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The differential theory of diffraction by arbitrary cross-section cylindrical objects is developed for the most gen-
eral case of an incident field with a wave vector outside the cross-section plane of the object. The fast Fourier
factorization technique recently developed for studying gratings is generalized to anisotropic and/or inhomo-
geneous media described in cylindrical coordinates; thus the Maxwell equations are reduced to a first-order
differential set well suited for numerical computation. The resolution of the boundary-value problem, including
an adapted S-matrix propagation algorithm, is explained in detail for the case of an isotropic medium. Nu-
merical applications show the capabilities of the method for resolving complex diffraction problems. The
method and its numerical implementation are validated through comparisons with the well-established mul-

tipole method. © 2006 Optical Society of America
OCIS codes: 050.1960, 060.0060.

1. INTRODUCTION

Cylindrical devices commonly appear in diffraction and
propagation theory, and their interest has recently in-
creased with the advent of microstructured optical fibers
(MOFs).! An efficient method called the multipole method
(MM) has already been developed to study devices com-
posed of cylindrical inclusions.'™ Nevertheless, it has at
least two major limitations: All the inclusions must be in-
cluded in nonoverlapping circles and the refractive index
of the matrix containing the inclusions must be homoge-
neous. In addition, the reflection matrix relating the inci-
dent and the scattered field for each individual inclusion
must be obtained by other means in the case of a noncir-
cular inclusion or inhomogeneous circular inclusion. In
what follows, we present the application of the fast Fou-
rier factorization (FFF) method to diffraction theory. This
new method has none of the known limitations of the
MM. Briefly, the FFF method rewrites the Maxwell equa-
tions through the use of a Fourier series. Although an iso-
lated cylindrical object is a priori nonperiodic, it becomes
27 periodic with respect to the polar angle 6 when it is
described in cylindrical coordinates. This periodicity al-
lows us to describe both the electromagnetic field and the
diffracting object in terms of a Fourier series. As was pre-
viously done in grating theory,4 it is now possible to re-
duce the Maxwell equations to a first-order differential
set that must be numerically integrated. Of course the
numerical treatment requires truncating the Fourier se-
ries of the field, a process that has created great numeri-
cal problems for decades but recently received a solution
through what is now called the FFF method. In a recent
paper5 we proved that such a method was able to give fast
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converging results when a cylindrical object was illumi-
nated under TM polarization. The aim of the present pa-
per is to extend the theory to the most general case in
which the diffraction device is illuminated with a field
propagating outside the cross-section plane of the device,
which leads to a full vectorial problem that does not re-
duce to the two classical TE and TM cases of polariza-
tions. Moreover, the propagation equations will be derived
in anisotropic media to open a way to resolve the diffrac-
tion problem of a wave by an arbitrary cylinder made of
an arbitrary (lossy or lossless) anisotropic medium. In
Sections 2 and 3 we present the FFF principles to obtain
the set of differential equations defined in the area where
the diffracting device locates. In Section 4 we discuss the
complete solution of the diffracting problem in the case of
an isotropic medium. In some cases, the diffracting object
is invariant by a rotation of angle T=2%/Ny (Np is the
number of subperiods of the 27 range). In Section 5 the
numerical theory is adapted to take into account this sub-
periodicity on the T range of the polar angle coordinate 6.
Finally, we validate the numerical implementation of our
method with the well-established MM (Refs. 2 and 3)
through several examples including the excitation of the
fundamental mode of a six-hole MOF; we also discuss
some aspects of the numerical efficiency and accuracy of
the FFF method.

2. PRESENTATION OF THE PROBLEM

We consider a cylindrical object described in both a Car-
tesian coordinate system Owxyz with (e,,e,,e,) unit vec-
tors and in cylindrical coordinates r, 6,z with (e,,ey,e,) as

© 2006 Optical Society of America



Boyer et al.

D

i
B! Rniu
Cmin\\ N

Fig. 1. Cross section of an arbitrary shaped cylindrical object
filled with an anisotropic and inhomogeneous media and de-
scribed by a directrix r=g(6) containing the origin in the Oxy
plane and generatrices parallel to the z axis.

Fig. 2. Same kind of arbitrary cross section as in Fig. 1 with the
origin outside the directrix.

unit vectors. Its surface (S) is defined by an arbitrary di-
rectrix located in the cross-section plane (Oxy) containing
the origin as shown in Fig. 1 or outside the origin (see Fig.
2). Generatrices are straight lines parallel to the z axis.
The equation of the directrix is f(r,0)=0 or r=g(6), in
which f and g are given functions. The surface (S) divides
the space into two regions. The first one, the internal re-
gion denoted int, is contained inside the surface and is
filled with a linear, inhomogeneous and anisotropic me-
dium, dielectric or conducting (nonmagnetic), and its com-

plex permittivity tensor is denoted ey(r,6). The second
region, denoted ext, is the outside region and is filled with
a homogeneous exterior medium, and its real permittivity
is denoted €. . The present method requires that we in-
troduce three areas defined by two circular cylinders with
directrix Cp;, and C.,.. The directrix C,;, is the in-
scribed circle of the directrix of surface (S), and C,, .y is
the circumscribed circle (see Fig. 1). The area included be-
tween both circular cylinders is called the modulated
area. Inside this area the permittivity is described by a
27 periodic with respect to 0 tensor €(r, 6). Unless defined
otherwise, both lower-case and capital letters in bold rep-
resent vectors.

