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1. INTRODUCTION

The problem of diffraction of a plane wave by an infinitely
long circular cylinder made of optically isotropic material
was resolved more than a century ago in terms of Bessel
functions.! However, only recently have studies of diffrac-
tion by cylinders composed of anisotropic materials ap-
peared in the scientific literature. Reference 1 deals with
a cylinder made of a uniaxial material with the optic and
cylindrical axes coinciding and illuminated under inci-
dence perpendicular to the axis. In this case, the cylinder
diffracts light as if it were isotropic with two different per-
mittivity values ¢ and €,, depending on the polarization
of the incident light, respectively, parallel or perpendicu-
lar to the cylindrical axis.

For more general anisotropy, the analysis becomes
much more difficult. Several works deal with gyrotropic
or uniaxial media where the optic axis does not coincide
with the cylindrical axis.>® In particular, Ref. 3 presents a
detailed analysis in the case when the optic axis is per-
pendicular to the cylindrical axis. The approach presents
an extension to conical (out-of-cross-section plane) inci-
dence of the two-dimensional spectral approach, devel-
oped in Ref. 2. It will serve as a reference to validate the
results presented in this paper.

As far as we know, there is no known solution of the
problem of diffraction by a cylinder characterized by an
arbitrary complex permittivity tensor €. In a recent
paper4 we developed a theory of diffraction by a homoge-
neous arbitrary anisotropic sphere, based on the general
expression of the field inside a general anisotropic
material,’ developed in terms of plane waves. Here we ap-
ply a similar approach in cylindrical coordinates, which
are well adapted to applying the boundary conditions on
the cylinder surface. However, the invariance of the object
along its axis makes a big difference when compared with
a sphere.

2. PRESENTATION OF THE PROBLEM

We consider an infinitely long circular cylinder with axis
Oz and radius R. Figure 1 represents its truncated part.
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The exterior is a homogeneous isotropic medium with ab-
solute permittivity €. An incident plane wave with unit
amplitude and with wave vector k;,. propagates in the di-
rection i,.=Kkin./|Kine, defined by the angles 6;,.<[0,7]
and ¢, €[0,27]. Its polarization vector €;,. can be arbi-
trary oriented in the plane transverse to Kk;,.. The interior
of the cylinder is filled with an arbitrary (lossy or lossless)
anisotropic homogeneous material, characterized by the
relative permittivity tensor,

€xx €y €xz
€=|Ex €y €, (1)

Ex €y €z

in which no symmetry relation is assumed a priori. We
only notice that the homogeneity of the material implies
the independence of the components of € with respect to
the Cartesian coordinates.

By introducing the transformation matrix R, which
links Cartesian to cylindrical coordinates, the expression
of the permittivity tensor in cylindrical coordinates is
given by the relation

é=menT, (2)

where T stands for transpose. If the circumflex denotes
the unit vectors, the transformation matrix components
are given by the scalar products between the basis vectors
{x,¥,2} and {p, ¢, 2}:

pX py p-z cose sing 0
R=|¢'X @'y @-z|=|-sing cosgp 0], (3)
Z-X 72y 7% 0 0 1

Since the cylindrical coordinate system is orthogonal, it
is not necessary to distinguish between covariant and
contravariant tensorial components and thus they will be
denoted by subscripts. It is worth noting that while ¢;; are
independent of x,y,z, they depend on ¢ through Eq. (3).

Because of the invariance of the diffraction problem
with respect to the z coordinate, the z dependence of the

© 2006 Optical Society of America
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Fig. 1. Circular cylinder illuminated under oblique incidence.

scattered field is determined by the z dependence of the
incident field,® given by exp(ikinc2) with

inc. = k; hne- (4)

inc COS 6;

inc,z

3. EXPRESSION OF THE FIELD INSIDE A
HOMOGENEOUS ANISOTROPIC MEDIUM

Let us at first find the form of a single plane wave propa-
gating inside a homogeneous anisotropic material, ex-
pressed in cylindrical coordinates, and presenting a z de-
pendence given by Eq. (4).

A. Propagation Equation
In an anisotropic medium, the Maxwell equations lead to
the following propagation equation:

curl curl E - £2éE = 0, (5)

where kg is the vacuum wavenumber. Because of the ho-
mogeneity of the medium, in each point defined by its ra-
dius vector r we look for solutions in the form of a plane
wave with a wave vector k:

Ek,r)=Aexp(k-r). (6)

The solution of the diffraction problem will be found as a
superposition of such plane waves.

