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Diffraction theory: application of the fast Fourier
factorization to cylindrical devices with

arbitrary cross section lighted in conical mounting
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The differential theory of diffraction by arbitrary cross-section cylindrical objects is developed for the most gen-
eral case of an incident field with a wave vector outside the cross-section plane of the object. The fast Fourier
factorization technique recently developed for studying gratings is generalized to anisotropic and/or inhomo-
geneous media described in cylindrical coordinates; thus the Maxwell equations are reduced to a first-order
differential set well suited for numerical computation. The resolution of the boundary-value problem, including
an adapted S-matrix propagation algorithm, is explained in detail for the case of an isotropic medium. Nu-
merical applications show the capabilities of the method for resolving complex diffraction problems. The
method and its numerical implementation are validated through comparisons with the well-established mul-
tipole method. © 2006 Optical Society of America

OCIS codes: 050.1960, 060.0060.
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. INTRODUCTION
ylindrical devices commonly appear in diffraction and
ropagation theory, and their interest has recently in-
reased with the advent of microstructured optical fibers
MOFs).1 An efficient method called the multipole method
MM) has already been developed to study devices com-
osed of cylindrical inclusions.1–3 Nevertheless, it has at
east two major limitations: All the inclusions must be in-
luded in nonoverlapping circles and the refractive index
f the matrix containing the inclusions must be homoge-
eous. In addition, the reflection matrix relating the inci-
ent and the scattered field for each individual inclusion
ust be obtained by other means in the case of a noncir-

ular inclusion or inhomogeneous circular inclusion. In
hat follows, we present the application of the fast Fou-

ier factorization (FFF) method to diffraction theory. This
ew method has none of the known limitations of the
M. Briefly, the FFF method rewrites the Maxwell equa-

ions through the use of a Fourier series. Although an iso-
ated cylindrical object is a priori nonperiodic, it becomes
� periodic with respect to the polar angle � when it is
escribed in cylindrical coordinates. This periodicity al-
ows us to describe both the electromagnetic field and the
iffracting object in terms of a Fourier series. As was pre-
iously done in grating theory,4 it is now possible to re-
uce the Maxwell equations to a first-order differential
et that must be numerically integrated. Of course the
umerical treatment requires truncating the Fourier se-
ies of the field, a process that has created great numeri-
al problems for decades but recently received a solution
hrough what is now called the FFF method. In a recent
aper5 we proved that such a method was able to give fast
1084-7529/06/051146-13/$15.00 © 2
onverging results when a cylindrical object was illumi-
ated under TM polarization. The aim of the present pa-
er is to extend the theory to the most general case in
hich the diffraction device is illuminated with a field
ropagating outside the cross-section plane of the device,
hich leads to a full vectorial problem that does not re-
uce to the two classical TE and TM cases of polariza-
ions. Moreover, the propagation equations will be derived
n anisotropic media to open a way to resolve the diffrac-
ion problem of a wave by an arbitrary cylinder made of
n arbitrary (lossy or lossless) anisotropic medium. In
ections 2 and 3 we present the FFF principles to obtain
he set of differential equations defined in the area where
he diffracting device locates. In Section 4 we discuss the
omplete solution of the diffracting problem in the case of
n isotropic medium. In some cases, the diffracting object
s invariant by a rotation of angle T=2� /NT (NT is the
umber of subperiods of the 2� range). In Section 5 the
umerical theory is adapted to take into account this sub-
eriodicity on the T range of the polar angle coordinate �.
inally, we validate the numerical implementation of our
ethod with the well-established MM (Refs. 2 and 3)

hrough several examples including the excitation of the
undamental mode of a six-hole MOF; we also discuss
ome aspects of the numerical efficiency and accuracy of
he FFF method.

. PRESENTATION OF THE PROBLEM
e consider a cylindrical object described in both a Car-

esian coordinate system Oxyz with �ex ,ey ,ez� unit vec-
ors and in cylindrical coordinates r ,� ,z with �e ,e ,e � as
r � z

006 Optical Society of America
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nit vectors. Its surface �S� is defined by an arbitrary di-
ectrix located in the cross-section plane �Oxy� containing
he origin as shown in Fig. 1 or outside the origin (see Fig.
). Generatrices are straight lines parallel to the z axis.
he equation of the directrix is f�r ,��=0 or r=g���, in
hich f and g are given functions. The surface �S� divides

he space into two regions. The first one, the internal re-
ion denoted int, is contained inside the surface and is
lled with a linear, inhomogeneous and anisotropic me-
ium, dielectric or conducting (nonmagnetic), and its com-
lex permittivity tensor is denoted �int

��r ,��. The second
egion, denoted ext, is the outside region and is filled with
homogeneous exterior medium, and its real permittivity

s denoted �ext. The present method requires that we in-
roduce three areas defined by two circular cylinders with
irectrix Cmin and Cmax. The directrix Cmin is the in-
cribed circle of the directrix of surface �S�, and Cmax is
he circumscribed circle (see Fig. 1). The area included be-
ween both circular cylinders is called the modulated
rea. Inside this area the permittivity is described by a
� periodic with respect to � tensor ���r ,��. Unless defined
therwise, both lower-case and capital letters in bold rep-
esent vectors.

An incident plane wave with wave vector kext with
ransverse component kt,ext and z component �0 falls
n the device (Fig. 3). We introduce two angles:

= �−e ,k � and �= �k ,k ���−� /2 ,� /2�. We as-

ig. 1. Cross section of an arbitrary shaped cylindrical object
lled with an anisotropic and inhomogeneous media and de-
cribed by a directrix r=g��� containing the origin in the Oxy
lane and generatrices parallel to the z axis.

ig. 2. Same kind of arbitrary cross section as in Fig. 1 with the
rigin outside the directrix.
inc x t,ext t,ext ext
ume that the plane-wave components have a harmonic
xp�−i�t� time dependence. Thus the incident vector field
f E and H reads