An incident plane wave with wave vector k. with
transverse component k. and z component 1y, falls
on the device (Fig. 3). We introduce two angles:
ainc=(_ex>kt,ext) and (P=(kt,ext’kext)e[_77/2y77/2]- We as-
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sume that the plane-wave components have a harmonic
exp(—iwt) time dependence. Thus the incident vector field
of E and H reads
E@9(r, 0,2,¢) = A, exp[i(ypz - wt)]
X explik; ext? €08(0 = e — )]
H(iDC)(r7 0927t) = Ah eXp[L(YOZ - wt)] ’
X explik; exir 08(0 — bipe — 7)]

1)

in  which  w=27/\o\po€0,  Yo=—Fext SIN(@),  pext
=Ry 2= yp> With Eeg=(27/No)Veext/ €o Where g is the
wavelength in vacuum. Moreover, the polarization of the
incident electric field is defined by the azimuthal angle ¢
contained in the plane perpendicular to the wave vector
k.. and with basic vectors (p;,p2) [P1 is chosen to be in-
cluded in the plane (K.,e,), see Fig. 4]. The relation be-
tween the E™® amplitude noted as A, and the H®9 am-
plitude noted as A;, with the incident wave vector reads
thanks to the Maxwell equations in homogeneous regions:

A, =[cos(¢)p; + sin(p)p,][E™9)|

1 M
1 Koy With Z = — 4| —,
Ah = A Next €0

-——X
A |kext| ‘

2

in which [E(9| and |k.y| are the norms of their respective
vectors E@9 and k.. If the permittivity is a complex
number, the cut of the square root n= \a is then cho-
sen as the second bisector as explained in Ref. 6. The total
field has the same time dependence as the incident wave,
and the invariance of the device with respect to z leads to
an exp(iypz) dependence. Moreover, the cylindrical coordi-

Fig. 3. Incident wave vector in the exterior homogeneous region
and notations.

e, p2
D1
E(inr)

kext ke_\'t > P1

Fig. 4. Definitions and notations for the azimuthal angle ¢ of
the incident electric field (p; belongs to the plane defined by e,
and k).
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nate system naturally implies a 27 periodicity with re-
spect to 6. In view of a numerical implementation of the
theory, an electromagnetic and geometric quantity
u(r,0,z,t) will be represented by its Fourier series trun-
cated to the Nth order:

+N
u(r,0,z,t) = expli(ypz — wt)] E u,(r)exp(in6) with u,(r)
n=-N
1 27
= —f u(r,0)exp[—in6]do. 3)
2w J,

3. FAST FOURIER FACTORIZATION
METHOD IN CYLINDRICAL COORDINATES
EXTENDED TO A CONICAL MOUNTING

The aim of this work is to establish, in cylindrical coordi-
nates, a set of equations satisfied by the electromagnetic
field suitable for numerical computations. We make use of
the recent progress in grating theory published under the
name of fast Fourier factorization (FFF), but the case of
cylindrical coordinates is not treated in the book describ-
ing the method.? The FFF method starts from the classi-
cal differential method” with efficient improvements in
the factorizations rule concerning Fourier developments.
In fact, we have to consider new factorization rules that
take into account the Fourier truncation of developments
and the discontinuities of any optogeometric quantities
(across the diffracting surface). One of the key steps of the
FFF method is to find the correct formulation in the Fou-
rier space of the product between € and E in the constitu-
tive relation that must be injected into the Maxwell equa-
tions. Doing so, the Maxwell equations are restated in the
Fourier space to obtain a set of coupled linear ordinary
differential equations.

A. Formulation of the Linear Relation between E and D
in a Truncated Fourier Space

1. Factorization Rules

As has been already treated in the paper concerning TM
polarization,5 the FFF method consists in finding the best
formulation in a truncated Fourier space of the product
between the tensor €(r, 6) and E in the modulated region
when we want to calculate D given by

D= &(r,0E. 4)

In fact, the function &(r, 6) is discontinuous across the sur-
face (S). The mathematical basis of the FFF method was
established by Li® with factorization rules that allow one
to obtain a solution of this problem. The first rule states

that the Fourier components %,, of the product A (x) of two

periodic, piecewise-smooth bounded functions f(x) and
S(x) that are not discontinuous at the same value of x are
given by Laurent’s rule:

+N

}:nz(}zg)nz z 7n—nu§m- (5)
m=-N

To simplify the equations that follow, we introduce the
Toeplitz matrix [f] defined by ([[}Z]])n’m =/~fn_m and the col-
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umn vector [g] with elements g,,. Thus the last equation
reads in matrix notation:

[/51=[AIz]. (6)

The second rule given by Li® states that a product of two
piecewise-smooth, bounded periodic functions that have
only pairwise-complementary jump discontinuities (i.e.,
that have a continuous product) cannot be factorized by
Laurent’s rule, but it can be factorized by the inverse rule:

B +N 1 -1
[fé]nz E ( - ) §m~ (7)
m=-N f n,m
Or in matrix notation,
~ 1
/gl = % gl (8)

Finally, the most general situation concerns a product of
two piecewise-smooth, bounded periodic functions that
have discontinuities at the same value of x with non-
complementary jump discontinuities. Such a product can
be correctly factorized neither by Laurent’s rule nor by
the inverse rule. This last case occurs in Eq. (4).

2. Intermediate Notations

The basic idea of the FFF method is to use the first two
rules to write a new formulation of Eq. (4), thanks to a
suitable continuation of the concept of normal vector. We
consider at each point of the surface (S) the normal vector
of (S) noted as N whose components are N,,N,,N,, and
two orthogonal tangential vectors of (S) denoted T; with
components (7',,714,71,) and T, with components
(Ty,,T9y,To,) such that N=Ty X T; (see Fig. 5). The pro-
jections of the fields E and D on T;, N, and T, define
three field components continuous across the surface
(S): ET1’ Dy, and ET2; they permit us to create a column
denoted F, respectively made with these components,
whose size is 3(2N +1). If we define a generalization of the
scalar product applied to a vector ¥ and a matrix P by

AY

(=)
"

)

z

Fig. 5. Tangential and normal vectors of a cylindrical object.
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Uy Prr Pr0 Prz Ur‘Prr+vl9P0r+vazr
v-P=|vy|-|Py Poy Py |=|PrgtvePoy+ VP,
U, Pzr Pz(} Pzz vrPrz+v()P92+va22
9)
we obtain
F=0E (10)
with

T2r T29 T2z

Thus for the electric field we can write E=C F, with C,
=0_. Tedious algebraic calculations lead to