Recalling that curl[A exp(ik-r)]=ik X A exp(ik-r), Eq.
(5) leads to

kX (kxXA)+kZEA=0. (7)

By using a tensorial product of two vectors, we construct a
tensor (kk) whose (i,j) component is equal to k;k;, and
then Eq. (7) can be written in the form

(k%] - (kk) - kZEJA =0, (8)

where k=|k|=[Tr(kk)]"2 and 1 is the unit matrix.
To have a nontrivial solution of Eq. (8), it is necessary
to fulfill the following condition:
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det[k2] - (kk) - k28] = 0. 9)

This equation determines the wavenumbers % of the
plane waves propagating in a given direction in a homo-
geneous anisotropic medium. Then Eq. (8) gives the
proper vectors of polarization for each plane wave. It is in-
teresting to point out that & represents a nonlinear eigen-
value of the tensor [(kk)+k(2)§:|.7

B. Finding the Wavenumbers

Equations (8) and (9) are valid in any coordinate system.
The determination of the wavenumbers % is especially
easy in spherical coordinates, since there the tensor (kk)
has a single nonnull component.5 In principle, it should be
possible to use these values, obtained for each direction of
propagation (¢, 6); however, this would give different val-
ues of £,. We need to fix this as long as the z dependence
of the field is equal to the z dependence of the incident
field [Eq. (4)]. We are thus obliged to solve Eqs. (8) and (9)
in cylindrical coordinates. To this aim, we fix the angle of
propagation ¢ in the Oxy plane and we state that the ver-
tical component %, of the unknown wave vector k is equal
to kinc.. The components of k can be expressed using the
unknown angle of propagation # with respect to the z axis.
Denoting its tangent as ¢ (¢=tg6), we obtain

k,=ktg0=kt, k,=0, k=kJ/cos =k 1+t
YO+ w2,
k,=k, k=0, 0=m/2. (10)

Thus the tensor (kk) takes the form

k20 kk,| [EX: 0 k2t
kk)=| 0 0 0 |[=| 0 0 0|, (11)
kk, 0 k2 k%t 0 RZ

and Eq. (9) is written as
k2% 0 k%t
det| R2(1+t3)I-| 0 0 O [-k2e|=0. (12)
kX% 0 k2

This is a fourth-order algebraic equation for ¢. Its four so-
lutions ¢;, j=1,...4, represent four possible directions of
propagation for each fixed value of £, and ¢. However, as
long as %, participates in Eq. (12) only through its square
kf, two of the roots, say ¢; and ¢, correspond to positive
values of £, and two roots (¢35 and ¢,) correspond to nega-
tive k,. Once ¢; and ¢y are determined, two values k; and
ko of k are deduced from Egs. (10).

The case when the incident wave propagates in the Oxy
plane needs a special treatment. With k,=0 (and thus &,
=k), Eq. (9) is simplified to

00 0
det| |0 %* 0 |-k2E|=0, (13)
0 0 k2

which is a biquadratic equation with respect to %. This
equation has four solutions k;, j=1,...4, having, in
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couples, opposite signs. The opposite signs correspond to
waves propagating in opposite directions, so that it is nec-
essary to preserve only a single representative (say, &
and ky) of each couple, say the one with positive real
parts.

C. Finding the Polarization Vectors
Once the wavenumbers k1 and &, are chosen, Eq. (8) could
be used to obtain the polarization vectors A; and A,. This
could easily be done when we notice that A; is the eigen-
vector of the matrix k%ﬂ— (kik;) —kg?, corresponding to the
zero eigenvalue of this matrix, which exists due to Eq. (9).
The same applies for Ay when k=Fk4 is chosen. In the case
when k;#ky, each matrix k?l—(kjkj)—kgg, j=1,2, has a
single zero eigenvalue (see Appendix A), so that the choice
of the corresponding vector A; is unique. If £, =k, the ma-
trices ka]l—(kjkj)—kgg for j=1 and j=2 are identical, they
have a double zero eigenvalue, and there are two vectors,
which could be chosen linearly independent (i.e., mutu-
ally orthogonal). This points out that in the degenerated
case (corresponding to an isotropic medium or a uniaxial
medium when the ordinary and the extraordinary waves
propagate along the optic axis) the two independent po-
larizations of the electric field vector are mutually or-
thogonal (and orthogonal to k) and can be arbitrarily cho-
sen in the plane perpendicular to k. In the general case,
the two vectors A; and Ay are uniquely determined (each
within a multiplicative constant) and could be nonor-
thogonal. Appendix B provides a direct analytical method
to determine the components of the eigenvectors.

