and there are two vectors,
hich could be chosen linearly independent (i.e., mutu-
lly orthogonal). This points out that in the degenerated
ase (corresponding to an isotropic medium or a uniaxial
edium when the ordinary and the extraordinary waves

ropagate along the optic axis) the two independent po-
arizations of the electric field vector are mutually or-
hogonal (and orthogonal to k) and can be arbitrarily cho-
en in the plane perpendicular to k. In the general case,
he two vectors A1 and A2 are uniquely determined (each
ithin a multiplicative constant) and could be nonor-

hogonal. Appendix B provides a direct analytical method
o determine the components of the eigenvectors.

As long as each eigenvector is determined within a con-
tant, we introduce normalized polarization vectors �j, j
1,2, and electric field amplitudes Ãj such that

Aj�kz,�� = Ãj�kz,���j�kz,��. �14�

. General Form of the Field inside the Anisotropic
aterial
he electric field at an arbitrary point M in space having
adius vector rOM can be expressed as a superposition of
lane waves propagating in all possible directions. Each
irection of propagation is characterized by a couple of
avenumbers k1 and k2, directions of polarization �1 and

2, and amplitudes Ã1 and Ã2. However, when kz=kinc,z is
xed, the possible directions are characterized by the
ngle of propagation � in the Oxy plane. Figure 2 pre-
ents a schematic view of the point M with its coordinates
nd the scattered field wave vector k, represented in local
oordinates (x�, y�, z�). In what follows we skip the kz de-
endence of the wave characteristics. The superposition
ith respect to � contains two values of k for each �:

E�rOM� = �
j=1

2 
0

2�

d�Ãj����j���exp�ikj��� · rOM�, �15�

here kj���=kj,�����̂+kzẑ. During numerical treatment,
he integration along � is replaced by a discrete sum over
from 1 to N with � taking N discrete values:
� �
�� = 2��� − 1�/N�. �16�

s a result, it is necessary to make the following substi-
utions:

Ãj,� = Ãj����d� = Ãj����
2�

N�

, �j,� = �j����,

kj,� = kj����.

. FOURIER–BESSEL EXPANSION OF THE
IELD
. Field inside the Isotropic Medium
utside the cylinder the field consists of an incident plane
ave and scattered (diffracted) field. We assume an inci-
ent field with a unit amplitude and polarization vector

ˆ inc; the electric field of the incident wave has the form

Einc�rOM� = êinc exp�ikinc · rOM�

= êinc exp�ikinc,��̂inc · �OM�exp�ikzzOM�. �17�

ote that kz=kinc,z and kinc=kinc,�����̂+kzẑ.
The 2� periodicity with respect to �OM allows us to rep-

esent the vectorial components of the total field by a Fou-
ier series:

Ej�rOM� = �
n=−�

+�

Ej,n��OM�exp�in�OM�exp�ikzzOM�. �18�

ecalling the Fourier–Bessel expansion,

exp�i	 cos 
� = �
n=−�

+�

inJn�	�exp�in
�, �19�

here Jn are the Bessel functions, the field expansion of
he incident wave can be written in the form

ig. 2. Zoom of Fig. 1 with the coordinates of point M and the
ave-vector components.
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Einc�rOM� = êinc �
n=−�

+�

inJn�kinc,��OM�

�exp�in��OM − �inc��exp�ikzzOM�, �20�

here �inc is the angle between the x axis and the projec-
ion of kinc onto the Oxy plane. Let us consider the z com-
onents of the electric and magnetic fields. As long as
inc,z is independent of the position of M, Eq. (20) gives

Ez,n
inc�rOM� = Ae,n

incJn�kinc,��OM�,

Ae,n
inc = êinc · ẑin exp�− in�inc�. �21�

similar expression is obtained for the magnetic field8:

i��0Hz,n
inc�rOM� = Ah,n

inc Jn�kinc,��OM�,

Ah,n
inc = ikinc�r̂inc � êinc� · ẑin exp�− in�inc�. �22�

The scattered field has a quite similar form, obtained
rom Eqs. (21) and (22) by substituting the Bessel func-
ions with Hankel functions Hn

+, which represent a field
ropagating toward �→�, and replacing the known inci-
ent amplitudes with unknown amplitudes Be,n and Bh,n,
o that the Fourier components of the total field become

Ez,n
ext�rOM� = Ae,n

incJn�kinc,��OM� + Be,nHn
+�kinc,��OM�, �23�

i��0Hz,n
ext�rOM� = Ah,n

inc Jn�kinc,��OM� + Bh,nHn
+�kinc,��OM�,

�24�

here the z dependence given by the factor exp�ikzzOM� is
mitted.