(N-eATy), N, —((N-€ATy),

1
CE=N — (N- ATy Ny —((N-€)ATy)y]|.
LE-
(N-ATy), N, —(N-e ATy,
(12)
Then D=€eE=€eC F,, and finally,
D=eCOE. (18)

3. New Relation between [D] and [E]

We will write this last equation in the truncated Fourier
space using the factorization rules mentioned above.
Since €C. is discontinuous and F, is continuous, we apply
Laurent’s rule for these two factors. Introducing the col-
umn [D] made of three blocks [D,], [Dy], and [D,], each
block containing the Fourier coefficients of the corre-
sponding vector component, we write [D]=[€C ][F.]. Then
the inverse rule is used since F.=0 E is continuous while
O, and E are discontinuous: [OGE]=[[OE_1]]‘1[E]
=[C J-Y[E]. Finally, we find

[D]=Q.(r)[E], (14)
with

Q) =[eCHiCd™. (15)

B. Maxwell Equations in a Truncated Fourier

Space

Differentiating the series in Eq. (3) with respect to 6 re-
sults in multiplying the nth term by “in”. Thus introduc-
ing a diagonal matrix « such that (a),,,=n6,,,, the deri-
vation reads in matrix notation as

qU]

0 ol U]. (16)

According to the z and ¢ dependence of the total fields, the
Maxwell equations written in the cylindrical coordinate
system become
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1
;a[Ez] - YO[EG] - w[Br] = 0’ (17)
d[E.]
i?’o[Er]—d——iw[Ba]=0, (18)
r
1( d[E,] )
- [E9]+r _ia[Er] _iw[Bz]=0’ (19)
r dr
1
;a[Hz] = YolHyl+ o[D,]=0, (20)
dlH,
LyolH, ] - —— 10[Dy]=0, (21)
1( d[H ] )
“H) 4 r——2 —ia[H,]| +iw[D.]=0. 22)
r dr

From Eq. (14) we obtain the expression of each block of
[D] in the cylindrical coordinate system in terms of the E
blocks. We introduce the following notation for the @,
matrix:

Qe,rr Qe,r0 Qs,rz
Q.=|Qecor Qeon Qep:|. (23)
Q €zr Q €20 Q €22

Equation (20) leads to
[ Y0 a
[Er(r)] = Qs,rr ;[Hﬁ(r)] - E[Hz(r)] - Qe,rﬁ[Et)(r)]
- Qe,rz[Ez(r)]> ’ (24)
and Eq. (17) becomes
l [«
[H.(r)]= —(—[Ez(r)] - YO[Ee(r)]> : (25)
Mow \ 7

These two last equations and Eq. (23) permit us to rewrite
Eqgs. (18), (19), (21), and (22). Finally, we obtain a set of
first-order differential equations written in a four-block
matrix form:

£,] £,]

ajy| £ N

arl ) |= M0 g | (26)
] (]

with
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1 i
-1
- _aQe,rr Qe,r9+ _Id
r r

1
-1
- ;aQE,rr Qe,rz
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Yo 1 @ 1
_aQe,rr wlu'OId - _QQe,rr
wr wr

2
Y Yo
-1 -1 - -1
- ‘YOQe,rr Qs,r(} - 70Qe,rr Qs,rz _Qe,rr 1. (U,lL()Id - _QE’”« a
w rw
M(r) = y 2 i B
0
-1 -1 -1 -1
w(QE,ZrQe,rr Qe,ra - Qe,za) - a 5+ w(Qe,ers,rr Qe,rz - Qs,zz) _Id - 'YOQe,ere,rr Qe,ere,rr
Mowr” wuor r
2
1 70 0 1 Q Q -1 1
w(Qe,BG - Qe,Bng,rr Qe,rﬁ) - mld a+ w(QE,Hz - Qe,&rQe,rr Qe,rz) eorYerr Y0 - Qe,HrQe,rr
0

Mo@I

where I, is the identity matrix. It is important to notice
that the M(r) matrix depends only on the r coordinate and
that its size is 4(2N+1) X4(2N+1). In brief, Eq. (26) is a
new formulation of the Maxwell equations in cylindrical
coordinates in a truncated Fourier space, which is valid in
any lossless or lossy, anisotropic and/or inhomogeneous
medium.

4. RESOLUTION OF THE DIFFRACTION
PROBLEM IN THE CASE OF AN ISOTROPIC
AND HOMOGENEOUS MEDIUM

The resolution of the diffraction problem is much simpler
if the diffracting object is made of an isotropic and homo-
geneous material, since the field in such a region can then
be expressed in terms of Bessel functions. Thus, from now
on, we consider that the region (int) is filled with an iso-
tropic and homogeneous medium. Its permittivity tensor
is reduced to a complex number ¢,; (see Fig. 1).

A. Linear Relation between E and D in the Case of an
Isotropic Medium

In the present case, the tensor € in Eq. (4) (defined in the
modulated area) becomes a function &(r, ). So we have
N-é-N=€(r,0)(N-1;)-N=€(r,0). Moreover, (N-€)ATy
=€e(r,) NATy=€(r,0)T; and (N-eATi;=€r,0)NAT;=
—€(r, 0)Ty. Thus the term €eC, reduces to

eNy N, 0
-eN, N, 0.
0 01

Considering ?(x) and g(x) as 27 periodic functions discon-
tinuous at different values of x and using the first factor-
ization rule, we obtain the following results: [f3]=[Alz].
By the use of this property into the Toeplitz matrices [C ]
and [eC] in Eq. (14), we obtain the same formula as in
the work on the TM case®:

27)

Qe

1! 1
[[e]][[Nf]]+|’;N N2l —(e]] ﬁ;m )[[NrNg]] 0
= 1t
—([[e]]— P )[[N,Na]] [€lIN,2] + || — [[NZ]] 0

0 0 [el
(28)

Since [D] and [E] have dimension 3(2N +1), the size of
this matrix is 3(2N+1) X 3(2N+1). Moreover, we notice
that the matrix @, contains the Toeplitz matrices [[er]],
v 92]], and [N,Ng. But N, and N, are defined only on the
surface (S); that is why we need to extend their definition
inside the whole modulated area. The extension can be
done in different ways. If the surface is well defined along
the interval [0,27] of 6 (g is continuous on [0,27]), the
unit vector normal to the surface (S) can read as

grad(/)
lgrad(f[ | __,

=0. (29)