�
E�inc��r,�,z,t� = Ae exp�i��0z − �t��

� exp�ikt,extr cos�� − �inc − ���

H�inc��r,�,z,t� = Ah exp�i��0z − �t��

� exp�ikt,extr cos�� − �inc − ���
� , �1�

n which �=2� /�0�	0�0, �0=−kext sin���, kt,ext
�kext

2−�0
2 with kext= �2� /�0���ext/�0 where �0 is the

avelength in vacuum. Moreover, the polarization of the
ncident electric field is defined by the azimuthal angle 

ontained in the plane perpendicular to the wave vector
ext and with basic vectors �p1 ,p2� [p1 is chosen to be in-
luded in the plane �kext,ez�, see Fig. 4]. The relation be-
ween the E�inc� amplitude noted as Ae and the H�inc� am-
litude noted as Ah with the incident wave vector reads
hanks to the Maxwell equations in homogeneous regions:

�
Ae = �cos�
�p1 + sin�
�p2��E�inc��

Ah = −
1

Z

kext

�kext�
� Ae � with Z =

1

next
�	0

�0
,

�2�

n which �E�inc�� and �kext� are the norms of their respective
ectors E�inc� and kext. If the permittivity is a complex
umber, the cut of the square root next=��ext is then cho-
en as the second bisector as explained in Ref. 6. The total
eld has the same time dependence as the incident wave,
nd the invariance of the device with respect to z leads to
n exp�i�0z� dependence. Moreover, the cylindrical coordi-

ig. 3. Incident wave vector in the exterior homogeneous region
nd notations.

ig. 4. Definitions and notations for the azimuthal angle 
 of
he incident electric field (p1 belongs to the plane defined by ez
nd k ).
ext
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ate system naturally implies a 2� periodicity with re-
pect to �. In view of a numerical implementation of the
heory, an electromagnetic and geometric quantity
�r ,� ,z , t� will be represented by its Fourier series trun-
ated to the Nth order:

u�r,�,z,t� = exp�i��0z − �t�� 	
n=−N

+N

un�r�exp�in�� with un�r�

=
1

2�



0

2�

u�r,��exp�− in��d�. �3�

. FAST FOURIER FACTORIZATION
ETHOD IN CYLINDRICAL COORDINATES

XTENDED TO A CONICAL MOUNTING
he aim of this work is to establish, in cylindrical coordi-
ates, a set of equations satisfied by the electromagnetic
eld suitable for numerical computations. We make use of
he recent progress in grating theory published under the
ame of fast Fourier factorization (FFF), but the case of
ylindrical coordinates is not treated in the book describ-
ng the method.4 The FFF method starts from the classi-
al differential method7 with efficient improvements in
he factorizations rule concerning Fourier developments.
n fact, we have to consider new factorization rules that
ake into account the Fourier truncation of developments
nd the discontinuities of any optogeometric quantities
across the diffracting surface). One of the key steps of the
FF method is to find the correct formulation in the Fou-
ier space of the product between �� and E in the constitu-
ive relation that must be injected into the Maxwell equa-
ions. Doing so, the Maxwell equations are restated in the
ourier space to obtain a set of coupled linear ordinary
ifferential equations.

. Formulation of the Linear Relation between E and D
n a Truncated Fourier Space

. Factorization Rules
s has been already treated in the paper concerning TM
olarization,5 the FFF method consists in finding the best
ormulation in a truncated Fourier space of the product
etween the tensor ���r ,�� and E in the modulated region
hen we want to calculate D given by

D = ���r,��E. �4�

n fact, the function ���r ,�� is discontinuous across the sur-
ace �S�. The mathematical basis of the FFF method was
stablished by Li8 with factorization rules that allow one
o obtain a solution of this problem. The first rule states
hat the Fourier components h̃n of the product h̃�x� of two
eriodic, piecewise-smooth bounded functions f̃�x� and
�x� that are not discontinuous at the same value of x are
iven by Laurent’s rule:

h̃n = �f̃g̃�n = 	
m=−N

+N

f̃n−mg̃m. �5�

o simplify the equations that follow, we introduce the
oeplitz matrix �f̃� defined by ��f̃�� = f̃ and the col-
n,m n−m
mn vector �g̃� with elements g̃m. Thus the last equation
eads in matrix notation:

�f̃g̃� = �f̃��g̃�. �6�

he second rule given by Li8 states that a product of two
iecewise-smooth, bounded periodic functions that have
nly pairwise-complementary jump discontinuities (i.e.,
hat have a continuous product) cannot be factorized by
aurent’s rule, but it can be factorized by the inverse rule:

�f̃g̃�n = 	
m=−N

+N 
�1

f̃
�−1�

n,m

g̃m. �7�

r in matrix notation,

�f̃g̃� =�1

f̃
�−1

�g̃�. �8�

inally, the most general situation concerns a product of
wo piecewise-smooth, bounded periodic functions that
ave discontinuities at the same value of x with non-
omplementary jump discontinuities. Such a product can
e correctly factorized neither by Laurent’s rule nor by
he inverse rule. This last case occurs in Eq. (4).

. Intermediate Notations
he basic idea of the FFF method is to use the first two
ules to write a new formulation of Eq. (4), thanks to a
uitable continuation of the concept of normal vector. We
onsider at each point of the surface �S� the normal vector
f �S� noted as N whose components are Nr ,N� ,Nz, and
wo orthogonal tangential vectors of �S� denoted T1 with
omponents �T1r ,T1� ,T1z� and T2 with components
T2r ,T2� ,T2z� such that N=T2�T1 (see Fig. 5). The pro-
ections of the fields E and D on T1, N, and T2 define
hree field components continuous across the surface
S� : ET1

, DN, and ET2
; they permit us to create a column

enoted F� respectively made with these components,
hose size is 3�2N+1�. If we define a generalization of the

calar product applied to a vector ṽ and a matrix P by
Fig. 5. Tangential and normal vectors of a cylindrical object.
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v · P = �
vr

v�

vz
� · �

Prr Pr� Prz

P�r P�� P�z

Pzr Pz� Pzz
� = �

vrPrr + v�P�r + vzPzr

vrPr� + v�P�� + vzPz�

vrPrz + v�P�z + vzPzz
� ,

�9�

e obtain

F� = O�E �10�

ith

O� = �
T1r T1� T1z

�N · ���r �N · ���� �N · ���z

T2r T2� T2z
� . �11�

hus for the electric field we can write E=C�F� with C�

O�
−1. Tedious algebraic calculations lead to

C� =
1

N · �� · N�
��N · ��� Ù T2�r Nr − ��N · ��� Ù T1�r

��N · ��� Ù T2�� N� − ��N · ��� Ù T1��

��N · ��� Ù T2�z Nz − ��N · ��� Ù T1�z
� .