As long as each eigenvector is determined within a con-
stant, we introduce normalized polarization vectors I';, j

=1,2, and electric field amplitudes Aj such that

D. General Form of the Field inside the Anisotropic
Material

The electric field at an arbitrary point M in space having
radius vector rgy can be expressed as a superposition of
plane waves propagating in all possible directions. Each
direction of propagation is characterized by a couple of
wavenumbers k; and ks, directions of polarization I'; and
I'y, and amplitudes A; and A,. However, when k;=kinc, is
fixed, the possible directions are characterized by the
angle of propagation ¢ in the Oxy plane. Figure 2 pre-
sents a schematic view of the point M with its coordinates
and the scattered field wave vector Kk, represented in local
coordinates (x', y’, z'). In what follows we skip the %, de-
pendence of the wave characteristics. The superposition
with respect to ¢ contains two values of & for each ¢:

2

2
E(roy) = >, d‘PAj(QD)Fj((P)eXp[ikj((P) ‘roml, (15)

J=1Jo

where k;(¢)=k; ,(¢)p+k,2. During numerical treatment,
the integration along ¢ is replaced by a discrete sum over
v from 1 to N, with ¢ taking N, discrete values:
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Fig. 2. Zoom of Fig. 1 with the coordinates of point M and the
wave-vector components.

¢, =2m(v—-1)/N,,. (16)

As a result, it is necessary to make the following substi-
tutions:

- . _ 21
A ,=A(p)de=A(p)—,
i =Aje,)de ,(%)N

@

Fj,v = j((Pv)y

kj,V = J(QDV)

4. FOURIER-BESSEL EXPANSION OF THE
FIELD

A. Field inside the Isotropic Medium

Outside the cylinder the field consists of an incident plane
wave and scattered (diffracted) field. We assume an inci-
dent field with a unit amplitude and polarization vector
€;c; the electric field of the incident wave has the form

E™(rop) = &inc eXp(iKine - Ton)
= éinc exp(ikinc,pi)inc . pOM)eXp(ikzzOM) . (A7)
Note that k,=k;y, and ki =kin (@) p+k,2.
The 27 periodicity with respect to ¢oy allows us to rep-

resent the vectorial components of the total field by a Fou-
rier series:

E{(ron) = >, E; . (powexplingon)explik.zon). (18)

n=-

Recalling the Fourier—Bessel expansion,

400

exp(is cos ) = E i"J,(s)exp(iny), (19)

n=-

where J,, are the Bessel functions, the field expansion of
the incident wave can be written in the form
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400

EinC(I‘OM) = €jp, E " n(kinc,ppOM)

n=—

X eXp[in(‘POM - (Pinc)]exp(ikzZOM)’ (20)

where ¢, is the angle between the x axis and the projec-
tion of k;,,. onto the Oxy plane. Let us consider the z com-
ponents of the electric and magnetic fields. As long as
€inc s independent of the position of M, Eq. (20) gives

E?’)’i (rOM) = A::ri"]n (k inc,ppOM) ’

AP = &y, 2i" exp(— in@ine).- (21)

A similar expression is obtained for the magnetic field®:

inc

iw#oHizK,lrf(rOM) =AL5d, n(kinc,ppOM) )

}2; = ikinc(f'inc X éinc) - zi" eXP(— in‘Pinc) . (22)
The scattered field has a quite similar form, obtained
from Egs. (21) and (22) by substituting the Bessel func-
tions with Hankel functions H,, which represent a field
propagating toward p— o, and replacing the known inci-
dent amplitudes with unknown amplitudes B, ,, and B, ,,
so that the Fourier components of the total field become

ng(rf(rOM) = A:,)r,lrSJn (kinc,ppOM) + Be,nH:L(kinc,ppOM) ) (23)

inc

Lo Efiﬁ(row = Ah,nJ n (kinc,ppOM) +B;,,H ;(kinc,ppOM) ,
(24)

where the z dependence given by the factor exp(ik,zop) is
omitted.

The Maxwell equations written in cylindrical coordi-
nates allow us to derive E, and H

1 (ikzaEz aHz) 25)
E, = — —low s 25
Y e, \ P de *ap
1 [ik,oH, JE,
H, = — +iw€gi— |, 26
@ kizm’p o O weta (26)
which leads to
E%nz _21 |:nk ir’lrfJn(kinc,pPOM)
inc,p POM
H;(kinc,ppOM)

+ kinc,pA}zfer,z(kinc,ppOM)] + [nsze,n
Pom

+ kinc,th,nHrt’(kinc,ppOM):| 5 (27)
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-1
k2

inc,p

Jn (k inc,ppOM)

iw/-LOH<p,n = |:nk2A}E$L

Pom
2 i ’
+ kinckinc, ;r,lr(z:Jn(kinc,ppOM):|

H; (kinc,ppOM)