N[r=g(0),0]= with f(r,0) =r - g(6)

From its definition, N depends only on 6 and is defined on
(S) only. But we extend its definition to the entire modu-
lated area (Rp;,<r<Rpn.s) by introducing a new vector
continuous across the diffracting surface (S) and defined
by

grad(f)
Vre [Rmin’Rmax]’ N(r, 0) = m . (30)
r=g(6)

A second way to extend the normal vector consists in con-
sidering only the value of N at the intersection points be-
tween the surface (S) and the circle in the cross section of
radius r, and taking an arbitrary vector elsewhere, pro-
viding that we avoid discontinuities and strong variations
to avoid the Gibbs phenomenon. The main disadvantage
of the second method is the longer needed computation
time related to the fact that the normal vector now de-
pends on r and 6, which requires computing the Fourier
coefficients of its three components at any integration
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step that will occur in the numerical resolution of the
boundary-value problem.

B. Field Expressions in the Homogeneous Regions
According to the r dependence of the M(r) matrix, no ex-
plicit expression of the field in the modulated area can be
found. On the other hand, the Maxwell equations in the
homogeneous regions (j=int or ext) permit us to obtain a
set of independent second-order differential equations
governing the Fourier coefficients of the z component of
the magnetic and electric field G, , depending on &, jr:

2

z,n G zZ,n
+k k G, , =
Qe+ a7 e

with G, ,, € {E, ,,H, .}, 31

(ke jr)?

the solutions of which are

H,, =AY} J, (k) +BY H(k, ),

=AQ\ T, (kyr) + BYH (k1) (32)

with k, *=k®-y,> and k*=w’uge;. The others compo-
nents of the field are given by

1 [ H, iwedE,
H.=—\ivo—

or r Jd60

1 LYo aHZ oE
Hy=-—( = ,
kyj\ 1
1 JE, iowuyiH,
E.=—|1i
ktjz 1 ar r  d0
1 [iyydE, JH,
=—| —— -1 33
0 ktJQ r (90 Lo ar ( )

Equations (32) and (33), which allow us to find the com-
ponents of the field developments, can be written in a ma-
trix form. Thus we define a matrix ¥V(r) made of 4 x4
blocks, each block size being (2N +1). This matrix links
the vector [F(r)] containing the components of succes-
sively E,, E,, H,, and H, with the vector [V ()] contain-

ing the components Ag)an(kt s A,({?an(kt s
BY) H(k,r), and B} Hy(k, ) by
[F(r)] =Y ) [VV(r)] with WV(r)
1 . . 1 .
- q?  —p¥ g
r r
I, 0 I 0
Solo_ 95021
-——9q, PV ——qp P
Mo r Mo r
0 I 0 1,
in which
. Yo
(p(]))nm =- ﬁnanm, (35)
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lopg (n Srs1(kyjr)
(qe ))nm 9 (_ - kt,/' u . 5nm, (36)
ko \r S, (ky j1)
. lwpy(n H; (R jr)
(W —— ey Y N 1
(qh )nm kth ( tJj H;(ktdr) nm ( )

We notice that the size of vectors [F(r)] and [VV(r)] is
4(2N+1).

C. Integration of the Differential Set with the S-matrix
Propagation Algorithm

A basic integration with a shooting method through the
modulus area gives the transmission matrix 7' of the dif-
fracting device. However, the T matrix may be ill-
conditioned because of numerical contaminations. Impor-
tant index gap or strong growth of the function f(r,6)
increases such numerical contaminations. To improve the
convergence of the results, the S-matrix propagation al-
gorithm is used.*® In this subsection, this algorithm is
presented in a matrix formulation. The modulated area is
divided into L slices of which the circular boundary cylin-
ders have radius ry, s € [1,L+1] (r;=R i, and r71=Ra0)-
We introduce a infinitely thin homogeneous layer with a
permittivity of e, between each slice except at R, (see
Fig. 6). The resolution of the diffraction problem uses a
shooting method that consists of turning the boundary-
value problem into an initial-value problem. At the sth
slice, we take 4(2N +1) independent initial column vectors
noted as [V,]:([V,]);=6,; with ie[1,4(2N+1)]. In what
follows, the sign A will denote a matrix, used in the inte-
gration process, built from a list of column vectors. These
columns form the identity matrix

Vir) =(.,[V,],...) =1y, (38)

and the corresponding fields read ﬁ'(rs) =plextir o1,
=W () at r, [if s=1 we take W) (r)]. The matrix F(r,)

Homogeneous region (ext)
with a pemmittivity g,

Radius of the slices
141~ Ry

.

I

Infinite thin
homogeneous layers

(s+1)  (s+1) . e .
with a permittivity €,

Aen ’Ahn

(s+1) ls+1)
Ben ’Bhn

A0 AL

gn>

(s) pls)
B Bh,n

En>

Homogeneous region (int)
with a permittivity €,

Index of the ""“ T mfi‘
slices

e e —

Fig. 6. Notations of the splitting of the modulated area for the
S-propagation algorithm (the coefficients A;) and B; ) " with f=e or
h are amplitudes of the field in the infinite thin homogeneous
layer at r=r).
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contains the column vectors ([F(r,)]); with ie[1,4(2N
+1)], used as initial values of the field, and we integrate
the differential set of Eq. (26) using a suitable algorithm
(combining Runge-Kutta and Adams—Moulton algo-
rithms). Compared with Ref. 3, the notations of the ¥V
matrix are changed [see Egs. (31) and (42) in Ref. 3]: The
() matrices are normalized by the Bessel and the Han-
kel functions so as to inject well-conditioned matrices as
an initial value in the integration process. This new nota-
tion induces that the vector [VY] contains the Bessel and
the Hankel functions. At the end of the integration, the
result is a matrix noted as F' integ(7's+1) giving the field at
rs.1, from which we derived from Eq. (34) the matrix

V(rgen) = {0 (1, )} Fineg(res);

using Eq. (38), we obtain

V(rs+1) = {\P(eXt)(rs+1)}_1ﬁ'integ(rs+l)v(rs) .