The Maxwell equations written in cylindrical coordi-
ates allow us to derive E� and H�:

E� =
1

kinc,�
2 � ikz

�

�Ez

��
− i��0

�Hz

��
� , �25�

H� =
1

kinc,�
2 � ikz

�

�Hz

��
+ i��ext

�Ez

��
� , �26�

hich leads to

E�,n =
− 1

kinc,�
2 ��nkzAe,n

inc
Jn�kinc,��OM�

�OM

+ kinc,�Ah,n
inc Jn��kinc,��OM�� + �nkzBe,n

Hn
+�kinc,��OM�

�OM

+ kinc,�Bh,nH+��kinc,��OM�� , �27�
n �
��0H�,n =
− 1

kinc,�
2 ��nkzAh,n

inc
Jn�kinc,��OM�

�OM

+ kinc
2 kinc,�Ae,n

incJn��kinc,��OM��
+ �nkzBh,n

Hn
+�kinc,��OM�

�OM

+ kinc
2 kinc,�Be,nHn

+��kinc,��OM��� . �28�

hese formulas will be used in Section 5 to apply the
oundary conditions on the cylinder surface, keeping in
ind the z-dependence term exp�ikzzOM�.

. Field Inside the Cylinder
aking use of Eq. (19), the field in Eq. (15), after discreti-

ation of the integral, takes the form

E�rOM� = �
j=1

2

�
�=1

N�

Ãj,��j,� �
n=−�

+�

inJn�kj,�,��OM�exp�in��OM − ����,

�29�

here the z dependence is omitted. Thus the cylindrical
omponents of E depend on the polarization vectors �j,�.
hile each �j,� is expressed in the coordinate set

�̂� , �̂� , ẑ�, it is necessary to obtain its projections onto the
ocal set ��̂OM, �̂OM, ẑ�, linked with the point M. We obtain

�j,� · �̂OM = �j,�,��̂� + j,�,��̂�� · �̂OM

= j,�,� cos��OM − ��� + j,�,� sin��OM − ���,

�30�

�j,� · �̂OM = �j,�,��̂� + j,�,��̂�� · �̂OM

= − j,�,� sin��OM − ��� + j,�,� cos��OM − ���,

�31�

�j,z · ẑ = j,�,z. �32�

rojecting Eq. (29) onto �̂OM, using Eq. (30), and introduc-
ng the coefficients,

ao,n,j,� = j,�,�i
n exp�− in���, �33�

ah,n,j,� = ikj,�,�j,�,�in exp�− in���, �34�

ae,n,j,� = j,�,zi
n exp�− in���, �35�

he first component of E takes the form
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E��rOM� = �
j=1

2

�
�=1

N� Ãj,�

2 � �
n=−�

+�

− i�ao,n+1,j,� −
ah,n+1,j,�

kj,�,�
�

�Jn�kj,�,��OM�exp�i�n + 1��OM�

+ �
n=−�

+�

i�ao,n−1,j,� +
ah,n−1,j,�

kj,�,�
�Jn�kj,�,��OM�

�exp�i�n − 1��OM�� . �36�

hanging n into n−1 in the first sum and into n+1 in the
econd sum and using the relations between Bessel func-
ions Jn−1���+Jn+1���=2nJn��� /� and Jn−1���−Jn+1���
2Jn����, one obtains for the nth Fourier components of E�

E�,n�rOM� = − i�
j=1

2

�
�=1

N�

Ãj,��ah,n,j,�

nJn�kj,�,��OM�

kj,�,�
2 �OM

− ao,n,j,�Jn��kj,�,��OM�� . �37�

In a similar way, by putting Eq. (31) into Eq. (29), the
th Fourier component of E� can be obtained:

E�,n�rOM� = �
j=1

2

�
�=1

N�

Ãj,��ao,n,j,�

nJn�kj,�,��OM�

kj,�,��OM

−
ah,n,j,�

kj,�,�
Jn��kj,�,��OM�� , �38�

hile finding Ez,n is straightforward:

Ez,n�rOM� = �
j=1

2

�
�=1

N�

Ãj,�ae,n,j,�Jn�kj,�,��OM�. �39�

e recall that the z dependence given by the factor
xp�ikzzOM� is omitted in Eqs. (29)–(39). However, this de-
endence is required to calculate the components of H us-
ng the Maxwell equations, which provide the following
inks:

H� =
1

i��0
� �E�

�z
−

�Ez

��
� , �40�

Hz =
1

i��0
�E�

�
+

�E�

��
−

1

�

�E�

��
� . �41�

ubstituting Eqs. (37) and (38) into Eq. (41) and taking
nto account the Bessel equation Jn����+Jn���� /�− �n2 /�
1�Jn���=0 and the fact that �Jn� /���−Jn� /�+Jn /�2�0, we
btain

i��0Hz,n�rOM� = �
j=1

2

�
�=1

N�

Ãj,�ah,n,j,�Jn�kj,�,��OM�. �42�

similar procedure applied to Eq. (40) by using Eqs. (37)
nd (39) gives
i��0H�,n�rOM� = − �
j=1

2

�
�=1

N�

Ãj,��kz�nah,n,j,�

Jn�kj,�,��OM�

kj,�,�
2 �OM

− ao,n,j,�Jn��kj,�,��OM��
+ kj,�,�ae,n,j,�Jn��kj,�,��OM�� . �43�

. BOUNDARY CONDITIONS
he continuity of the components of E and H tangential
o the cylinder surface results in the continuity of each of
heir Fourier components:

e,n
incJn�kinc,�R� + Be,nHn

+�kinc,�R�

= �
j=1

2

�
�=1

N�

Ãj,�ae,n,j,�Jn�kj,�,�R�, �44�

nkzAe,n
inc

Jn�kinc,�R�

kinc,�
2 R

+ Ah,n
inc

Jn��kinc,�R�

kinc,�

+ nkzBe,n

Hn
+�kinc,�R�

kinc,�
2 R

+ Bh,n

Hn
+��kinc,�R�

kinc,�

= �
j=1

2

�
�=1

N�

Ãj,��− nao,n,j,�

Jn�kj,�,�R�

kj,�,�R
+ ah,n,j,�

Jn��kj,�,�R�

kj,�,�
� ,

�45�

h,n
inc Jn�kinc,�R� + Bh,nHn

+�kinc,�R�

= �
j=1

2

�
�=1

N�

Ãj,�ah,n,j,�Jn�kj,�,�R�, �46�

kzAh,n
inc

Jn�kinc,�R�

kinc,�
2 R

+ kinc
2 Ae,n

inc
Jn��kinc,�R�

kinc,�

+ nkzBh,n

Hn
+�kinc,�R�

kinc,�
2 R

+ kinc
2 Be,n

Hn
+��kinc,�R�

kinc,�

= �
j=1

2

�
�=1

N�

Ãj,��nkzah,n,j,�

Jn�kj,�,�R�

kj,�,�
2 R

+ �kj,�,�ae,n,j,� − kzao,n,j,��Jn��kj,�,�R�� . �47�

quations (44)–(47) are valid for each n. Numerical treat-
ent requires truncation in n, say from −N to +N. This
ill limit the number of equations to 4�2N+1�, and the
umber of unknown scattered amplitudes in the external
edium Be,n and Bh,n will become equal to 2�2N+1�. In

ddition, the number of unknowns inside the cylinder Ãj,�
s equal to 2N�. To obtain a Cramer set, it is necessary to
hose a discretization in � depending on N such that N�

2N+1, i.e., that the number of the unknown field com-
onents inside and outside are equal. With this condition
pplied, all the field amplitudes can be found by solving a
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inear algebraic set, i.e., by a single matrix inversion. It is
orth noticing that the Fourier components of the field
utside the cylinder are coupled through the field inside
he cylinder, as long as Ãj,� are identical for each n. If the
ylinder consists of optically uniaxial material with the
ptic axis parallel to the geometrical axis, this coupling
isappears, as discussed in Section 6.