+ nszh,n
PoM

+ kiznckinC,pBe,nH; ' (kinc,ppOM)‘| . (28)

These formulas will be used in Section 5 to apply the
boundary conditions on the cylinder surface, keeping in
mind the z-dependence term exp(ik,zop)-

B. Field Inside the Cylinder
Making use of Eq. (19), the field in Eq. (15), after discreti-

zation of the integral, takes the form

2 Ng +00
E(royn) =2 >, Aj,vrj,v > i,k v pPoM)eXPlin (eom — ¢,)],
i1 =1 i

(29)

where the z dependence is omitted. Thus the cylindrical
components of E depend on the polarization vectors I} ,.
While each I'j, is expressed in the coordinate set
(p,,®,,2), it is necessary to obtain its projections onto the
local set (pom, @om,Z), linked with the point M. We obtain

Fj,v : i)OM = (Fj,v,pi)v + Fj,v,q){bl)) : i)OM
= Fj,V,p cos(@om — @) + Fj,V,(p sin(gom — ¢,),
(30)

Fj,l/ . &OM = (Fj,v,pi)v+ Fj,v,(pibv) ° ¢OM
== l—‘j,I/,p Sin((pOM - (pv) + Fj,V,(p COS((POM — ¢y,
(31)

r.,-z=T

Jz FAZN

(32)

Projecting Eq. (29) onto poy, using Eq. (30), and introduc-
ing the coefficients,

Qonjv= 1—‘j,V,pin exp(_ ln(pv 5 (33)
ah,nj,v = ikj,V,ij,V,q)in exp(— ianV)’ (34)
Qo njv= I‘j,v,zin exp(_ ingo,,) , (35)

the first component of E takes the form
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2 N<p +00 ap
. n+1g,v
E (rom) = EE E —l<ao,n+1,j,u— A )
Jj=1r=1 n=-» Jsvsp

X (Rj ., ppom)expli(n + 1) eowm]

e
+ Z l<ao,n—1,j,u+ 3

LVp

n=-0o

Apn-1jv
Y ) Jn (k], V,ppOM)

Xexpli(n = Deom] (- (36)

Changing n into n—1 in the first sum and into n+1 in the
second sum and using the relations between Bessel func-

tions  Jy,_1(§) +Jp41(§)=2nd,(§)/¢ and  J,_1(§)-Jp,1()
=24, (£), one obtains for the nth Fourier components of E,,

Ep,n(rOM == lz 2

2 No
an(kj,v,ppOM)
Qponjv
Jj=1 »=1

2
kj,v,pPOM

- ao,n,j,bf]r,z(kj,v,ppOM)‘| . (37)

In a similar way, by putting Eq. (31) into Eq. (29), the
nth Fourier component of E, can be obtained:

E,,(roy) = S >A A,

> e ned,(k; . ppon)
a, NN v,

Jj=1 »=1 kj,v,ppOM
ap v
SR V,ppOM)], (38)
k] v,p

while finding E, , is straightforward:

2 No

z, n(rOM) 2 E e nj, VJn( VppoM)' (39)

J=1 v=1

We recall that the z dependence given by the factor
exp(ik,zom) is omitted in Egs. (29)—(39). However, this de-
pendence is required to calculate the components of H us-
ing the Maxwell equations, which provide the following

links:
1 (oE, OE,
Hy=—o| —-—), (40)

—+—“’-——). (41)

Substituting Eqgs. (37) and (38) into Eq. (41) and taking
into account the Bessel equation o) (&)+d)(&)/&-(n?/&
-1)J,(£=0 and the fact that (J)/&'~J, /&é+d,/£=0, we
obtain

2 No
iopH, ,(ros) = X, XA n i ullinpon) . (42)

J=1 v=1

A similar procedure applied to Eq. (40) by using Eqs. (37)
and (39) gives
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2 Ne Jo(kj, ppoOM)
iwpoH . (ron) = - 2, 2 A; { l"ah.n,i,vj’—’p

2
Jj=1 rv=1 kj,l/,ppOM

_'ao,ng}f]é(kb}mppohd)]

+ kj,v,pae,n,j,lf];z(kj,V,ppOM)} . (43)

5. BOUNDARY CONDITIONS

The continuity of the components of E and H tangential
to the cylinder surface results in the continuity of each of
their Fourier components:

AP (Rine )R) + By H (Rine ,R)