This last equation shows that the transmission matrix
T®) that links the coefficients of the developments of the
field at r to the coefficients of the development of the field
at ry,1 is given by

T = {T (7 )} Fipeg(Fern) - (39)

The integration through each slice provides a T matrix
that links the field at r,,; to the field at r,. From this ma-
trix, we deduce a S’ matrix that links the fields at r, and
r1, defined by

Bgs,r)zH;(kt,extrs)
(S) H (kt extrs)
Vs e[1,L+1],

Aé,lr)an(kt,intrl)

(1)J (kt mtrl)

Bgr)zH;(kt,intr 1)
(1)
S(S) S(S) H (kt 1ntr1)
11 12 :
=| g0 gw : (40)
21 22 (s)
A J (kt extr

(S) J (kt extrs)

Here the index (s) of the amplitudes Aiszl, A}f)n, Bfn, nd
Bﬁf)n can be replaced by (int) when s=1 and (ext) when s
=L+1. For the particular case of s=1, the S® matrix be-

comes the identical matrix and k;cy; becomes equal to
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k;int- We have checked that all blocks of this matrix are
well conditioned (see also Ref. 4). Briefly, the T matrix
links the fields at layer (s) and the fields at layer (s+1)
while the S matrix links the scattered fields and the in-
cident fields. The S© matrix blocks of the (s+1)th inter-
face are expressed according to those of the sth interface
and to the 7) matrix blocks T , of the sth slice:

S(282+1) (8)[T(1s1)+ (s) (S)]—

St =[T5) + THSBITY + THSHI,
S(S+1) S(S) S(S+1)T(S)S(S)

S(s+1) T(Qsz)s(s) S(s+1)T(sz)S(lsl) . (4 1)

At the end of the integration across the modulated area,
we obtain the S matrix of the whole scattering device,
which depends only on the surface (S) and on the optical
parameters of the media. This matrix links the diffracted
field at R, and R;, to the incident field at R ., and
R, In fact, expressing the exponential function in Eq.
(1) in terms of Bessel functions,10 the incident field can be
defined in the form
4
H{™ = exp(i702) 2, Apz @XP(= in0ind)i" (R exir)exp(in )
n—o
+o0
ES™ = expli2) X, Ae . exXp(= inindi"J,,(ky exir)exp(in )

n—o

(42)

Inside the internal region containing the origin of coordi-
nates, we must state B(mt) B mt =0 Vn to avoid a diver-
gence of the field (H; +(O) Han) This condition allows us

to derive through Eq. (40)

Al A, 1" exp(=infinc)
i | =82 : ’
Alind A, 1" exp(-in by,
B A, " exp(= in biy)
S : . (43)
B}f}‘,t) Ay 1" exp(-inby,.)

5. NUMERICAL APPLICATION ON
PARTICULAR CASES

A. First Validation Study

The present theory has been implemented using the
FORTRAN programming language. It is worth noticing that
the results of the TM and TE polarization studied
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Fig. 7. Cross section of a circular cylinder centered outside the
origin and filled with isotropic and homogeneous media with R
=1 pum, Ry=2 um, 6,=0°, n;=1.6+0.2i, and n.=1, and
notations.

previously5 are associated with the particular case of
conical diffraction with yy=0. In this case, the current nu-
merical implementation written for conical diffraction
gives the same results as the ones computed previously in
Ref. 5. To validate and illustrate in more detail the FFF
method applied to cylindrical coordinates, we first study
the simple case of one circular cylinder centered outside
the origin with a radius R and the center with (R, 6y) po-
lar coordinates (see Fig. 7). The r coordinate defined on
the circle and related to the maximal angle 6,, defined is
noted as r,,= V"ROZ—Rz. On the 6 range where the circle is
defined in the cross section ([6y— 6,,, 6p+ 6,,,]), the diffract-
ing surface directrix equation is given by

r(6) =R, cos(6) = \,R2 —RO2 sin?(6),

r?+ry? - R?
— ) (44)

— el
O(r) = cos ( Srar
where the + sign is related to r e [Rg—-R,r,,] and the —
sign is related to r € [r,,,Ry+R]. In the modulated area,
the permittivity is described by a step function €(r, ) with
respect to 6; thus obtaining its Fourier development and
the Toeplitz matrix €] remains easy. The N(6) function is
given by

)
Ny = z sin(6 - 6;). (45)

We mention that the r component of the surface’s normal
vector is deduced by N,=+1-N, 92. Outside [6y-6,,, 6
+6,,] we could state that the N,? function is extended to
unity. In this case, the N 92, Nr2, and NN, functions would
have the advantages of the continuity and of the r inde-
pendency. Since these functions would be r independent,
their Toeplitz matrices would be calculated once before
the integration process. However, it is interesting to point
out that, along a circle with radius r included in the
modulated area, the N az(r, 0) is defined only by one or two
points with the same [N 92| value. Then we have chosen a
straight extension of a NV 02(7", 0) function with a constant
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value of N 92 evaluated at 6(r). The main advantage of
such an extension is the simplicity of the calculation of its
developments: [V 02]0=N 92[0(1")] and [N (,2]n=0, Vn#0. On
the other hand, the N,Nr,6) function becomes discon-
tinuous, which leaves the determination of its Fourier co-
efficients easy but increases the Gibbs phenomena. The
numerical results show that the two extensions lead to
similar convergence when the order of the Fourier devel-
opments is increased.

The differential cross section (DCS) that is determined
with the asymptotic form of the Hankel functions of the
diffracted field for r — o is given by

ko? [ 2 § (). ins
o(0) =2 (= i)"B Vet
kt,extQ ﬂkt,extn:—w ’
40 2
:| . (46)

To validate our theory and its numerical implementation,
we compare the FFF method results with the ones ob-
tained with the MM.“® We study the scattering by a
single cylinder (see Fig. 7) and compute the DCS with the
two methods. Figure 8 shows the results of the DCS for
No=1 um and \y=0.5 um with a logarithmic scale for the
Y axis; as can be seen, the FFF method results agree

2

Mo 2
+—

€ext

2 (- L-)nB;z)’(lt)einﬂ

Wkt,ext n=—o

100

Mu‘ltipole‘Metho‘d for 7\0‘ =1 pn‘w
—— FFFmethod for Ay =1um

Multipole Method for A4 = 0.5 um
10 F e FFF method for Ay = 0.5 um

DCS

RS
B340 w3 3 K

0.1‘ L L L L ' 1 1
0 20 40 60 80 100 120 140 160 180

0 (degree)

Fig. 8. DCS (6=0° to 180°) for the circular cylinder in Fig. 7
with 6,,,=0°, ¢=30°, ¢=0°, and N=50; comparison of the FFF
method and MM for \yj=1 um and \y=0.5 pum.