. UNIAXIAL MATERIAL
hen the cylinder consists of a material having uniaxial

nisotropy with the optic axis parallel to the cylinder axis,
he permitivitty tensor takes a simple diagonal form:

�� = �
�x 0 0

0 �x 0

0 0 �z
� , �48�

nd each direction of propagation is characterized by two
avenumbers9:

k1 = k0��x,

1

k2
2���

=
1

k0
2� sin2 �

�z
+

cos2 �

�x
� �49�

orresponding to the so-called ordinary and extraordinary
ave, respectively. They form two surfaces in the k space,
sphere (with radius equal to k0��x) for the ordinary

ave and an ellipsoid of revolution (around the kz axis)
or the extraordinary wave, which ellipsoid has an axis
qual to k0��z along k� and k0��x along kz (Fig. 3). The
avenumber k1 of the ordinary wave does not depend on

he direction of propagation, and its polarization vector is
erpendicular to the direction of propagation and to the
ptical axis4,9:

tg�1 � t1 = ��k0
2�x − kz

2�/kz,

ig. 3. Index surfaces in the k space (upper notation in each
air) and in the coordinate space (lower notation) and the wave
ectors and the polarization vectors in the coordinate space.
�1,� = �̂�. �50�

he wavenumber and polarization vector of the extraor-
inary wave depend on the polar angle �, but are indepen-
ent of �. For each value of kz, there are two possible di-
ections of propagation, as can be observed in Fig. 3,
xcept for the cases when kz=0 and kz=k0��x. It can be
hown that, using Eq. (34) of Ref. 4,

tg�2 � t2 =
��z�k0

2�x − kz
2�/�x

kz
,

�2 =

− t2

kz
2

k0
2�x − kz

2 �̂ + ẑ

�1 + �t2

kz
2

k0
2�x − kz

2�2

=
− �z�̂ + �xt2ẑ

���xt2�2 + �z
2

. �51�

s can be observed, �2,�� �̂�, which can be expected by
aking into account Eqs. (50). If, instead of k1 /k0 and
2/k0 in Eqs. (49), we take the ratio r /� of the distance
rom the origin and the wavelength, these equations rep-
esent two surfaces in the direct space of the coordinates,

sphere and an ellipsoid of revolution, identical to the
urfaces in the k space. These surfaces in the direct space
re called index surfaces and it can be shown that the po-
arization vectors are tangential to them, as represented
chematically in Fig. 3.

Taking all this into consideration, it is possible to sig-
ificantly simplify the form of the wave expansion inside
he uniaxial material and thus to simplify the boundary
onditions. We observe, at first, that Eqs. (33)–(35) be-
ome

ao,n,1,� = ae,n,1,� = ah,n,2,� = 0, �52�

ah,n,1,� = ik1,�i
n exp�− in���, �53�

ae,n,2,� = 2,zi
n exp�− in���,

ao,n,2,� = 2,�i
n exp�− in���. �54�

s long as the arguments of Bessel functions participat-
ng in the field expansion inside the cylinder, Eqs.
37)–(39), (42), and (43), do not depend on ��, it is possible
o extract them from the sum over � and to introduce new
mplitudes, which are proportional to the nth Fourier
omponents of the field amplitudes Ãj,� with respect to
OM:

Ah,n
�1� = �

�

Ã1,�ah,n,1,� = ik1in�
�

Ã1,� exp�− in���, �55�

Ae,n
�1� = �

�

Ã2,�ae,n,2,� = in2,z�
�

Ã2,� exp�− in���, �56�
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Ao,n
�1� = �

�

Ã2,�ao,n,2,� = in2,��
�

Ã2,� exp�− in���. �57�

n addition, using Eqs. (51), one obtains the following
inks:

Ao,n
�1� =

2,�

2,z
Ae,n

�1� = −
�z

�x

kz

k�

Ae,n
�1� . �58�

n isotropic materials this means that the polarization of
he electric field is transverse to the direction of propaga-
ion. Using these new amplitudes, the boundary condi-
ions are simplified to give