�12�

hen D=��E=��C�F�, and finally,

D = ��C�O�E. �13�

. New Relation between �D� and �E�
e will write this last equation in the truncated Fourier

pace using the factorization rules mentioned above.
ince ��C� is discontinuous and F� is continuous, we apply
aurent’s rule for these two factors. Introducing the col-
mn �D� made of three blocks �Dr�, �D��, and �Dz�, each
lock containing the Fourier coefficients of the corre-
ponding vector component, we write �D�= ���C���F��. Then
he inverse rule is used since F�=O�E is continuous while

� and E are discontinuous: �O�E�= �O�
−1�−1�E�

�C��−1�E�. Finally, we find

�D� = Q��r��E�, �14�

ith

Q��r� = ���C���C��−1. �15�

. Maxwell Equations in a Truncated Fourier
pace
ifferentiating the series in Eq. (3) with respect to � re-

ults in multiplying the nth term by “in”. Thus introduc-
ng a diagonal matrix � such that ���nm=n�nm, the deri-
ation reads in matrix notation as

��U�

��
= i��U�. �16�

ccording to the z and t dependence of the total fields, the
axwell equations written in the cylindrical coordinate

ystem become
1

r
��Ez� − �0�E�� − ��Br� = 0, �17�

i�0�Er� −
d�Ez�

dr
− i��B�� = 0, �18�

1

r
�E�� + r
d�E��

dr
− i��Er�� − i��Bz� = 0, �19�

1

r
��Hz� − �0�H�� + ��Dr� = 0, �20�

i�0�Hr� −
d�Hz�

dr
+ i��D�� = 0, �21�

1

r
�H�� + r
d�H��

dr
− i��Hr�� + i��Dz� = 0. �22�

From Eq. (14) we obtain the expression of each block of
D� in the cylindrical coordinate system in terms of the E
locks. We introduce the following notation for the Q�

atrix:

Q� = �
Q�,rr Q�,r� Q�,rz

Q�,�r Q�,�� Q�,�z

Q�,zr Q�,z� Q�,zz
� . �23�

quation (20) leads to

�Er�r�� = Q�,rr
−1
�0

�
�H��r�� −

�

r�
�Hz�r�� − Q�,r��E��r��

− Q�,rz�Ez�r��� , �24�

nd Eq. (17) becomes

�Hr�r�� =
1

	0�

�

r
�Ez�r�� − �0�E��r��� . �25�

hese two last equations and Eq. (23) permit us to rewrite
qs. (18), (19), (21), and (22). Finally, we obtain a set of
rst-order differential equations written in a four-block
atrix form:

d

dr�
�E��

�Ez�

�H��

�Hz�
� = iM�r��

�E��

�Ez�

�H��

�Hz�
� , �26�

ith
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M�r� = �
−

1

r
�Q�,rr

−1Q�,r� +
i

r
Id −

1

r
�Q�,rr

−1Q�,rz

�0

�r
�Q�,rr

−1 �	0Id −
�

�r2Q�,rr
−1�

− �0Q�,rr
−1Q�,r� − �0Q�,rr

−1Q�,rz

�0
2

�
Q�,rr

−1 − �	0Id −
�0

r�
Q�,rr

−1�

��Q�,zrQ�,rr
−1Q�,r� − Q�,z�� −

�0

	0�r
�

�2

�	0r2 + ��Q�,zrQ�,rr
−1Q�,rz − Q�,zz�

i

r
Id − �0Q�,zrQ�,rr

−1 Q�,zrQ�,rr
−1

�

r

��Q�,�� − Q�,�rQ�,rr
−1Q�,r�� −

�0
2

	0�
Id

�0

	0�r
� + ��Q�,�z − Q�,�rQ�,rr

−1Q�,rz� Q�,�rQ�,rr
−1�0 − Q�,�rQ�,rr

−1
�

r

� ,

�27�
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here Id is the identity matrix. It is important to notice
hat the M�r� matrix depends only on the r coordinate and
hat its size is 4�2N+1��4�2N+1�. In brief, Eq. (26) is a
ew formulation of the Maxwell equations in cylindrical
oordinates in a truncated Fourier space, which is valid in
ny lossless or lossy, anisotropic and/or inhomogeneous
edium.

. RESOLUTION OF THE DIFFRACTION
ROBLEM IN THE CASE OF AN ISOTROPIC
ND HOMOGENEOUS MEDIUM

he resolution of the diffraction problem is much simpler
f the diffracting object is made of an isotropic and homo-
eneous material, since the field in such a region can then
e expressed in terms of Bessel functions. Thus, from now
n, we consider that the region (int) is filled with an iso-
ropic and homogeneous medium. Its permittivity tensor
s reduced to a complex number �int (see Fig. 1).

. Linear Relation between E and D in the Case of an
sotropic Medium
n the present case, the tensor �� in Eq. (4) (defined in the
odulated area) becomes a function ��r ,��. So we have
·�� ·N=��r ,���N ·Id� ·N=��r ,��. Moreover, �N ·���ÙT2
��r ,��NÙT2=��r ,��T1 and �N ·���ÙT1=��r ,��NÙT1=
��r ,��T2. Thus the term ��C� reduces to

�
�N� Nr 0

− �Nr N� 0

0 0 1
� .

onsidering f̃�x� and g̃�x� as 2� periodic functions discon-
inuous at different values of x and using the first factor-
zation rule, we obtain the following results: �f̃g̃�= �f̃��g̃�.
y the use of this property into the Toeplitz matrices �C��
nd ��C�� in Eq. (14), we obtain the same formula as in
he work on the TM case5:
�

= � ����N�
2� + �1

��−1

�Nr
2� − 
��� − �1

��−1��NrN�� 0

− 
��� − �1

��−1��NrN�� ����Nr
2� + �1

��−1

�N�
2� 0

0 0 ���
� .

