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Mie scattering by an anisotropic object. Part II.
Arbitrary-shaped object: differential theory
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The differential theory of diffraction by an arbitrary-shaped body made of arbitrary anisotropic material is
developed. The electromagnetic field is expanded on the basis of vector spherical harmonics, and the Maxwell
equations in spherical coordinates are reduced to a first-order differential set. When discontinuities of permit-
tivity exist, we apply the fast numerical factorization to find the link between the electric field vector and the
vector of electric induction, developed in a truncated basis. The diffraction problem is reduced to a boundary-
value problem by using a shooting method combined with the S-matrix propagation algorithm, formulated for
the field components instead of the amplitudes. © 2006 Optical Society of America
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1. INTRODUCTION

Light diffraction and scattering by arbitrary three-
dimensional (3D) objects is a problem of interest in many
domains of science and technology, such as astrophysics,
atmospheric physics, remote detection, radar scattering,
and photonics. In a previous paper1 we developed a differ-
ential theory to analyze the problem in the case of isotro-
pic materials. However, in both nature and technology,
diffracting particles are more complicated. Two examples
are that interstellar dust can include -crystalline
particles? and that high-frequency light modulation can
be performed by using electro-optical effects in aniso-
tropic crystals such as LiNbO;.?

Although a great amount of work has been devoted to
the problem during the past 15 years, it seems that a gen-
eral theory that could handle arbitrary shaped objects
made of arbitrary anisotropic lossless or lossy material
needs to be formulated. Published studies address par-
ticular shapes or kinds of anisotropy. For example, Ref. 4
deals with dielectric ellipsoids, and Ref. 5 considers rota-
tionally symmetric anisotropy with geometries conformal
to spherical coordinates; Ref. 6 deals with perfectly con-
ducting cylinders coated with an anisotropic layer, while
Ref. 7 is restricted to spherical scatterers including an an-
nular layer of anisotropic material.

The aim of this paper is to take advantage of the flex-
ibility of the differential theory of light diffraction,® re-
cently extended to 3D optically isotropic objects described
in spherical coordinates,! in order to develop the theory
for an arbitrary anisotropy. This has become possible
thanks to the possibility of representing the field in an an-
isotropic material in the basis of vector spherical harmon-
ics, described in Part L°

2. PRESENTATION OF THE PROBLEM

The diffracting object is represented schematically in Fig.
1. It has an arbitrary shape limited by a surface S, de-
scribed in spherical coordinates by the equation
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flr,0,0) =0, (1)

or by
r=g(0,¢), 0 e [0,7]. (2)

The tensor of relative permittivity in Cartesian coordi-
nates has the form

€xx €xy €Exz
€=|6&x &y &z, (3)

€x €y €
and we assume that its elements do not depend on
(x,y,2). Its elements in any coordinate system with unit

vectors (i ,j,i) can be obtained using the formula é
=MenT, where T stands for transpose and R is the corre-
sponding transformation matrix:
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We divide the space into three regions by introducing two
spheres S; and S with radii R; and R, respectively. The
first sphere S; is inscribed in the object, and the second
sphere Sy is circumscribed around the object (Fig. 1). Re-
gions inside S; and outside Sy are homogeneous. The in-
termediate region is inhomogeneous and will be called the
modulated region. In this region, for any value of r (R;
<r<R,) each tensorial component &, i, j=(r,0,¢), of the
permittivity is a periodic function of ¢ with period 27 and
can furthermore be expressed on the basis of scalar
spherical harmonics:

&, 0,0)= > D €iamMYm(6,9), (5)

n=0 m=-n

where

© 2006 Optical Society of America
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Fig. 1. Depiction of the diffracting object and notation.

€5, nm(r) f d(Pf (r 0 (P) (0, <p)sin od o

= J &i(r,0,9)Y,,,(6,0)dQ. (6)
0

It is important to notice that the elements of € in Carte-
sian coordinates are piecewise-constant with respect to ¢
and 6.