2 No
=2 2 A el R, (44)
Jj=1 v=1
n mc ) . Jr,z(kinc, )
szmc 5 pR A;Ln;:l ‘”R
klnch ' kinc,p

H:—z(kinc, ) H:—l,(kinc, )
+nk,B,, A +By,, A

2 k

inc, inc,p

2 J(k DE) J’(k ,ZE)
n\"vj,v, n\"vj,v,
:S :2% Jv

nQon.jv k /,R + Qponjv k >
Jsvs ]

e
(45)

j=1 1=

AP, (Bine ,R) + By o H (Rine R)
2 No

=D DA apndulk,R), (46)

J=1 »v=1

inc n( inc pR) k2 ch/ (kinc,VR)

T2 5 e,n
kmc pR kinc,p

H+(kinc, ) H;, (kinc, )
+ nszh,nkg—pR + k12n e,nk—ﬂR
inc, inc,p

2 Ne J,(k;, ,R)

nkAyy

+ (k;

Js Vp enj, v kzao,n,j,V)Jr’L(kj,v,pR) . (47)
Equations (44)—(47) are valid for each n. Numerical treat-
ment requires truncation in n, say from —-N to +N. This
will limit the number of equations to 4(2N+1), and the
number of unknown scattered amplitudes in the external
medium B, ,, and B, , will become equal to 2(2N+1). In

addition, the number of unknowns inside the cylinder Aj,v
is equal to 2N,,. To obtain a Cramer set, it is necessary to
chose a discretization in ¢ depending on N such that N,
=2N+1, i.e., that the number of the unknown field com-
ponents inside and outside are equal. With this condition
applied, all the field amplitudes can be found by solving a
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linear algebraic set, i.e., by a single matrix inversion. It is
worth noticing that the Fourier components of the field
outside the cylinder are coupled through the field inside

the cylinder, as long as Aj,v are identical for each n. If the
cylinder consists of optically uniaxial material with the
optic axis parallel to the geometrical axis, this coupling
disappears, as discussed in Section 6.

6. UNIAXIAL MATERIAL

When the cylinder consists of a material having uniaxial
anisotropy with the optic axis parallel to the cylinder axis,
the permitivitty tensor takes a simple diagonal form:

e 0 O
é=|0 € 0O, (48)
0 0 g

and each direction of propagation is characterized by two
wavenumbers”:

—
k1=k0\/6x7

1 1 /sin?6 cos?0
(49)

=— +
kX0 K2\ e

'y €,

X

corresponding to the so-called ordinary and extraordinary
wave, respectively. They form two sur_faces in the % space,
a sphere (with radius equal to kgye,) for the ordinary
wave and an ellipsoid of revolution (around the &, axis)
for the extraordinary wave, which ellipsoid has an axis
equal to ko\@ along %, and ko\s“:x along %, (Fig. 3). The
wavenumber %; of the ordinary wave does not depend on
the direction of propagation, and its polarization vector is
perpendicular to the direction of propagation and to the
optical axis™?:

tg@l = tl = \r’(kgex - k?)/kz,

Fig. 3. Index surfaces in the & space (upper notation in each
pair) and in the coordinate space (lower notation) and the wave
vectors and the polarization vectors in the coordinate space.
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1—‘1,1/= ¢V' (50)

The wavenumber and polarization vector of the extraor-
dinary wave depend on the polar angle 6, but are indepen-
dent of ¢. For each value of &,, there are two possible di-
rections of propagation, as can be observed in Fig. 3,
except for the cases when %£,=0 and kz=k0\e’:x. It can be
shown that, using Eq. (34) of Ref. 4,

o —
N e (kie,— kD)€,
tg02 = tQ =- >
k.

k2

4

———P+2Z
kie, — k2

k2 2
14|z
\/ (k—k)

— P+ €loZ

=
\y’(Ext2)2 + 63

_t2
F2=

(51)

As can be observed, I'y , L ¢,, which can be expected by
taking into account Egs. (50). If, instead of k;/k; and
kolkg in Eqgs. (49), we take the ratio r/\ of the distance
from the origin and the wavelength, these equations rep-
resent two surfaces in the direct space of the coordinates,
a sphere and an ellipsoid of revolution, identical to the
surfaces in the % space. These surfaces in the direct space
are called index surfaces and it can be shown that the po-
larization vectors are tangential to them, as represented
schematically in Fig. 3.