@
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0 Nint X

)
)
/‘:\
. zZ !
Nint C \_:/ >

Next

Fig. 9. Cross section of two identical circular cylinders on the X
axis centered outside the origin with d=1 um, A=1.5 um, n;,
=1.4, and nq=1.
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Fig. 10. DCS (6=0° to 360°) for the two identical circular cylin-
ders on the X axis shown in Fig. 9 with \y=2 um, 6,,.=45°, ¢
=30°, ¢=0°, and N=60; comparison between the FFF method
and the MM.

0.14

L=25 with the FFFM ———
L=35 with the FFFM --------
L=45 with the FFFM =
L=55 with the FFFM
L=25 with the Classical Method
L=35 with the Classical Method
L=45 with the Classical Method g
55 with the Classical Method -~
Value for the MM ———

0.1399

0.1398

SED(30°)

0.1397

0.1396 %

0.1395 ¢

60 80 100 120 140
Development order N

Fig. 11. Convergence test according to the order of the trun-
cated Fourier series (V) of the point at 30° in the DCS of the FFF
method (FFFM) (illustrated by Fig. 8) and of the classical differ-
ential method with A\g=1 um and with different values of L
(number of slices for the S algorithm) compared with the MM
value.

fairly well with the MM ones. Then we consider the DCS
of two identical circular cylinders located on the X axis as
shown in Fig. 9; we obtain the results shown in Fig. 10,
and again the agreement between the two methods is ex-
cellent.

B. Numerical Efficiency and Accuracy of the Fast
Fourier Factorization Method

In this subsection we discuss in more detail the numerical
efficiency of the FFF method. For the structures already
studied (Figs. 7 and 9), the single-cylinder case is in fact
more difficult to model than the two-cylinder case. Conse-
quently, we focus on this demanding structure for our con-
vergence tests. In Fig. 11 we show the DCS of the single
cylinder for 6=30° versus the development order N for
several values of the number of S-algorithm slices. We
give both the classical differential method’ and the FFF
method results. We clearly see that the FFF method is
more accurate than the classical differential method. For
this angle of 30° and for both methods, we also see that an
increase of the number of slices in the S algorithm im-
proves the results. In Fig. 12 we give the same study but
for #=150°. Once again, the FFF method converges more
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quickly than the classical method. Note that, as for 6
=30°, the possible crossings between the line correspond-
ing to the value computed with the MM and the conver-
gence curves for small N values are not meaningful. Only
the global behavior of these convergence curves are use-
ful. To avoid such putative crossings in our convergence
study, we give in Fig. 13 the average relative errors be-
tween the computed DCS values and the MM one for all
the angles in the range [0°, 360°]. The improvement
brought by the FFF method is evident (note the log scale
on the Y axis). We finally obtain a relative difference of
2.107* between the FFF method results and the MM ones
for N=140 and L=55. The results obtained with the FFF
method are less accurate than the ones obtained with the
MM for the different examples of DCS shown in Figs. 11
and 12. Nevertheless, the relative discrepancies between
the two methods are fully acceptable. One can ask why
such differences can still be observed whereas both the
FFF method and the MM are rigorous methods, in which
the unique approximations are the truncations of the
used series. For the FFF method, we need to truncate the
Fourier series of the electromagnetic fields (four compo-
nents are needed to describe them in a conical mounting)
and the ones of the permittivity of the diffracting device.
In the case of the MM, we have to truncate only the

0.692
0.6919 £
0.6918
0.6917
0.6916
0.6915
0.6914
0.6913
0.6912
0.6911
0.691

L=25 with the FFFM ——— |
L=35 with the FFFM ----------
L=45 with the FFFM -+ 4
L=55 with the FFFM

L=25 with the Classical Method ------ 1
L=35 with the Classical Method -~~~
L=45 with the Classical Method
L=55 with the Classical Method -4
_ Value for the MM ——

60 70 80 920 100 110 120 130 140
Development order N

SED(150°)

Fig. 12. Convergence test according to the order of the trun-
cated Fourier series (IV) of the point at 150° in the DCS of the
FFF method (FFFM) (illustrated by Fig. 8) and of the classical
differential method with A\g=1 um and with different values of L
(number of slices for the S algorithm) compared with the MM
value.

0.1 4 . . .
N L=25 with the FFFM —+—
\ L=35 with the FFFM -
9, \ L=45 with the FFFM -+
a \ L=55 with the FFFM =+
s % L=25 with the Classical Method --—+--
5 001 |
T
[ e,
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B
2
g 0001 F
©
o
>
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0.0001 ; . . \ ) r
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Developement order N

Fig. 13. Average relative error between the DCS of the FFF
method (FFFM) (illustrated by Fig. 8) and of the classical differ-
ential method and the DCS of the MM according to the order of
the truncated Fourier series (IN) with \j=1 um and with differ-
ent values of L (number of slices for the S algorithm).
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Fourier—Bessel series of two field components (£, and H,
are needed in conical mounting) since any series are
needed of the permittivity. There are at least two other
reasons explaining the better accuracy of the MM for the
examples shown here. First, for homogeneous and circu-
lar inclusions, the reflection matrix relating the incident
and the scattered field in the MM are known analytically.
On the contrary, in the framework of the FFF, the inclu-
sions are described through the permittivity tensor €
(more precisely by its Fourier components) in the modu-
lated area. Second, there is a crucial difference between
the two methods: for the MM no numerical integration is
necessary, while resolution such as the one associated
with Eq. (26) of the FFF method requires such an integra-
tion; only analytical changes of basis using Graf’s
theorem®!® are used for the rewriting of the Fourier—
Bessel series, which lead to an explicit linear problem.