3. FIELD EXPANSION ON VECTOR
SPHERICAL HARMONICS

In spherical coordinates, several different basis sets are
available to represent the electromagnetic field in any iso-
tropic or anisotropic material. As already discussed in de-
tail in Ref. 1, we shall use the basis of vector spherical
harmonic functions Y,,,(0,¢), X,,,(0,¢), and Z,,,(6,¢),
which allows the electric field to be expressed as

E(r,0,0)= > >, [Eyun) Y (6,¢) + Expm (1) X, (6, ¢)
n=0 m=-n
+Ean(r)an(0y (P)] (7)

A numerical treatment requires truncation of the infinite
sum in n, Eq. (7), to a value denoted by ny,.. We define a
single summation index p to replace the two integers n
and m through the relation p=n(n+1)+m+1 so that
Pax=Mpax+ 1)2. The inverse relations permit the deter-
mination of n and m from the values of p:

n= Int\r’p - 1,

m=p-1-nn+1). (8)

In addition, we introduce a generic notation for the vector
spherical harmonic functions, using a Greek letter
superscript:

Y, 7=1
Wy =1%,, n=2 . )
Z,, n=3

Using Egs. (8) and (9), we can represent the electric field
in a form more compact than Eq. (7):
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PMax 3

E(r,0,9)= > X E,rW(6,0). (10)

p=1 7=1

Similar expansions will be used for the magnetic field H
and electric induction D. In addition, Eq. (5) takes the
form

PMax

D € (MY,(0,0). (11)

p=1

gij(r, 6’ (P) =

One of the advantages of using vector spherical harmon-
ics is that the Maxwell equations take a simple form®:

a,— " =iwpoHy,, (12)

a,— - ———— =] s 13
14 r r dr wlu‘OHX,p ( )
Ex, dEx
—% 4 —" =iopgHy,, (14)
r dr ’
HX,p
apT =—iwDy,, (15)

ap - —T—T=—leXp, (16)
HX,p dHX,p D 17)

+ =-1 ,

r dr “ 7

where a,=\n(n+1) and n is given in Eq. (8).
As we have done in the isotropic case,’ we introduce a
matrix @, that links the components of E and D:

[Dy] [Ey]
[Dx] | = Q] [Ex] ], (18)
[Dy] [E/]

where each column denoted by square brackets contains
the pyax—1 elements of each vector component. For
example,

Ex,
[Exl=| = | (19)

EX’pMaX

Then the set of Egs. (12)—(17) can be written in the form
of a first-order differential set,

d
—[F]=M()[F], (20)
dr

where the column [F] has four blocks:
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[Ex)
[E7]
[Hx]
[H]

[F]= (21)

with H=\uy/€H, and the matrix M is a square matrix
having 16 blocks, each having dimension py,,—1 and
equal to

1

M11=—;, Myy=My3=0, My =ipkl,

a I a
-1 -1
My, =~ ;Qf,YYQE,YX’ Moy =~ o ;QE,YYQE,YZ’

' aQ yya
Moz =i 7‘#"30]I ) My, =0,
ol

M, =iko(Q . zyQyyQeyx — Qezx),

My =iko(Q.zvQ:yyQeyz — Qez2),

1
My =~ Qczy@cyya=1,  My=0,

2

a
M41=i(k()Q57XX_kOQ€,XYQ;1YYQE,YX_ )’

ukor?

My =iko(@Q.xz ~ Qexy@:3vQcvz),

a 1
M=~ QE,XYQ;}Y?, My, =- - (22)

Here | is a unit matrix and « is a diagonal matrix with
diagonal elements equal to a,.

These equations are valid for both isotropic and aniso-
tropic materials. The difference between isotropic and an-
isotropic cases is contained in the form of both the matrix
Q. and the field expansion inside the homogeneous aniso-
tropic region (r<R;). In the following sections we deal
consecutively with these two topics.

4. DETERMINATION OF THE Q. MATRIX
USING THE FAST NUMERICAL
FACTORIZATION

As in the isotropic case, the components of @, are deter-
mined by obtaining the link between E and D, projected
onto the same truncated basis. The truncation requires
applying special factorization rules, one for the tangential
(subscript T) components, the other for the normal (sub-
script N) ones.!! However, in contrast to the isotropic
case,! the tensorial character of & complicates the relation

Stout et al.

between E and D, so Dy depends on both Ey and E, and
likewise for Dy. This requires applying an approach quite
different from the one used in Ref. 1 but similar to that
followed in Cartesian coordinates to analyze anisotropic
diffraction g,'ratings.8

Let us consider the unit vector N, normal to the surface
S of the object, defined on the surface:

N(6,¢) = grad f/|grad f|. (23)

We need to extend the definition of N to the entire modu-
lated region; we state

N(r,6,0) = N(8,¢), Vr e [Ry,Rs). (24)

As previously stated, the circumflex denotes unit vectors.