Taking all this into consideration, it is possible to sig-
nificantly simplify the form of the wave expansion inside
the uniaxial material and thus to simplify the boundary
conditions. We observe, at first, that Eqs. (33)—(35) be-
come

Aon1,v=Cqen1v=qprn2v= 0, (52)
Apni1v= ikl,pin exp(— in(pv), (53)
ae,n,Z,vz F2,zin exp(_ in<p,,),

Qo n2v= I‘2,pin exp(— iYLQD,,) . (54)

As long as the arguments of Bessel functions participat-
ing in the field expansion inside the cylinder, Egs.
(37)—(39), (42), and (43), do not depend on ¢,, it is possible
to extract them from the sum over v and to introduce new
amplitudes, which are proportional to the nth Fourier
components of the field amplitudes Aj’,, with respect to
Pom:

AL =D Ay sy, =iki" D Ay exp(-ing,), (55)

AV =D Ay ,00,=i"Ty, > Ay, exp(-ing,), (56)
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A(n}r)L = 2 AZ,Vao,n,,Z,V = inFZ,pE A2,V exp(— ln(pv) . (57)

In addition, using Eqgs. (51), one obtains the following
links:

F2 ek
AN = _EPAW __ EEAM)

e,n e,n
FQ,Z €, k/)

(58)

In isotropic materials this means that the polarization of
the electric field is transverse to the direction of propaga-
tion. Using these new amplitudes, the boundary condi-
tions are simplified to give

AmCJ (kmc pR) + Be nH+(k1nc pR) A J (k2 pR), (59)

inc n( inc,pR) nch,z(kinc,pR)
en” 12 p TR L
"R R "k

inc inc,p

nk

H+(kinc ) H;,(kinc, )
+ nsze n ) ’”R + Bh n pR
’ kmc gR ' kinc,p
g STl o TR

h
e " k3R "ok,

ch (kmc pR) + Bh nH+(k1nc pR) A(I)J (kl,pR)7 (61)

n inc ) . JI,'L(kiI]C, )
b s D) g g )
kmeR ’ kinc,p
H;(kinc,pR) 2 Hr-:,(kinc,pR)

2 + Rin e,n A
inc, inc,p

J, (k1 R) € J, (ks ,R)
=nsz§1{ZL2—1’”R+(k§,p+—k )Am 2,08 . (62)
k1R € k

2,p

These equations are uncoupled with respect to n, so that
for each value of n it is necessary to solve only a system of
four equations. They have a form quite similar to the iso-
tropic case, which can be obtained by taking into account
that €,=¢, and thus ky=k;. However, in both uniaxial or
isotropic cases, if the incidence lies outside of the cross-
section plane (i.e., k, # 0), the fundamental cases of polar-
ization (indices e and &) remain coupled.

If, in addition, the incident wave vector is perpendicu-
lar to the z axis, the fundamental polarizations are decou-
pled and diffract independently in both uniaxial or isotro-
pic cases. This fact can be observed by imposing £,=0 in
Eqgs. (69)—(62) and using kinc ,=kinc, R1,=k1, and kg ,=k:

+ nkZBh,n

Ach (klncR)+BenH+( 1ncR) A(I)J (kZR) (63)

1
- —IA lnCJ ! (BincR) + By, nHH(kmcR)]: —A(I)J 2k R),

(64)

AP, (BincR) + By, H (RincR) = AT, (R1R),  (65)
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kind Al (kincR) + B uHy, (kincR)] = kAT, (koR). (66)

In that case the set reduces to the well-known equation
published in Ref. 1. It appears that Eqgs. (63) and (66) are
uncoupled from Egs. (64) and (65). It is necessary to point
out that this decoupling of the fundamental polarizations
when considering incidence in the cross-section plane
does not occur in the case of general anisotropy. Even if
Eqgs. (44)—(47) are rather simplified when %,=0, the fact
that the polarization vectors depend on ¢ will couple the i
and the e amplitudes outside the cylinder through the

amplitudes Aj’,, inside it.

7. NUMERICAL APPLICATIONS

As a first validation test of the theory, we have chosen one
of the rare cases found in the literature that represents
numerical examples available for comparison. This is the
case treated by Monzon® and it concerns conical diffrac-
tion of a plane wave (wavelength A\=2) on an uniaxially
anisotropic circular cylinder, having a radius R=1 and op-
tical axis along Ox, perpendicular to the symmetry axis
Oz. The nonnull components of the relative permittivity
tensor are €,,=4.87526 and ¢,,=¢,,=5.29, and the exter-
nal medium is vacuum. The direction of the incident wave
vector (Fig. 1) is defined by ¢;,.=90° and 6;,.=30°. The in-
cident polarization is perpendicular to the z axis, €;,. | z,
and the amplitude of the magnetic field vector is normal-
ized to unity |H™|=1. We compare our results with the
ones of Fig. 6 of Ref. 3. The differential cross section
(DCS) is given by

\2/m i ,
ople)=—————| > (—)"By ™|,  (67)
o Sin(bine) | jon
o7 — +N
€ V2/m
Y i "B 68
UE((P) Mo Sln( alnc) _EN( l) © "e ( )

Figure 4 shows oy and opg, calculated with N=20 and
compared with the DCSs of a cylindrical cylinder filled
with an isotropic medium having €=5.29. The results for
the anisotropic cylinder are exactly the same as obtained
in Ref. 3.