All these reasons also explain why the MM is much
faster than the FFF method for the homogeneous and cir-
cular examples treated in this study, even if all the nu-
merical computations can still be achieved on a single PC.
It is worth considering how the MM accuracy evolves
when noncircular inclusions are considered, and hence
when a numerical integration is required. The results
given in Ref. 11 concerning homogeneous and elliptical in-
clusions can give us a first evaluation since a numerical
integration is required to compute the reflection matrix of
the ellipses. The final results obtained by the MM lose ap-
proximately three significant digits when these noncircu-
lar inclusions are studied. We do not observe such wors-
ening of the accuracy within the FFF method when
similar ellipses are considered instead of circular inclu-
sions since the circles are not treated differently than the
ellipses.

To conclude this subsection, we remind the reader that
circular and homogeneous inclusions are a special case in
which the Multipole Method is certainly the best possible
numerical method since several steps are done analyti-
cally. The purpose of the FFF method is not to study such
simple, but more complicated structures; a trade-off is ob-
tained between the accuracy speed and the generality of
the studied structures.

C. Devices with Subperiodicity According to 6

As with MOFs, any device may present a cross section
with a subperiodicity according to 6. This property can be
taken into account in the integration process to reduce
the computation time. Let us assume that the device pre-
sents a subperiod T such that NyT'=27 where Ny is the
number of periodicity. Thus the spectra of the functions
e(r, 0 and N%(r, 0) are wider than those obtained without

subperiodicity. More precisely, we consider a function f(6)
(e, N 92 or N,N ) subperiodic with period 7. The Fourier co-
efficients of f on the 27 range f, (¥n € N) and the Fourier
coefficients of f on the T range /?,’L (Vn e N) are linked by
the following relations: if n=kNy (V& e N), then f, =}~”,'e and

f,=0 otherwise. Consequently, the Toeplitz matrix of the

function 7 is made of nonnull diagonals regularly sepa-
rated by Ny—1 null diagonals. For instance, if N=4 and

Np=3, the Toeplitz matrix of the function f is
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fo 0 0 f# 0 0 f 00
0 7 0 74 0 0f

0 0 /4 0 0 7 0057
£f,0 0 7 0 0 7 00

A= 0 7, 0 0 /7 0 07 O (47)

0 07, 0 0 7 0 7
Fo 0 0 F, 0 0 700
0?_200}?100(’)0
[0 07y 0 07 00F

We notice that the matrix [f] is block diagonalizable.
This matrix structure is preserved when such a matrix is
reversed or when two such matrices are multiplied; that
is why every block of the integration matrix M(r) given by
Eq. (26) has this matrix structure. Finally, we conclude
that Eq. (26) is split into Ny independent differential sets
with matrix sizes equal to 4(2N+1)/Ny or less. Since the
integration computation time depends roughly on the
cube of the matrix integration size, the time of a succes-
sive integration of each differential subset scales as
Np(42N+1)/Np)®=(4(2N + 1))3/NT2, while the time of the
global differential set [Eq. (26)] scales as (4(2N+1))3. It
means that taking into account the subperiodicity accord-
ing to 6 of the diffracting surface permits us to gain a fac-
tor of N;72 on the computation time. Moreover, each differ-
ential subset depends on the reduced Toeplitz matrix:

i f

fo
ﬂf]]= }NCL1 f(’) fi P
fls i1 1o

which simplifies the calculation of the Fourier develop-
ments of €, N 92, and N,N, functions defined only on the T’
period. The subperiodicity according to # was first suc-
cessfully implemented on an elliptical cross-section sur-
face centered to the origin since it is 7 periodic (Np=2)
and then on the circular cylinder defined on a period T
(data not shown). We note that this study on subperiodic-
ity can be linked to the seminal work of MclIsaac'? con-
cerning waveguide symmetry properties and with the pa-
per written by Bai and Li.'® The authors of Ref. 13 have
explicitly shown how the use of group theory permits one
to fairly reduce the computation time on crossed grating
analysis. More recently, Fini'* has revisited Mclsaac’s
work to improve the efficiency of several numerical meth-
ods if rotational symmetry properties are present in the
device.

D. Excitation of the Fundamental Leaky Mode of a
Microstructured Optical Fiber

The subperiodicity of the diffracting device is particularly
useful in the case of MOF's. These fibers are usually made
of several rings of circular cylinders (filled with vacuum)
regularly distributed according to the angular coordinate
0 in a infinite matrix. We thus consider a solid core MOF
(Fig. 14) composed of six identical circular cylinders with
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Fig. 14. Cross section of a MOF composed of six identical circu-
lar cylinders with d=1 um, A=2.3 um, n;;;=1, and n.=1.4439.

a diameter d=1 um and the same distance to the origin
(pitch) Ry=A=2.3 um (6;=0°); it means that the subpe-
riod is 27/6 (N7p=6). In addition, the whole structure has
symmetry planes, so in the formulation used in wave-
guide theory,? this fiber follows the Cg, symmetries. The
cylinder index is n;;;=1 and the matrix index is 7y
=1.44390356. In our notation [Eq. (3)], the parameter 7,
becomes the studied propagation constant usually noted
as B. The effective index is defined by n.4=B/ko. The well-
established MM'™ can also be formulated as a modal
method, and consequently it can find the modes of MOFs
composed with arbitrary inclusions contained in disjoined
circular cylinders. It gives a complex effective index equal
t0 ner=1.420784+i7.20952x 10™* with A\y=1.56 um for
the fundamental mode, i.e., this mode is a leaky mode
(even if the optical indices of the inclusions and the ma-
trix are purely real). In addition, we know that the fun-
damental mode is twice degenerated.l’lz Its component
fields E, belong either to the C4 symmetry class [symmet-
ric according to the Y axis, u(7-6)=u(6), and antisym-
metric according to the X axis, u(—60)=-u(6)] or to the C3
symmetry class (antisymmetric according to the Y axis
and symmetric according to the X axis). This classification
of symmetry is more precisely explained in the work of
Mclsaac.!? We search now to apply these symmetry prop-
erties on the diffracting problem. The mode that belongs
to the C3 symmetry class is excited when 6,,,=90° and
the second one (C4 symmetry class) when 6,,,=0°.