We then construct two unit tangential vectors T; and Ty,
defined by

N X & N, N,
= r —
Nxgl N+N; (N +N;

T, = 0, (25)

. NN, NN, .
Ty=TixXN=-———ft - ——us
VN?+N2  |N?+N?
1-N?
+ ==, (26)
N2+ N3

if N is not parallel to ¢. If they are parallel, then

T, =#, 27)
T2=T1XNE—A0. (28)
The column
Eq E-T
F. 1 1
1 def|] 1 R
F.=|\F.|=| —Dy|=| —D-N (29)
€ €
F53 R
ETZ E * T2

is continuous across the object surface S, where the per-
mittivity is discontinuous. Let us underline the fact that
F_is not a vector: each of its elements represents a scalar.
The elements can be expressed through the components
of E using a square matrix A,,

F.=AE, (30)

which can be determined by taking into account that

1 1 A
—Dy=—D-N=N-(éE)
€0 €0
=Nr(€rrEr+ Er6E9+ er(quo) +N0(E6’I‘Er+ 609E(9+ E@(pEgo)
+ N (€, E, + €0E g+ €,,E ). (31)

As a result, one obtains
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Ty, Ty 0
AE= (Nrerr+NH€/)r+N<p€¢r) (Nr€r0+NHEH€+N(p€<p0) (Nrer(p+N669<p+N<pe¢<p) 5 (32)
T2,r Tz,f) TZ"P

which can be written in a more compact form by introduc-
ing a dot product (N-é&) denoting a contraction over the
first tensorial subscript of &

T, Ty 0
A=|(N-9 (N-§, N-§,|. (33)
Ty, Ty T
After tedious but elementary calculations, it can be shown
that its inverse matrix has the form
w |9 xT) Ne [T x(N- 8],
C=A"= | [N-§x Tyl No [T x N3], |,
0 O ~ A, A e ~
[(N-& X Ty], No [Ty X(N-&],
(34)

where §0=1(I- & N is the determinant of A.. Using the mu-

tual orthogonality of 1(1, ’i‘l, and 'i‘z, and the fact that the
mixed product of three vectors is null when two of the vec-
tors are identical, one can easily verify that AEA;lzﬂ. In
addition, due to the symmetry of  the determinant &, of
A, is a positive quadratic form and thus is never null. By
using Eqgs. (25) and (26), we can write matrix C in another
form:

&1 1 &

Tl,r - _Nr _Nr T2,r - _Nr
&o & &o
& 1 &

C=| Tiy—-—Ny =Ny Ty9——Ny | =(C1,Cy,Cy),

&o & &o
& 1 &

Tio- S_ON‘p S_ON‘p Ty, - §—0N¢

(35)

where §1=N-E-’i‘1 and §2=N-E-’i‘2 are scalars. As can be
observed, the three vectors (C;,Cs,C3) representing the
three columns of C consist of a linear combination of the

normal (N) and tangential ('i‘l,’i‘z) vectors, whatever the
coordinated system wused. In the anisotropic -case,
C,,C,,C3 are not mutually orthogonal, while they are or-
thogonal in isotropic media, with & =£&=0.

Inversing Eq. (30) gives

E=CF,, (36)
and thus
D= €0§E = EogCFe. (37)

Let us recall that the aim is to express the components of
the column [D], made of three block columns [Dy], [Dx],
and [Dy] in terms of the column [E], made of [Ey], [Ex],
and [Ez]. To achieve this goal we have to pass through the
column F, which is composed of those components of the

[
electric and induction field that are continuous across the
diffractive object surface S.