�28�

Since �D� and �E� have dimension 3�2N+1�, the size of
his matrix is 3�2N+1��3�2N+1�. Moreover, we notice
hat the matrix Q� contains the Toeplitz matrices �Nr

2�,
N�

2�, and �NrN��. But Nr and N� are defined only on the
urface �S�; that is why we need to extend their definition
nside the whole modulated area. The extension can be
one in different ways. If the surface is well defined along
he interval �0,2�� of � (g is continuous on �0,2��), the
nit vector normal to the surface �S� can read as

N�r = g���,�� = � grad�f�

�grad�f���
r=g���

with f�r,�� = r − g���

= 0. �29�

rom its definition, N depends only on � and is defined on
S� only. But we extend its definition to the entire modu-
ated area �Rmin
r
Rmax� by introducing a new vector
ontinuous across the diffracting surface �S� and defined
y

"r � �Rmin,Rmax�, N�r,�� = � grad�f�

�grad�f���
r=g���

. �30�

second way to extend the normal vector consists in con-
idering only the value of N at the intersection points be-
ween the surface �S� and the circle in the cross section of
adius r, and taking an arbitrary vector elsewhere, pro-
iding that we avoid discontinuities and strong variations
o avoid the Gibbs phenomenon. The main disadvantage
f the second method is the longer needed computation
ime related to the fact that the normal vector now de-
ends on r and �, which requires computing the Fourier
oefficients of its three components at any integration
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tep that will occur in the numerical resolution of the
oundary-value problem.

. Field Expressions in the Homogeneous Regions
ccording to the r dependence of the M�r� matrix, no ex-
licit expression of the field in the modulated area can be
ound. On the other hand, the Maxwell equations in the
omogeneous regions (j=int or ext) permit us to obtain a
et of independent second-order differential equations
overning the Fourier coefficients of the z component of
he magnetic and electric field Gz,n depending on kt,jr:

�kt,jr�2
d2Gz,n

d�kt,jr�2 + kt,jr
dGz,n

d�kt,jr�
+ ��kt,jr�2 − n2�Gz,n = 0

with Gz,n � �Ez,n,Hz,n�, �31�

he solutions of which are

Hz,n = Ah,n
�j� Jn�kt,jr� + Bh,n

�j� Hn
+�kt,jr�,

Ez,n = Ae,n
�j� Jn�kt,jr� + Be,n

�j� Hn
+�kt,jr�. �32�

ith kt,j
2=kj

2−�0
2 and kj

2=�2	0�j. The others compo-
ents of the field are given by

Hr =
1

kt,j
2
i�0

�Hz

�r
−

i��j

r

�Ez

��
� ,

H� =
1

kt,j
2
 i�0

r

�Hz

��

+ i��j

�Ez

�r � ,

Er =
1

kt,j
2
i�0

�Ez

�r
+

i�	0

r

�Hz

��
� ,

E� =
1

kt,j
2
 i�0

r

�Ez

��

− i�	0

�Hz

�r � . �33�

quations (32) and (33), which allow us to find the com-
onents of the field developments, can be written in a ma-
rix form. Thus we define a matrix ��j��r� made of 4�4
locks, each block size being �2N+1�. This matrix links
he vector �F�r�� containing the components of succes-
ively E�, Ez, H�, and Hz with the vector �V�j��r�� contain-
ng the components Ae,n

�j� Jn�kt,jr�, Ah,n
�j� Jn�kt,jr�,

e,n
�j� Hn

+�kt,jr�, and Bh,n
�j� Hn

+�kt,jr� by

�F�r�� = ��j��r��V�j��r�� with ��j��r�

= �
1

r
p�j� qe

�j�
1

r
p�j� qh

�j�

Id 0 Id 0

−
�j

	0
qe

�j�
1

r
p�j� −

�j

	0
qh

�j�
1

r
p�j�

0 Id 0 Id

� , �34�

n which

�p�j��nm = −
�0

kt,j
2n�nm, �35�
�qe
�j��nm = −

i�	0

kt,j
2 
n

r
− kt,j

Jn+1�kt,jr�

Jn�kt,jr� ��nm, �36�

�qh
�j��nm = −

i�	0

kt,j
2 
n

r
− kt,j

Hn+1
+ �kt,jr�

Hn
+�kt,jr� ��nm. �37�

e notice that the size of vectors �F�r�� and �V�j��r�� is
�2N+1�.

. Integration of the Differential Set with the S-matrix
ropagation Algorithm
basic integration with a shooting method through the
odulus area gives the transmission matrix T of the dif-

racting device. However, the T matrix may be ill-
onditioned because of numerical contaminations. Impor-
ant index gap or strong growth of the function f�r ,��
ncreases such numerical contaminations. To improve the
onvergence of the results, the S-matrix propagation al-
orithm is used.4,9 In this subsection, this algorithm is
resented in a matrix formulation. The modulated area is
ivided into L slices of which the circular boundary cylin-
ers have radius rs, s� �1,L+1� (r1=Rmin and rL+1=Rmax).
e introduce a infinitely thin homogeneous layer with a

ermittivity of �ext between each slice except at Rmin (see
ig. 6). The resolution of the diffraction problem uses a
hooting method that consists of turning the boundary-
alue problem into an initial-value problem. At the sth
lice, we take 4�2N+1� independent initial column vectors
oted as �Vp� : ��Vp��i=�pi with i� �1,4�2N+1��. In what
ollows, the sign Ù will denote a matrix, used in the inte-
ration process, built from a list of column vectors. These
olumns form the identity matrix

V̂�rs� = �. . .,�Vp�, . . . � = Id, �38�

nd the corresponding fields read F̂�rs�=��ext��rs�Id

��ext��rs� at rs [if s=1 we take ��int��r1�]. The matrix F̂�rs�

ig. 6. Notations of the splitting of the modulated area for the
-propagation algorithm (the coefficients Af,n