In the framework of our diffraction method, we have
first tried to excite the fundamental mode described above
with suitable incident wave parameters [Eq. (1)]. We
know that the real parameter 7y, is equal to —k.y; sin(¢) in
which & =kgnex; hence we have searched the angle pa-
rameter ¢ such that y,=%y Re(n.g), and we have approxi-
mately found ¢=-79.73° about [ p=-arcsin(Re(nqg) /N oxt) |-
Doing so, we have neglected the imaginary part of n.g.
Consequently, the fundamental mode is only partially ex-
cited. Figure 15 shows the computation time versus N for
both the six circular cylinder MOF's defined on the 27 pe-
riod and for the one defined on the 7'=27/6 period. These
results clearly illustrate the improvement brought about
by the subperiodicity concerning the computation time.
Figure 16 illustrates the normalized |E,| map associated
with the partial excitations of the fundamental mode be-
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longing to the C3 symmetry class and Fig. 17 to the C4
symmetric class (N=60 and ¢=0°). The fields seem well
located around the circular cylinders and the similarity
with the MM field maps is already clear even if the result

1000 . i
—+— 2m period
- 21/6 period
=
QJ
£
=
[ =4
S 100}
©
5
£
S SEEVIIOSI VIR VSSE S S S A R
10 s . : ; ,
20 25 30 35 40 45 50

Fig. 15. Computation time for the six circular cylinders as a
function of the order of the truncated Fourier series (IV), with
and without taking advantage of the symmetry.
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Fig. 16. Normalized |E,| field map obtained thanks to the par-
tial excitation (see Fig. 18 for the complete excitation) of the
MOF fundamental mode belonging to the C3 symmetry class [
eim:: 900, ¢= 00, )\0= 1.56 puam, N= 60, and ')/0=k0 Re(neff)
=1.420784]. The studied fiber is the same as in Fig. 14.
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Fig. 17. Normalized |E,| field map obtained thanks to the par-
tial excitation (see Fig. 19 for the complete excitation) of the

MOF fundamental mode belonging to the C4 symmetry class
(6inc=0°). The studied fiber is the same as in Fig. 14.
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Fig. 18. Normalized |E,| field map obtained thanks to the com-
plete excitation (see Fig. 16 for the partial excitation) of the MOF
fundamental mode belonging to the C3 symmetry class (6,

=90°, ¢#=0° ANo=1.56 um, N=60, and 7y =Fkon.s=1.420784
+i7.20952 X 10~%). The studied fiber is the same as in Fig. 14.
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Fig. 19. Normalized |E,| field map obtained thanks to the com-
plete excitation (see Fig. 17 for the partial excitation) of the MOF
fundamental mode belonging to the C4 symmetry class (6;,.=0°;
other parameters are identical to the ones of Fig. 18) of the fun-
damental mode. The studied fiber is the same as in Fig. 14.
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Fig. 20. Normalized |S,| field map computed from the electro-
magnetic fields associated with Fig. 18 (the result is similar
when the results associated with Fig. 19 are considered).

Vol. 23, No. 5/May 2006/dJ. Opt. Soc. Am. A 1157

shown in Fig. 16 is a diffraction phenomenon and not a
true mode.

To excite completely the fundamental mode by a inci-
dent wave, we now take into account the imaginary part
of neg. The complex number yy=Fkon.g implies that ¢ also
becomes a complex number. However, this implies that all
the components of the incident fields are proportional to
the same complex number cos(¢). In this case, the field
amplitudes A, , and A;, , deduced from Eq. (2) also become
complex numbers proportional to cos(¢):

A, . = cos(¢)cos(¢)|E™@)|, (48)

A;,. = = cos(¢)sin(¢)|EM)]. (49)

NI =

Since all the other incident field components are propor-
tional to A, ; and A, ., they are also proportional to cos(¢).
Consequently, it is not even necessary to determine the
cos(¢) factor if we are only interested in normalized fields.
In our example, we choose yy=Fkon.g Figures 18 and 19
show the normalized |E,| maps associated with the accu-
rate excitation of the C3 (and C4) symmetry class mode,
respectively. Figure 20 illustrates the modulus of the z
component of the Poynting vector noted as S, for both
electromagnetic field maps (N=60). We recognize the
same field maps as the ones obtained with the MM used
in its mode-searching operation.1

6. CONCLUSION

The described FFF method introduces Toeplitz matrices
for permittivity [e] and [1/€] and also Toeplitz matrices
for geometric quantities such as the normal vector compo-
nents of the diffracting surface: [[N(Q,]], [[Nf]], and [N,N,].
The convergence results depend directly on these matrix
conditions. The numerical implementation on the circle
case in which the €(r,0) and N gz(r, 0) functions present
important variations according to 6 shows satisfying re-
sults for N=50. Moreover, the integration of the differen-
tial set in the modulated area fairly simplifies when the
possible subperiodicity of the diffracting device is taken
into account. We apply the FFF method to simple struc-
tures made of circular inclusions so as to be able to com-
pare it with a known method. However, the FFF method
described here in cylindrical coordinates can compute the
fields diffracted by more complex structures than the ones
shown in this present work: Some other different diffract-
ing surfaces have been successfully studied (elliptical cyl-
inder, rectangular cylinder, etc.), and the most general
case of anisotropic and/or inhomogeneous media can also
be analyzed. An association between the FFF method in
the homogeneous and isotropic case and the MM has al-
ready been used to study a MOF with elliptical
inclusions.!! Our future work will deal with the adapta-
tion of the FFF method applied to light diffraction to the
search of modes into arbitrary cross-section MOFs to
overcome the known limitations of the MM! (inclusions
must be inscribed in nonoverlapping circles, the matrix
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permittivity must be homogeneous). In this case, the dif-
fraction problem becomes an homogeneous problem, i.e.,
an eigenvalue problem.
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