A. Direct Factorization Rule

All the components of the column F, are continuous
across S, while some of the components of D are discon-
tinuous and some are continuous. We can then apply the
direct factorization rule to Eq. (37) by projecting D onto
the basis of vector spherical harmonics [see Eq. (10)] and
projecting the scalar elements of F', onto the basis of sca-
lar spherical harmonics. Then Eq. (37) takes the form

E Dn,p(r)wén)(e’ (P) = Eog(r, 0, (P)C(r’ 0’ (P)
D7

Fe,l,p(r)
XD | Fe2p(M) |Y,(6,0), (38)

F e,3,p(r )
where € is a square matrix of size 3 X 3 with elements é;.
Matrix C is also a square matrix of size 3 X3 with ele-
ments C;; representing the components of the three vec-
tors Cy, J=1,2,3, Eq. (35), expressed in the same coordi-
nate system as € Their product (éC) has the same form
with elements

(€)= 2 &Cjs. (39)
J=r,0,¢

If the basis used to represent the tensor elements differs
from the set of unit vectors of the spherical coordinate
system, then i and j stay for the basic vectors, for ex-
ample, in the Cartesian coordinate system i,j=x,y,z. In
contrast, the last subscript J=1,2,3 corresponds to the
tangential or normal field components, which form the
column F', Eq. (29). Since they are scalars, they do not de-
pend on the coordinate system. Using this convention, we
can write Eq. (38) in a more compact form:

2 D%PW;J‘”) = 602 (ECJ)FE,J,pr' (40)
P J.p

The next step is to use the orthogonality of the vector
spherical harmonics with respect to their argument:

4m
J AOW(0,) W, 7(0,0) = 8,08, (41)
0

Multiplying Eq. (40) by WZ(T) and integrating over the en-
tire solid angle, one obtains

D, (1) = &, (W|(EC)Y,)F ;5 ,(r)
J.p

= 602 {gC}T,J,que,J,p(r): (42)
J.p

where
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41
{€C}y o = (W|(EC)Y,) = f dOW,(6,¢) - (EC)Y,(6,¢),
0

(43)

and the dot product here is reduced to the ordinary scalar
product. This equation is written in a form independent of
the coordinate system used, owing to the scalar product,
which has to be explicitly calculated in each specific coor-
dinate system.

Owing to Eq. (A22) of Part I.° the ¢ dependence of the
integrand in Eq. (43) is exponential, exp{i[m(p)-m(q)]¢},
so that the integration with respect to ¢ represents a Fou-
rier transform of (€C),;. In addition, the facts that Y, are
parallel to # and that X, and Z, are perpendicular to #
simplify the form of {€C} when it is represented in spheri-
cal coordinates:

{ZC}YJ,pq = <Yp|(gc)rJYq>}

{€Cxypg= > X, l(C)15Y,),

i=0,¢

{(€Clzypg= > (Z,1(E0)1Y ). (44)

i=0,¢

The integration with respect to 6 is significantly simpli-
fied when (€C);; can be represented in the form of series of
scalar spherical harmonics. This is the case of isotropic
media, as discussed in detail in Ref. 1. Another situation
is discussed in Section 5 and concerns the case of absence
of discontinuity of the permittivity tensor inside the
modulated region, for example, gradient-index anisotropy.
Two more cases are described in detail in Appendix A.

Equations (42) and (43) establish the direct factoriza-
tion rule.

B. Inverse Rule

As already discussed, all the components of the column F,
are continuous across S. However, some of the compo-
nents of E may be discontinuous there. Thus, it is neces-
sary to apply the inverse rule to Eq. (30). This is simply
done by applying the direct factorization rule as stated in
Eqgs. (42) and (43) to Eq. (36), taking into account that C is
discontinuous, while F, is continuous. Thus, Eq. (36) can
be written in components

ET,q(r) = 2 CTJ,quE,J,p(r)> (45)
J.p

where the elements

41
Crygp=(WII(CY,) = f dOW,7(6,¢) - (C,)Y,(6,¢)
0

(46)

form a square matrix {C} with nine blocks C,;. Its nu-
merical inversion makes it possible to express the compo-
nents of F, as function of [Ey], [Ex], and [Ez]:

[FJ]={C}'[E]. (47)
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The remarks following Eq. (43) and concerning {éC} also
hold for the matrix {C} derived in Eq. (46). Equation (44)
again apply by replacement of éC with C.

Equations (46) and (47) state the inverse factorization
rule extended to anisotropic materials.