�s� and Bf,n
�s� with f=e or

are amplitudes of the field in the infinite thin homogeneous
ayer at r=rs).
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ontains the column vectors ��F�rs���i with i� �1,4�2N
1��, used as initial values of the field, and we integrate

he differential set of Eq. (26) using a suitable algorithm
combining Runge–Kutta and Adams–Moulton algo-
ithms). Compared with Ref. 3, the notations of the ��j�

atrix are changed [see Eqs. (31) and (42) in Ref. 3]: The
�j� matrices are normalized by the Bessel and the Han-
el functions so as to inject well-conditioned matrices as
n initial value in the integration process. This new nota-
ion induces that the vector �V�j�� contains the Bessel and
he Hankel functions. At the end of the integration, the
esult is a matrix noted as F̂integ�rs+1� giving the field at
s+1, from which we derived from Eq. (34) the matrix

V̂�rs+1� = ���ext��rs+1��−1F̂integ�rs+1�;

sing Eq. (38), we obtain

V̂�rs+1� = ���ext��rs+1��−1F̂integ�rs+1�V̂�rs�.

his last equation shows that the transmission matrix
�s� that links the coefficients of the developments of the
eld at rs to the coefficients of the development of the field
t rs+1 is given by

T�s� = ���ext��rs+1��−1F̂integ�rs+1�. �39�

he integration through each slice provides a T�s� matrix
hat links the field at rs+1 to the field at rs. From this ma-
rix, we deduce a S�s� matrix that links the fields at rs and
1, defined by

s � �1,L + 1�, �
]

Be,n
�s� Hn

+�kt,extrs�

]

Bh,n
�s� Hn

+�kt,extrs�

]

Ae,n
�1�Jn�kt,intr1�

]

Ah,n
�1� Jn�kt,intr1�

]

�
=�S11

�s� S12
�s�

S21
�s� S22

�s���
]

Be,n
�1�Hn

+�kt,intr1�

]

Bh,n
�1� Hn

+�kt,intr1�

]

Ae,n
�s� Jn�kt,extrs�

]

Ah,n
�s� Jn�kt,extrs�

]

� . �40�

ere the index �s� of the amplitudes Ae,n
�s� , Ah,n

�s� , Be,n
�s� , and

h,n
�s� can be replaced by (int) when s=1 and (ext) when s
L+1. For the particular case of s=1, the S�s� matrix be-
omes the identical matrix and k becomes equal to
t,ext
t,int. We have checked that all blocks of this matrix are
ell conditioned (see also Ref. 4). Briefly, the T�s� matrix

inks the fields at layer �s� and the fields at layer �s+1�
hile the S�s� matrix links the scattered fields and the in-

ident fields. The S�s� matrix blocks of the �s+1�th inter-
ace are expressed according to those of the sth interface
nd to the T�s� matrix blocks Tmn

�s� of the sth slice:

S22
�s+1� = S22

�s��T11
�s� + T12

�s�S12
�s��−1,

S12
�s+1� = �T21

�s� + T22
�s�S12

�s���T11
�s� + T12

�s�S12
�s��−1,

S21
�s+1� = S21

�s� − S22
�s+1�T12

�s�S11
�s�,

S11
�s+1� = T22

�s�S11
�s� − S12

�s+1�T12
�s�S11

�s�. �41�

t the end of the integration across the modulated area,
e obtain the S matrix of the whole scattering device,
hich depends only on the surface �S� and on the optical
arameters of the media. This matrix links the diffracted
eld at Rmax and Rmin to the incident field at Rmax and
min. In fact, expressing the exponential function in Eq.

1) in terms of Bessel functions,10 the incident field can be
efined in the form

Hz
�inc� = exp�i�0z�	

n−�

+�

Ah,z exp�− in�inc�inJn�kt,extr�exp�in��

Ez
�inc� = exp�i�0z�	

n−�

+�

Ae,z exp�− in�inc�inJn�kt,extr�exp�in���.
�42�

nside the internal region containing the origin of coordi-
ates, we must state Be,n

�int�=Bh,n
�int�=0 "n to avoid a diver-

ence of the field �Hn
+�0�→�"n�. This condition allows us

o derive through Eq. (40)

�
]

Ae,n
�int�

]

Ah,n
�int�

]

� = S22�
]

Ae,zi
n exp�− in�inc�

]

Ah,zi
n exp�− in�inc�

]

� ,

�
]

Be,n
�ext�

]

Bh,n
�ext�

]

� = S12�
]

Ae,zi
n exp�− in�inc�

]

Ah,zi
n exp�− in�inc�

]

� . �43�

. NUMERICAL APPLICATION ON
ARTICULAR CASES
. First Validation Study
he present theory has been implemented using the
ORTRAN programming language. It is worth noticing that
he results of the TM and TE polarization studied
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reviously5 are associated with the particular case of
onical diffraction with �0=0. In this case, the current nu-
erical implementation written for conical diffraction

ives the same results as the ones computed previously in
ef. 5. To validate and illustrate in more detail the FFF
ethod applied to cylindrical coordinates, we first study

he simple case of one circular cylinder centered outside
he origin with a radius R and the center with �R0 ,�0� po-
ar coordinates (see Fig. 7). The r coordinate defined on
he circle and related to the maximal angle �m defined is
oted as rm=�R0

2−R2. On the � range where the circle is
efined in the cross section ���0−�m ,�0+�m��, the diffract-
ng surface directrix equation is given by

r��� = R0 cos��� ± �R2 − R0
2 sin2���,

��r� = cos−1
 r2 + r0
2 − R2

2r0r � , �44�

here the � sign is related to r� �R0−R ,rm� and the �
ign is related to r� �rm ,R0+R�. In the modulated area,
he permittivity is described by a step function ��r ,�� with
espect to �; thus obtaining its Fourier development and
he Toeplitz matrix ��� remains easy. The N���� function is
iven by

N���� =
r0

R
sin�� − �0�. �45�

e mention that the r component of the surface’s normal
ector is deduced by Nr= ±�1−N�

2. Outside ��0−�m ,�0
�m� we could state that the N�

2 function is extended to
nity. In this case, the N�

2, Nr
2, and NrN� functions would

ave the advantages of the continuity and of the r inde-
endency. Since these functions would be r independent,
heir Toeplitz matrices would be calculated once before
he integration process. However, it is interesting to point
ut that, along a circle with radius r included in the
odulated area, the N�

2�r ,�� is defined only by one or two
oints with the same �N�

2� value. Then we have chosen a
traight extension of a N 2�r ,�� function with a constant

ig. 7. Cross section of a circular cylinder centered outside the
rigin and filled with isotropic and homogeneous media with R
1 	m, R0=2 	m, �0=0°, nint=1.6+0.2i, and next=1, and
otations.
�

alue of N�
2 evaluated at ��r�. The main advantage of

uch an extension is the simplicity of the calculation of its
evelopments: �N�

2�0=N�
2���r�� and �N�

2�n=0, "n�0. On
he other hand, the NrN��r ,�� function becomes discon-
inuous, which leaves the determination of its Fourier co-
fficients easy but increases the Gibbs phenomena. The
umerical results show that the two extensions lead to
imilar convergence when the order of the Fourier devel-
pments is increased.

The differential cross section (DCS) that is determined
ith the asymptotic form of the Hankel functions of the
iffracted field for r→� is given by

���� = 2�
k0

2

kt,ext
2��� 2

�kt,ext
	

n=−�

+�

�− i�nBe,n
�ext�ein��2

+
	0

�ext
�� 2

�kt,ext
	

n=−�

+�

�− i�nBh,n
�ext�ein��2� . �46�

o validate our theory and its numerical implementation,
e compare the FFF method results with the ones ob-

ained with the MM.1,3 We study the scattering by a
ingle cylinder (see Fig. 7) and compute the DCS with the
wo methods. Figure 8 shows the results of the DCS for
0=1 	m and �0=0.5 	m with a logarithmic scale for the

axis; as can be seen, the FFF method results agree

ig. 8. DCS (�=0° to 180°) for the circular cylinder in Fig. 7
ith �inc=0°, �=30°, 
=0°, and N=50; comparison of the FFF
ethod and MM for �0=1 	m and �0=0.5 	m.

ig. 9. Cross section of two identical circular cylinders on the X
xis centered outside the origin with d=1 	m, �=1.5 	m, nint
1.4, and n =1.
ext
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airly well with the MM ones. Then we consider the DCS
f two identical circular cylinders located on the X axis as
hown in Fig. 9; we obtain the results shown in Fig. 10,
nd again the agreement between the two methods is ex-
ellent.

. Numerical Efficiency and Accuracy of the Fast
ourier Factorization Method
n this subsection we discuss in more detail the numerical
fficiency of the FFF method. For the structures already
tudied (Figs. 7 and 9), the single-cylinder case is in fact
ore difficult to model than the two-cylinder case. Conse-

uently, we focus on this demanding structure for our con-
ergence tests. In Fig. 11 we show the DCS of the single
ylinder for �=30° versus the development order N for
everal values of the number of S-algorithm slices. We
ive both the classical differential method7 and the FFF
ethod results. We clearly see that the FFF method is
ore accurate than the classical differential method. For

his angle of 30° and for both methods, we also see that an
ncrease of the number of slices in the S algorithm im-
roves the results. In Fig. 12 we give the same study but
or �=150°. Once again, the FFF method converges more

ig. 10. DCS (�=0° to 360°) for the two identical circular cylin-
ers on the X axis shown in Fig. 9 with �0=2 	m, �inc=45°, �
30°, 
=0°, and N=60; comparison between the FFF method
nd the MM.

ig. 11. Convergence test according to the order of the trun-
ated Fourier series �N� of the point at 30° in the DCS of the FFF
ethod (FFFM) (illustrated by Fig. 8) and of the classical differ-

ntial method with �0=1 	m and with different values of L
number of slices for the S algorithm) compared with the MM
alue.
uickly than the classical method. Note that, as for �
30°, the possible crossings between the line correspond-

ng to the value computed with the MM and the conver-
ence curves for small N values are not meaningful. Only
he global behavior of these convergence curves are use-
ul. To avoid such putative crossings in our convergence
tudy, we give in Fig. 13 the average relative errors be-
ween the computed DCS values and the MM one for all
he angles in the range [0°, 360°]. The improvement
rought by the FFF method is evident (note the log scale
n the Y axis). We finally obtain a relative difference of
.10−4 between the FFF method results and the MM ones
or N=140 and L=55. The results obtained with the FFF
ethod are less accurate than the ones obtained with the
M for the different examples of DCS shown in Figs. 11

nd 12. Nevertheless, the relative discrepancies between
he two methods are fully acceptable. One can ask why
uch differences can still be observed whereas both the
FF method and the MM are rigorous methods, in which

he unique approximations are the truncations of the
sed series. For the FFF method, we need to truncate the
ourier series of the electromagnetic fields (four compo-
ents are needed to describe them in a conical mounting)
nd the ones of the permittivity of the diffracting device.
n the case of the MM, we have to truncate only the

ig. 12. Convergence test according to the order of the trun-
ated Fourier series �N� of the point at 150° in the DCS of the
FF method (FFFM) (illustrated by Fig. 8) and of the classical
ifferential method with �0=1 	m and with different values of L
number of slices for the S algorithm) compared with the MM
alue.

ig. 13. Average relative error between the DCS of the FFF
ethod (FFFM) (illustrated by Fig. 8) and of the classical differ-

ntial method and the DCS of the MM according to the order of
he truncated Fourier series �N� with �0=1 	m and with differ-
nt values of L (number of slices for the S algorithm).
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ourier–Bessel series of two field components (Ez and Hz
re needed in conical mounting) since any series are
eeded of the permittivity. There are at least two other
easons explaining the better accuracy of the MM for the
xamples shown here. First, for homogeneous and circu-
ar inclusions, the reflection matrix relating the incident
nd the scattered field in the MM are known analytically.
n the contrary, in the framework of the FFF, the inclu-

ions are described through the permittivity tensor ��
more precisely by its Fourier components) in the modu-
ated area. Second, there is a crucial difference between
he two methods: for the MM no numerical integration is
ecessary, while resolution such as the one associated
ith Eq. (26) of the FFF method requires such an integra-

ion; only analytical changes of basis using Graf ’s
heorem2,10 are used for the rewriting of the Fourier–
essel series, which lead to an explicit linear problem.
All these reasons also explain why the MM is much

aster than the FFF method for the homogeneous and cir-
ular examples treated in this study, even if all the nu-
erical computations can still be achieved on a single PC.