e,n
incJn�kinc,�R� + Be,nHn

+�kinc,�R� = Ae,n
�1�Jn�k2,�R�, �59�

nkzAe,n
inc

Jn�kinc,�R�

kinc,�
2 R

+ Ah,n
inc

Jn��kinc,�R�

kinc,�

+ nkzBe,n

Hn
+�kinc,�R�

kinc,�
2 R

+ Bh,n

Hn
+��kinc,�R�

kinc,�

= nkz

�z

�x
Ae,n

�1�
Jn�k2,�R�

k2,�
2 R

+ Ah,n
�1�

Jn��k1,�R�

k1,�
, �60�

Ah,n
inc Jn�kinc,�R� + Bh,nHn

+�kinc,�R� = Ah,n
�1� Jn�k1,�R�, �61�

kzAh,n
inc

Jn�kinc,�R�

kinc,�
2 R

+ kinc
2 Ae,n

inc
Jn��kinc,�R�

kinc,�

+ nkzBh,n

Hn
+�kinc,�R�

kinc,�
2 R

+ kinc
2 Be,n

Hn
+��kinc,�R�

kinc,�

= nkzAh,n
�1�

Jn�k1,�R�

k1,�
2 R

+ �k2,�
2 +

�z

�x
k2,z

2 �Ae,n
�1�

Jn��k2,�R�

k2,�
. �62�

hese equations are uncoupled with respect to n, so that
or each value of n it is necessary to solve only a system of
our equations. They have a form quite similar to the iso-
ropic case, which can be obtained by taking into account
hat �x=�z and thus k2=k1. However, in both uniaxial or
sotropic cases, if the incidence lies outside of the cross-
ection plane (i.e., kz�0), the fundamental cases of polar-
zation (indices e and h) remain coupled.

If, in addition, the incident wave vector is perpendicu-
ar to the z axis, the fundamental polarizations are decou-
led and diffract independently in both uniaxial or isotro-
ic cases. This fact can be observed by imposing kz=0 in
qs. (59)–(62) and using kinc,�=kinc, k1,�=k1, and k2,�=k2:

Ae,n
incJn�kincR� + Be,nHn

+�kincR� = Ae,n
�1�Jn�k2R�, �63�

1

kinc
�Ah,n

inc Jn��kincR� + Bh,nHn
+��kincR�� =

1

k1
Ah,n

�1� Jn��k1R�,

�64�

Ah,n
inc Jn�kincR� + Bh,nHn

+�kincR� = Ah,n
�1� Jn�k1R�, �65�
kinc�Ae,n
incJn��kincR� + Be,nHn

+��kincR�� = k2Ae,n
�1�Jn��k2R�. �66�

n that case the set reduces to the well-known equation
ublished in Ref. 1. It appears that Eqs. (63) and (66) are
ncoupled from Eqs. (64) and (65). It is necessary to point
ut that this decoupling of the fundamental polarizations
hen considering incidence in the cross-section plane
oes not occur in the case of general anisotropy. Even if
qs. (44)–(47) are rather simplified when kz=0, the fact

hat the polarization vectors depend on � will couple the h
nd the e amplitudes outside the cylinder through the
mplitudes Ãj,� inside it.

. NUMERICAL APPLICATIONS
s a first validation test of the theory, we have chosen one
f the rare cases found in the literature that represents
umerical examples available for comparison. This is the
ase treated by Monzon3 and it concerns conical diffrac-
ion of a plane wave (wavelength �=2) on an uniaxially
nisotropic circular cylinder, having a radius R=1 and op-
ical axis along Ox, perpendicular to the symmetry axis
z. The nonnull components of the relative permittivity

ensor are �xx=4.87526 and �yy=�zz=5.29, and the exter-
al medium is vacuum. The direction of the incident wave
ector (Fig. 1) is defined by �inc=90° and �inc=30°. The in-
ident polarization is perpendicular to the z axis, êinc� ẑ,
nd the amplitude of the magnetic field vector is normal-
zed to unity �Hinc�=1. We compare our results with the
nes of Fig. 6 of Ref. 3. The differential cross section
DCS) is given by

�H��� =
�2/�

��0 sin��inc�
� �

n=−N

+N

�− i�nBh,nein�� , �67�

�E��� =� �0

�0

�2/�

sin��inc�
� �

n=−N

+N

�− i�nBe,nein�� . �68�

igure 4 shows �H and �E, calculated with N=20 and
ompared with the DCSs of a cylindrical cylinder filled
ith an isotropic medium having �=5.29. The results for

he anisotropic cylinder are exactly the same as obtained
n Ref. 3.