C. Fast Numerical Factorization Equation

It is now straightforward to determine the relation be-
tween [Dy], [Dx], and [Dz] on one side and [Ey], [Ex], and
[Ez] on the other side. Combining Eqs. (42) and (47), we
obtain

[D] = &{éCHC} '[E]. (48)
Thus the matrix @, takes the form
Q.={eCHCy . (49)

It is worth noticing that Eq. (49), together with Eqs. (43)
and (46), generalize Eq. (114) of Ref. 1 to anisotropic me-
dia. When applied to isotropic medium, they lead to Eqgs.
(76), (82), (83), (88), and (89) of Ref. 1 with € being a sca-
lar. This can be easily observed by taking into account
that for isotropic media the triad (C;,Cy,C3) simplifies

into (’i‘l,l/ 61(1,'1‘2). When projected onto the basis
(Y,,X,,Z,) as stated by Eq. (46), matrix {C} becomes

. 10
{C}= <{T1},{ ;}{N},{T2}> (50)
and can be inverted analytically:
{Ty"

1|1
{Cy'= {;} {N}T . (51)

{Ty)7
On the other hand, Eq. (43) simplifies to the form

{€C} = ({{{T},{N}{eHT)) (52)

so that matrix @, takes the form written in Eq. (116) of
Ref. 1 when we take into account the relation 'i‘l’i‘l
+ Tz’i‘g + NN =I.

In contrast to the isotropic case, in the anisotropic case
the elements of matrix @, are determined numerically
and cannot be explicitly written, as they were in Ref. 1.
We also note that the matrix product in Eq. (49) cannot
cancel matrix C and its inverse, because the matrix ele-
ments of {€C} are not represented as elements of the prod-
uct of two matrices, {€C} # {€{C}, owing to the integration
in Eq. (43). {éC} would be the product of two matrices only
if one worked in a nontruncated basis, which is impossible
numerically.

5. INHOMOGENEQOUS SPHERICAL BODY

If the permittivity tensor does not present any disconti-
nuity inside the modulated region but presents only
smooth inhomogeneity, it is not necessary to use the fast
numerical factorization (FNF) rules. Such an example
contains a spherical optically inhomogeneous anisotropic
body with the elements of € being continuously varying
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functions of (x,y,z), for example, a graded-permittivity
anisotropic sphere. In that case both D and E are continu-
ous and the first relation in Eq. (37) can be directly used:
D=¢)éE. Both D and E are expressed in terms of vector
spherical harmonics, Eq. (10), and the left-hand side of
Eq. (38), so that

D=6:eE = > D, ("W (6,¢)
P

= 6é(r,0,¢) 2, E ()W (6,¢). (563)
q

Multiplying by W:(T) and integrating over the entire solid
angle leads to a simplified form of matrix @, in Eq. (18):

Q.=1{8, (54)
where the elements of the matrix {€} are given by

{8 1pg ) = (W(OW.7)

4
= f dOW,7(6,¢) - &r,6,9)W."(6,¢). (55)
0

Each element {g}m,pq is a scalar independent of the coor-
dinate system and contains a product of the tensor é with
the vector W.” on the left and Wf;’) on the right. In a spe-
cific coordinate system it is represented as a summation
over the tensorial indices i and j of &

W awW = S wOgw) (56)
iy

pt "UTqy?

where Wé?:WfI”)- j is the projection of W((;’) onto the coor-
dinate unit vector j.

Unfortunately, Eq. (55) requires a numerical integra-
tion of the products of spherical harmonics. However, in
some cases, it is possible to avoid this by using Eq. (5). If
the inhomogeneity of € is such that its elements can be
represented with only a few terms in the expansion on
scalar spherical harmonics, Eq. (5), these terms can be
used to rapidly calculate the integrals that appear in Eq.
(55). In Cartesian or cylindrical coordinates, the projec-
tion Wl(,”)(ﬁ, ©)-j of W;”)( 6,¢) on the axis j takes a simple
form (see Appendix B) proportional to the scalar spherical
harmonics Y,,,,(0, ¢):