t is worth considering how the MM accuracy evolves
hen noncircular inclusions are considered, and hence
hen a numerical integration is required. The results
iven in Ref. 11 concerning homogeneous and elliptical in-
lusions can give us a first evaluation since a numerical
ntegration is required to compute the reflection matrix of
he ellipses. The final results obtained by the MM lose ap-
roximately three significant digits when these noncircu-
ar inclusions are studied. We do not observe such wors-
ning of the accuracy within the FFF method when
imilar ellipses are considered instead of circular inclu-
ions since the circles are not treated differently than the
llipses.

To conclude this subsection, we remind the reader that
ircular and homogeneous inclusions are a special case in
hich the Multipole Method is certainly the best possible
umerical method since several steps are done analyti-
ally. The purpose of the FFF method is not to study such
imple, but more complicated structures; a trade-off is ob-
ained between the accuracy speed and the generality of
he studied structures.

. Devices with Subperiodicity According to �
s with MOFs, any device may present a cross section
ith a subperiodicity according to �. This property can be

aken into account in the integration process to reduce
he computation time. Let us assume that the device pre-
ents a subperiod T such that NTT=2� where NT is the
umber of periodicity. Thus the spectra of the functions
�r ,�� and N�

2�r ,�� are wider than those obtained without
ubperiodicity. More precisely, we consider a function f̃���
�, N�

2 or NrN�) subperiodic with period T. The Fourier co-
fficients of f̃ on the 2� range f̃n �"n�N� and the Fourier
oefficients of f̃ on the T range f̃n� �"n�N� are linked by
he following relations: if n=kNT �"k�N�, then f̃n= f̃k� and

n=0 otherwise. Consequently, the Toeplitz matrix of the
unction f̃ is made of nonnull diagonals regularly sepa-
ated by NT−1 null diagonals. For instance, if N=4 and

=3, the Toeplitz matrix of the function f̃ is
T
�f̃� =�
f̃0� 0 0 f̃1� 0 0 f̃2� 0 0

0 f̃0� 0 0 f̃1� 0 0 f̃2� 0

0 0 f̃0� 0 0 f̃1� 0 0 f̃2�

f̃−1� 0 0 f̃0� 0 0 f̃1� 0 0

0 f̃−1� 0 0 f̃0� 0 0 f̃1� 0

0 0 f̃−1� 0 0 f̃0� 0 0 f̃1�

f̃−2� 0 0 f̃−1� 0 0 f̃0� 0 0

0 f̃−2� 0 0 f̃−1� 0 0 f̃0� 0

0 0 f̃−2� 0 0 f̃−1� 0 0 f̃0�

� . �47�

We notice that the matrix �f̃� is block diagonalizable.
his matrix structure is preserved when such a matrix is
eversed or when two such matrices are multiplied; that
s why every block of the integration matrix M�r� given by
q. (26) has this matrix structure. Finally, we conclude

hat Eq. (26) is split into NT independent differential sets
ith matrix sizes equal to 4�2N+1� /NT or less. Since the

ntegration computation time depends roughly on the
ube of the matrix integration size, the time of a succes-
ive integration of each differential subset scales as
T�4�2N+1� /NT�3= �4�2N+1��3 /NT

2, while the time of the
lobal differential set [Eq. (26)] scales as �4�2N+1��3. It
eans that taking into account the subperiodicity accord-

ng to � of the diffracting surface permits us to gain a fac-
or of NT

2 on the computation time. Moreover, each differ-
ntial subset depends on the reduced Toeplitz matrix:

�f̃� = � f̃0� f̃1� f̃2�

f̃−1� f̃0� f̃1�

f̃−2� f̃−1� f̃0�
� ,

hich simplifies the calculation of the Fourier develop-
ents of �, N�

2, and NrN� functions defined only on the T
eriod. The subperiodicity according to � was first suc-
essfully implemented on an elliptical cross-section sur-
ace centered to the origin since it is � periodic �NT=2�
nd then on the circular cylinder defined on a period T
data not shown). We note that this study on subperiodic-
ty can be linked to the seminal work of McIsaac12 con-
erning waveguide symmetry properties and with the pa-
er written by Bai and Li.13 The authors of Ref. 13 have
xplicitly shown how the use of group theory permits one
o fairly reduce the computation time on crossed grating
nalysis. More recently, Fini14 has revisited McIsaac’s
ork to improve the efficiency of several numerical meth-
ds if rotational symmetry properties are present in the
evice.

. Excitation of the Fundamental Leaky Mode of a
icrostructured Optical Fiber
he subperiodicity of the diffracting device is particularly
seful in the case of MOFs. These fibers are usually made
f several rings of circular cylinders (filled with vacuum)
egularly distributed according to the angular coordinate
in a infinite matrix. We thus consider a solid core MOF

Fig. 14) composed of six identical circular cylinders with
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diameter d=1 	m and the same distance to the origin
pitch) R0=�=2.3 	m ��0=0° �; it means that the subpe-
iod is 2� /6 �NT=6�. In addition, the whole structure has
ymmetry planes, so in the formulation used in wave-
uide theory,12 this fiber follows the C6v symmetries. The
ylinder index is nint=1 and the matrix index is next
1.44390356. In our notation [Eq. (3)], the parameter �0
ecomes the studied propagation constant usually noted
s �. The effective index is defined by neff=� /k0. The well-
stablished MM1–3 can also be formulated as a modal
ethod, and consequently it can find the modes of MOFs

omposed with arbitrary inclusions contained in disjoined
ircular cylinders. It gives a complex effective index equal
o neff=1.420784+ i7.20952�10−4 with �0=1.56 	m for
he fundamental mode, i.e., this mode is a leaky mode
even if the optical indices of the inclusions and the ma-
rix are purely real). In addition, we know that the fun-
amental mode is twice degenerated.1,12 Its component
elds Ez belong either to the C4 symmetry class [symmet-
ic according to the Y axis, u��−��=u���, and antisym-
etric according to the X axis, u�−��=−u���] or to the C3

ymmetry class (antisymmetric according to the Y axis
nd symmetric according to the X axis). This classification
f symmetry is more precisely explained in the work of
cIsaac.12 We search now to apply these symmetry prop-

rties on the diffracting problem. The mode that belongs
o the C3 symmetry class is excited when �inc=90° and
he second one (C4 symmetry class) when �inc=0°.