A parameter important in numerical applications is the
convergence rate with respect to the truncation value of
N. Figure 5 represents oy as a function of N and shows
that is sufficient to take N=9 to obtain correct results.
The convergence rate is a little slower than for the isotro-
pic case, but this could be explained by the gap in the
components of the relative permittivity tensor e, and
€y (=€,,). In fact, the convergence is determined by both
the optical contrast between the external medium and the
cylinder and by the difference between the components of
the permittivity tensor. This is illustrated in Figs. 6 and
7. When keeping the same value of ¢, and increasing four
times the other two components, e,,=¢,,=21.16, the con-
vergence rate reduces and it is necessary to use N as high
as 22 to obtain relevant results (Fig. 6). When reducing
the difference between e, (=20.74526) and ¢, (=€,
=21.16), the convergence rate improves (Fig. 7) and ap-
proaches the convergence rate of the case given in Fig. 5,
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Fig. 4. DCS of the magnetic (o) and the electric (op) fields for
a circular cylinder with R=1 having Oz as symmetry axis and
filled with an uniaxial anisotropic medium with €,,=4.87526 and
€,,=€,=5.29, and €,=1, compared with DCSs of an isotropic cir-
cular cylinder with €=5.29 (R=1). The incident plane-wave pa-
rameters are A\=2, ¢;,,=90°, and 6,,.=30°, and the polarization is
perpendicular to the z axis. Solid curves, anisotropic case; dotted
curves, isotropic case.
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Fig. 5. Convergence test of o as a function of the order N of the
truncated Fourier series for the point ¢=270° in Fig. 4. Solid
curve, anisotropic case; dotted curve, isotropic case.
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Fig. 6. Same as in Fig. 5, but with different anisotropy, €.,
=4.87526 and ¢,,=¢,,=21.16 (solid curve). The dotted curve rep-
resents the isotropic case illustrated in Fig. 5. The other param-
eters are the same as in Fig. 4.

even when keeping a very high optical contrast between
the external and the internal media.

In the last example, we demonstrate the possibility of
the method to analyze a biaxial anisotropy, when all three
diagonal components of the permittivity tensor are differ-

Neviere et al.

ent. Figure 8 represents the DCSs (calculated with NV
=20) for a biaxial anisotropic case with €,.=2, ¢,,=2.25,
and €,=2.5, compared with an isotropic medium (e
=2.25). The corresponding convergence test for oz(270°)
is shown in Fig. 9. When compared with Fig. 5, one ob-
serves that the convergence rate is almost the same as for
a uniaxial cylinder.

26
24
22:
20
18]
16

o(270°)

Ny -

2 T T T T 1
[¢] 5 10 15 20

Fig. 7. Same as in Fig. 6, but with ¢,,=20.74526 and ¢,=¢,
=21.16 (solid curve). The dotted curve represents the anisotropic
case illustrated in Fig. 5.

154

T M T T T M T ' T T
] 50 100 150 200 250 300 350
®

Fig. 8. DCS of the magnetic (o) and the electric (o) fields for
a circular cylinder with R=1 and filled with an anisotropic me-
dium with €.,=2, €,=2.25, and ¢,,=2.5 and compared with a
DCS of an isotropic circular cylinder with e=2.25. The other pa-
rameters are the same as in Fig. 4.
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Fig. 9. Convergence test with respect to the order N of the trun-
cated Fourier series of oy in the point ¢=270° in Fig. 8. Solid
curve, anisotropic case; dotted curve, isotropic case.
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8. CONCLUSION

Using a plane-wave expansion in an arbitrary homoge-
neous anisotropic material, we are able to derive equa-
tions determining the diffraction by a circular optically
anisotropic cylinder. Finding the diffracted amplitudes re-
duces to a matrix inversion, the size of which is deter-
mined by the required number of Fourier components of
the field. The theory is somewhat similar to the theory of
diffraction by an optically anisotropic sphere. However, it
appears more difficult to determine the wavenumbers and
polarization vectors in cylindrical geometry, when com-
pared with spherical coordinates. But, since the cylindri-
cal geometry preserves the wavenumber %, along its axis,
it requires discretization of space directions inside the an-
isotropic material to be done along the azimuthal angle
only, while the spherical geometry needs discretization
along both the azimuthal and the polar angle.

Numerical studies confirm the validity of the method
with respect to already published results and show rela-
tively rapid convergence rates, which require inversion of
a matrix of a size typically of the order of 100 X 100.