+1

W(0,0) 5= 2 b Y osrmen(6,0). (57)

r=-1

with coefficients bi:;?@ vy Proportional to the projections of

the vector spherical harmonics on the basis (j), as given in
Appendix B. With the use of Eq. (57), the integrand in Eq.
(55) becomes a triple product of scalar spherical harmon-
ics. As discussed in Appendix D of Ref. 1, the integrals of
triple products represent the normalized Gaunt coeffi-
cients @'%:

27 [
a({V’9M’}7{V?M}’{n’m}) = f d@f sin adeYV’,/.L’(ev <P)
0 0

XY, .(6,0)Y (6, 0), (58)

which can be calculated rapidly through recursion

Vol. 23, No. 5/May 2006/dJ. Opt. Soc. Am. A 1129

relations.’® Then each element {€},,4p is given as a linear
combination of the products of Gaunt coefficients @ and
the coefficients b;’,’; vy S€EN in Eq. (57), which depend on
the coordinate system used to represent the permittivity
tensor.

6. RESOLUTION OF THE
BOUNDARY-VALUE PROBLEM

The integration of Eq. (20) can be done numerically be-
tween R, and R,. However, this requires starting values
of the components of the unknown column [F(r)]. In addi-
tion, as long as this column contains electromagnetic field
components that are continuous across S; and Sj, it is
necessary to match the results of the integration with the
corresponding field components outside Sy and inside Sj.

Using the expansion of a plane wave on the vector
spherical harmonic basis in an anisotropic material, Eqgs.
(50) and (55) of Part 1, the column [F] at the innermost
sphere S; takes the form

[F(R))] = Waniso(R1IA] (59)

with a column [A] containing the unknown amplitudes in-
side Sy,

TR
[A‘J=( 1)= . (60)

[A,]
2,v

and the matrix ¥,;,, having a block form,
W aniso = (\Ifl,aniso \IIZ,aniso) s (61)

in which each block consists of four subblocks with rank
PMax— 1:

1
Eah,p,j,vlr/fn(k i)

L n
1 .

._[ae,p,j,v‘//r,t(k ',Vr) + apao,p,i,u]n(kj,vr)]

\Pj,aniso(r) = ” r 1 b

%ae,p,j,vwn(k ,Vr)

1
J— - V(R
_ikorah,p,],vlr//n( ],Vr)

(62)

As usual, j, and k; are the spherical Bessel functions and
i, and &, are the Ricatti—Bessel functions:

U (2) =2j,(2), &(2)=zh;(2). (63)

The matrix V,,;,, can be used as a starting matrix at r
=R, in the process of numerical integration of Eq. (20). At
the end of the integration, the integrated matrix [Fiyte,]
represents the transmission matrix of the system:

T(Ro,Ry) = [Finteg]7 (64)
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which links the field on Sy, to the unknown amplitudes [A]
inside Sy:

[F(Ry)]=T(Ry,R)[A]. (65)

On the other hand, the field components [F(R5)] are con-
tinuous across Sy and can be expressed through the inci-
dent and diffracted field amplitudes in the outermost ho-
mogeneous and isotropic medium, discussed in detail in
Part I°:

Ex,(r=Ry) =[A}) j,(noutkoR2) + By phii(noutkoR)],

Ey,(r=Ry) = [AY) ¥ (noutkoR)

noutkORZ
+Be,p§r’1(noutk0R2)], (66)

~ 1 .
HX,p(r =Ry) = _[A(el})l/’n(noutkORZ)

ikoRy
+ Be,pgn(noutk()RZ)]y
|
0 I
I 0
qliso = - inOUt
P(nouikoRs)
0 - inoutp(noutkORZ)
and
I (2) &(2)
Dpg(2) = 6p,q%) Qpq(2) = 5p,q%' (70)

Equations (65) and (68) represent the same column
[F(R5)], and thus they form a set of 4(N,—1)=4(pyax—1)
linear algebraic equations for the unknown field ampli-
tudes [A,], [A5], [B,], and [B,]. The set can be solved nu-
merically when the incident field amplitudes A;f}p and Af;’;,
are known.