A parameter important in numerical applications is the
onvergence rate with respect to the truncation value of
. Figure 5 represents �H as a function of N and shows

hat is sufficient to take N=9 to obtain correct results.
he convergence rate is a little slower than for the isotro-
ic case, but this could be explained by the gap in the
omponents of the relative permittivity tensor �xx and
yy �=�zz�. In fact, the convergence is determined by both
he optical contrast between the external medium and the
ylinder and by the difference between the components of
he permittivity tensor. This is illustrated in Figs. 6 and
. When keeping the same value of �xx and increasing four
imes the other two components, �yy=�zz=21.16, the con-
ergence rate reduces and it is necessary to use N as high
s 22 to obtain relevant results (Fig. 6). When reducing
he difference between �xx �=20.74526� and �yy�=�zz
21.16�, the convergence rate improves (Fig. 7) and ap-
roaches the convergence rate of the case given in Fig. 5,
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ven when keeping a very high optical contrast between
he external and the internal media.

In the last example, we demonstrate the possibility of
he method to analyze a biaxial anisotropy, when all three
iagonal components of the permittivity tensor are differ-

ig. 4. DCS of the magnetic ��H� and the electric ��E� fields for
circular cylinder with R=1 having Oz as symmetry axis and

lled with an uniaxial anisotropic medium with �xx=4.87526 and
yy=�zz=5.29, and �ext=1, compared with DCSs of an isotropic cir-
ular cylinder with �=5.29 �R=1�. The incident plane-wave pa-
ameters are �=2, �inc=90°, and �inc=30°, and the polarization is
erpendicular to the z axis. Solid curves, anisotropic case; dotted
urves, isotropic case.

ig. 5. Convergence test of �H as a function of the order N of the
runcated Fourier series for the point �=270° in Fig. 4. Solid
urve, anisotropic case; dotted curve, isotropic case.

ig. 6. Same as in Fig. 5, but with different anisotropy, �xx
4.87526 and �yy=�zz=21.16 (solid curve). The dotted curve rep-
esents the isotropic case illustrated in Fig. 5. The other param-
ters are the same as in Fig. 4.
nt. Figure 8 represents the DCSs (calculated with N
20) for a biaxial anisotropic case with �xx=2, �yy=2.25,
nd �zz=2.5, compared with an isotropic medium ��
2.25�. The corresponding convergence test for �H�270° �

s shown in Fig. 9. When compared with Fig. 5, one ob-
erves that the convergence rate is almost the same as for
uniaxial cylinder.

ig. 7. Same as in Fig. 6, but with �xx=20.74526 and �yy=�zz
21.16 (solid curve). The dotted curve represents the anisotropic
ase illustrated in Fig. 5.

ig. 8. DCS of the magnetic ��H� and the electric ��E� fields for
circular cylinder with R=1 and filled with an anisotropic me-

ium with �xx=2, �yy=2.25, and �zz=2.5 and compared with a
CS of an isotropic circular cylinder with �=2.25. The other pa-

ameters are the same as in Fig. 4.

ig. 9. Convergence test with respect to the order N of the trun-
ated Fourier series of �H in the point �=270° in Fig. 8. Solid
urve, anisotropic case; dotted curve, isotropic case.
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. CONCLUSION
sing a plane-wave expansion in an arbitrary homoge-
eous anisotropic material, we are able to derive equa-
ions determining the diffraction by a circular optically
nisotropic cylinder. Finding the diffracted amplitudes re-
uces to a matrix inversion, the size of which is deter-
ined by the required number of Fourier components of

he field. The theory is somewhat similar to the theory of
iffraction by an optically anisotropic sphere. However, it
ppears more difficult to determine the wavenumbers and
olarization vectors in cylindrical geometry, when com-
ared with spherical coordinates. But, since the cylindri-
al geometry preserves the wavenumber kz along its axis,
t requires discretization of space directions inside the an-
sotropic material to be done along the azimuthal angle
nly, while the spherical geometry needs discretization
long both the azimuthal and the polar angle.
Numerical studies confirm the validity of the method

ith respect to already published results and show rela-
ively rapid convergence rates, which require inversion of
matrix of a size typically of the order of 100�100.
The theory presented in this paper can be directly ap-

lied to the study of guided-wave propagation and thus
he modal structure of optically anisotropic fibers. It can
e further generalized to model light diffraction by arbi-
rary (noncircular) cross-section optically anisotropic cyl-
nders.