The theory presented in this paper can be directly ap-
plied to the study of guided-wave propagation and thus
the modal structure of optically anisotropic fibers. It can
be further generalized to model light diffraction by arbi-
trary (noncircular) cross-section optically anisotropic cyl-
inders.

APPENDIX A: DEGENERACY OF
WAVENUMBERS

After having determined the two wavenumbers %, and k,
by solving a fourth-order algebraic Eq. (9), then Eq. (8)
can be used to numerically obtain the polarization vectors
A, and Ay, each of which represents the eigenvector cor-
responding to the zero eigenvalue, say, y;, of Eq. (8). The
aim of this appendix is to prove that if 2; # k5 then y;=0
is a single zero eigenvalue so that the polarization vectors
are uniquely determined. As long as the eigenvalues of a
given matrix do not depend on the coordinate system
used, let us represent the matrix M of the coefficients in
Eq. (8) in spherical coordinates®:

€ €0 Er(p
L2
M=—Fko| €or €p—Fk oo |, (A1)
€or €0 €,,— k>

where k=Fk/k,.

Let us assume that the zero eigenvalue of this matrix is
not single. It cannot be triple, because in that case the
matrix will be null. If there is a double zero eigenvalue of
M, this means that its rows are not linearly independent
and thus two of them can be expressed in terms of a single
row, say, the first one:

~ ~ €r-Erg
€p—k =ae = k"= €h- , (A2)

err

€or = A€y
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€,,€
P2 — P2 — e
€p—k =be, 2 k" =€,,—

Err

€or = b €rrs

(A3)

As long as Eqs. (A2) and (A3) have to be simultaneously
satisfied, this imposes a link between the elements of the
permittivity tensor:

€¢r€r<p €or€ro
€op~ = €o9—

6’7’

(Ad)

Err

However, if this condition is satisfied, it follows from Eq.
(16) of Ref. 4 that the two wavenumbers k; and k, are
identical. The conclusion is that if 2, # k4, there is a single
zero eigenvalue of M, to which corresponds a unique ei-
genvector, which will determine the polarization vector.
When k;=Fky, the zero eigenvalue is twice degenerated,
there are two eigenvectors corresponding to this double
eigenvalue, and they represent the two mutually orthogo-
nal polarization vectors.

APPENDIX B: ANALYTICAL
DETERMINATION OF THE WAVE
POLARIZATION VECTORS

Once the wavenumbers &; (j=1,2) are found, Eq. (8) will
interrelate the components of A;. Let us, at first, take as
an independent component A; ,=A;-p. The case when this

component is null will be analyzed separately.

Defining normalized wavenumbers l%z=kz/ ko, Eq. (8) is
written as.

(];3 = €A €A o (l;zztj +€,)A;,.=0,
- 6¢PAij + [}23(1 + tj2) - EW]Aj,qo - E@ZAJ',Z =0,

— (B2t + €)A;,— €A+ (B2t - €)A;,=0.  (Bl)

The fact that the determinant of this set is null means
that there are at maximum two independent equations
among the three. Let us assume that these are the first
two equations, so that they give the required relations:

€op €z

AL‘P = ~9 Aj,p’ (Bz)
det ) €pp kztj + €pz
R21+t) - €, ~ €
€, ];3 — €
det - p: ”
k;(1+t7)—€ €op
A= — A;,. (B3
det ) Epzp kztj + EPZ
kg(l + tJZ) — €pp — €gz

The case when A; =A;-p=0 greatly simplifies Egs.
(B1). In addition, to have a nontrivial solution (4;,#0
and/or A; , #0), it is necessary that the determinant in the
denominator of Eqs. (B2) and (B3) is null, i.e., that two of
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the three equations in the set of Eqs. (B1) are linearly de-
pendent. Let us take the second and third one:

[];3(1 + t]z) - E(p‘p]Aj,go - €<p2‘Aj,Z = 07

€ o~ (B2~ €)A;, = 0. (B4)

The condition to have a determinant equal to zero gives a
quadratic equation for tjz. Once its solutions are found,
they are used in one of the equations in the set of Egs.
(B4) to determine the link between A; , and A, ,. The par-
ticular case when €,,=0 and/or ¢,,=0 is simplified further

on, as Eqgs. (B4) take the form

(];’J2 — €p)4),=0,
(}gjz,p - Ezz)Aj,z =0 (B5)

with the following nontrivial solution:

Ri=ey=>A1,#0, A;,=0=T=9,

};;p: ezz:>A2,z # 07 A2 =0:>F2=2. (B6)

¢
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