In the framework of our diffraction method, we have
rst tried to excite the fundamental mode described above
ith suitable incident wave parameters [Eq. (1)]. We
now that the real parameter �0 is equal to −kext sin��� in
hich kext=k0next; hence we have searched the angle pa-

ameter � such that �0=k0 Re�neff�, and we have approxi-
ately found �=−79.73° about ��=−arcsin�Re�neff� /next��.
oing so, we have neglected the imaginary part of neff.
onsequently, the fundamental mode is only partially ex-
ited. Figure 15 shows the computation time versus N for
oth the six circular cylinder MOFs defined on the 2� pe-
iod and for the one defined on the T=2� /6 period. These
esults clearly illustrate the improvement brought about
y the subperiodicity concerning the computation time.
igure 16 illustrates the normalized �Ez� map associated
ith the partial excitations of the fundamental mode be-

ig. 14. Cross section of a MOF composed of six identical circu-
ar cylinders with d=1 	m, �=2.3 	m, nint=1, and next=1.4439.
onging to the C3 symmetry class and Fig. 17 to the C4
ymmetric class (N=60 and 
=0°). The fields seem well
ocated around the circular cylinders and the similarity
ith the MM1 field maps is already clear even if the result

ig. 15. Computation time for the six circular cylinders as a
unction of the order of the truncated Fourier series �N�, with
nd without taking advantage of the symmetry.

ig. 16. Normalized �Ez� field map obtained thanks to the par-
ial excitation (see Fig. 18 for the complete excitation) of the
OF fundamental mode belonging to the C3 symmetry class [

inc=90°, 
=0°, �0=1.56 	m, N=60, and �0=k0 Re�neff�
1.420784]. The studied fiber is the same as in Fig. 14.

ig. 17. Normalized �Ez� field map obtained thanks to the par-
ial excitation (see Fig. 19 for the complete excitation) of the
OF fundamental mode belonging to the C4 symmetry class

� =0° �. The studied fiber is the same as in Fig. 14.
inc
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hown in Fig. 16 is a diffraction phenomenon and not a
rue mode.

To excite completely the fundamental mode by a inci-
ent wave, we now take into account the imaginary part
f neff. The complex number �0=k0neff implies that � also
ecomes a complex number. However, this implies that all
he components of the incident fields are proportional to
he same complex number cos���. In this case, the field
mplitudes Ae,z and Ah,z deduced from Eq. (2) also become
omplex numbers proportional to cos���:

Ae,z = cos���cos�
��E�inc��, �48�

Ah,z =
1

Z
cos���sin�
��E�inc��. �49�

ince all the other incident field components are propor-
ional to Ae,z and Ah,z, they are also proportional to cos���.
onsequently, it is not even necessary to determine the
os��� factor if we are only interested in normalized fields.
n our example, we choose �0=k0neff. Figures 18 and 19
how the normalized �Ez� maps associated with the accu-
ate excitation of the C3 (and C4) symmetry class mode,
espectively. Figure 20 illustrates the modulus of the z
omponent of the Poynting vector noted as Sz for both
lectromagnetic field maps �N=60�. We recognize the
ame field maps as the ones obtained with the MM used
n its mode-searching operation.1

. CONCLUSION
he described FFF method introduces Toeplitz matrices

or permittivity ��� and �1/�� and also Toeplitz matrices
or geometric quantities such as the normal vector compo-
ents of the diffracting surface: �N�

2�, �Nr
2�, and �N�Nr�.

he convergence results depend directly on these matrix
onditions. The numerical implementation on the circle
ase in which the ��r ,�� and N�

2�r ,�� functions present
mportant variations according to � shows satisfying re-
ults for N=50. Moreover, the integration of the differen-
ial set in the modulated area fairly simplifies when the
ossible subperiodicity of the diffracting device is taken
nto account. We apply the FFF method to simple struc-
ures made of circular inclusions so as to be able to com-
are it with a known method. However, the FFF method
escribed here in cylindrical coordinates can compute the
elds diffracted by more complex structures than the ones
hown in this present work: Some other different diffract-
ng surfaces have been successfully studied (elliptical cyl-
nder, rectangular cylinder, etc.), and the most general
ase of anisotropic and/or inhomogeneous media can also
e analyzed. An association between the FFF method in
he homogeneous and isotropic case and the MM has al-
eady been used to study a MOF with elliptical
nclusions.11 Our future work will deal with the adapta-
ion of the FFF method applied to light diffraction to the
earch of modes into arbitrary cross-section MOFs to
vercome the known limitations of the MM1 (inclusions
ust be inscribed in nonoverlapping circles, the matrix
ig. 18. Normalized �Ez� field map obtained thanks to the com-
lete excitation (see Fig. 16 for the partial excitation) of the MOF
undamental mode belonging to the C3 symmetry class (�inc
90°, 
=0°, �0=1.56 	m, N=60, and �0=k0neff=1.420784

−4
ig. 19. Normalized �Ez� field map obtained thanks to the com-
lete excitation (see Fig. 17 for the partial excitation) of the MOF
undamental mode belonging to the C4 symmetry class (�inc=0°;
ther parameters are identical to the ones of Fig. 18) of the fun-
ig. 20. Normalized �Sz� field map computed from the electro-
agnetic fields associated with Fig. 18 (the result is similar
hen the results associated with Fig. 19 are considered).
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ermittivity must be homogeneous). In this case, the dif-
raction problem becomes an homogeneous problem, i.e.,
n eigenvalue problem.
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