PPENDIX A: DEGENERACY OF
AVENUMBERS

fter having determined the two wavenumbers k1 and k2
y solving a fourth-order algebraic Eq. (9), then Eq. (8)
an be used to numerically obtain the polarization vectors
1 and A2, each of which represents the eigenvector cor-

esponding to the zero eigenvalue, say, �1, of Eq. (8). The
im of this appendix is to prove that if k1�k2 then �1=0
s a single zero eigenvalue so that the polarization vectors
re uniquely determined. As long as the eigenvalues of a
iven matrix do not depend on the coordinate system
sed, let us represent the matrix M of the coefficients in
q. (8) in spherical coordinates4:

M = − k0�
�rr �r� �r�

��r ��� − k�2 ���

��r ��� ��� − k�2
� , �A1�

here k̂=k /k0.
Let us assume that the zero eigenvalue of this matrix is

ot single. It cannot be triple, because in that case the
atrix will be null. If there is a double zero eigenvalue of
, this means that its rows are not linearly independent

nd thus two of them can be expressed in terms of a single
ow, say, the first one:

��r = a�rr, ��� − k�2 = a�r� Þ k�2 = ��� −
��r�r�

�rr
, �A2�
��r = b�rr, ��� − k�2 = b�r� Þ k�2 = ��� −
��r�r�

�rr
.

�A3�

s long as Eqs. (A2) and (A3) have to be simultaneously
atisfied, this imposes a link between the elements of the
ermittivity tensor:

��� −
��r�r�

�rr
= ��� −

��r�r�

�rr
. �A4�

owever, if this condition is satisfied, it follows from Eq.
16) of Ref. 4 that the two wavenumbers k1 and k2 are
dentical. The conclusion is that if k1�k2, there is a single
ero eigenvalue of M, to which corresponds a unique ei-
envector, which will determine the polarization vector.
hen k1=k2, the zero eigenvalue is twice degenerated,

here are two eigenvectors corresponding to this double
igenvalue, and they represent the two mutually orthogo-
al polarization vectors.

PPENDIX B: ANALYTICAL
ETERMINATION OF THE WAVE
OLARIZATION VECTORS
nce the wavenumbers kj �j=1,2� are found, Eq. (8) will

nterrelate the components of Aj. Let us, at first, take as
n independent component Aj,�=Aj · �̂. The case when this
omponent is null will be analyzed separately.

Defining normalized wavenumbers k̂z=kz /k0, Eq. (8) is
ritten as.

�k�z
2 − ����Aj,� − ���Aj,� − �k�z

2tj + ��z�Aj,z = 0,

− ���Aj,� + �k�z
2�1 + tj

2� − ����Aj,� − ��zAj,z = 0,

− �k�z
2tj + �z��Aj,� − �z�Aj,� + �k�z

2tj
2 − �zz�Aj,z = 0. �B1�

he fact that the determinant of this set is null means
hat there are at maximum two independent equations
mong the three. Let us assume that these are the first
wo equations, so that they give the required relations:

Aj,� =

det�kz
2 − ��� k�z

2tj + ��z

��� − ��z
�

det� ��� k�z
2tj + ��z

k�z
2�1 + tj

2� − ��� − ��z
�Aj,�, �B2�

Aj,z =

det� ��� k�z
2 − ���

k�z
2�1 + tj

2� − ��� ���
�

det� ��� k�z
2tj + ��z

k�z
2�1 + tj

2� − ��� − ��z
�Aj,�. �B3�

The case when Aj,�=Aj · �̂=0 greatly simplifies Eqs.
B1). In addition, to have a nontrivial solution (Aj,��0
nd/or Aj,z�0), it is necessary that the determinant in the
enominator of Eqs. (B2) and (B3) is null, i.e., that two of
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he three equations in the set of Eqs. (B1) are linearly de-
endent. Let us take the second and third one:

�k�z
2�1 + tj

2� − ����Aj,� − ��zAj,z = 0,

�z�Aj,� − �k�z
2tj

2 − �zz�Aj,z = 0. �B4�

he condition to have a determinant equal to zero gives a
uadratic equation for tj

2. Once its solutions are found,
hey are used in one of the equations in the set of Eqs.
B4) to determine the link between Aj,� and Aj,z. The par-
icular case when ��z=0 and/or �z�=0 is simplified further
n, as Eqs. (B4) take the form

�k�j
2 − ����Aj,� = 0,

�k�j,�
2 − �zz�Aj,z = 0 �B5�

ith the following nontrivial solution:

k�1
2 = ��� Þ A1,� � 0, A1,z = 0 Þ �1 = �̂,

k�2,�
2 = �zz Þ A2,z � 0, A2,� = 0 Þ �2 = ẑ. �B6�
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