During the integration process, one can expect the ap-
pearance of numerical problems, and it is necessary to di-
vide the integration region into subregions so that inside
each subregion the integration remains possible. Instead
of obtaining the transmission matrix 7', it is possible to di-
rectly determine the scattering matrix S, which links the
diffracted to the incident amplitudes. This procedure is
well known in the diffraction theories in Cartesian and
cylindrical coordinates and is explained in detail in Ref. 1.
The equations in the case of anisotropic media do not dif-
fer from the formulas developed in the isotropic case; the
interested reader can find them in Ref. 1. The first differ-
ence is the start of the integration, which uses as a shoot-
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Hy,(r=Ry) = — ORZ[Aﬁffpw;<noutkoR2>
+Bh,p§r’z(n0utk0R2)]} (67)
where AX)P and Ag} are the incident (known) field ampli-

tudes and B, , and B, , are the diffracted (unknown) field
amplitudes in the outermost region. With these expres-
sions, the column [F] in the outermost region takes the
form

AD Y (nguikoR2)/MouikoR2
AL U, (nouikoR )Motk oRe

[F(Ro)] = Wiso(noutkoR2) :
Be,p g;z(noutkORQ)/noutkORZ

Bh,pgn(noutkORZ)/noutk0R2

(68)
where
0 1
0
—iNgut 0 (69)
q(noutkoRs)
0 = inguq (MoutkoR2)

[

ing matrix the matrix V., defined by Egs. (61) and (62),
which requires 2(pyax—1) independent starting vectors.
The second difference is the form of the @, matrix, dis-
cussed in detail in Section 4.

7. CONCLUSION

This work extends the differential theory of diffraction to
an arbitrary-shaped 3D body made of arbitrary aniso-
tropic lossless or lossy material. The theory extends the
fast numerical factorization (FNF) of products of continu-
ous and discontinuous vector functions to anisotropic me-
dia described in vector spherical harmonic basis. It is able
to analyze uniaxial, biaxial or chiral materials. Moreover,
the theory can be applied to ferromagnetic materials, de-
scribed by a tensorial magnetic permeability.

Some particular cases permit significant simplifications
that avoid numerical integration of the products of
spherical harmonics. Certain examples are the optically
uniaxial finite-length cylinder and arbitrary-anisotropic
parallelepiped, described in detail in Appendix A. In ad-
dition, the theory can be directly applied to graded-
permittivity materials by using only the direct rule of
factorization.



Stout et al.

APPENDIX A: TWO PARTICULAR
GEOMETRIES

Let us consider two particular cases, which permit signifi-
cant simplifications in calculating the matrix elements of
{C} and {&C}.

1. Finite-Length Circular Cylinder with Uniaxial
Anisotropy

Let us consider a finite-length circular cylinder with
height H and radius R with axis coinciding with the z axis
and the origin of the coordinate system located in the cen-
ter of the body, Fig. 2. The numerical integration of Eq.
(20) has to be performed from r=R;=min(R,H/2) to Ry
=[R2+ (H/2)%]"2, and it is necessary to extend the defini-
tion of the normal vectors defined at the surface to the en-
tire region of integration. This can be done, for example,
as represented in Fig. 2. If the cylinder material has
uniaxial anisotropy with the optic axis coinciding with the
axis of symmetry, the permittivity tensor has the same
form in a Cartesian and in a cylindrical coordinate
system:

e 0 O
g =0 €, 0 (Al)
0 0 ¢

Since the normal and the tangential vectors can be simply
expressed in cylindrical coordinates, we represent the ma-
trices C and (&C) in cylindrical basis (p,&,z). We distin-
guish two cases:

(1) 6 (6,,7—6,). In this interval, we can write

N=ﬁ, 'i‘1=27 'i‘2=¢7 (A2)

so that & =¢, in Eq. (35) and matrices C and (éC) become

0 /e, 0 010
c={0 0 1|, (EC)=(0 0 ¢ (A3)
1 0 0 e 00

(2) 6¢(6,,786,). Equations (A2) and (A3) become,
respectively,

Ty = ¢, (A4)

Fig. 2. Finite-length cylinder and notation.
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~1 0 0 —6 00
c=| 0 0 1| (o)=| 0 0 &|. (A5)
0 1/ 0 0 10

As can be observed, both C and (éC) are piecewise-
constant functions of # and do not depend on ¢. Moreover,
the components of ’i‘z are constant in 6 as well. It is
straightforward to represent the elements of (C) and (&C)
in the basis of scalar spherical functions, Eq. (5):

(©)1(0) = 2, (C)jnYno(8,0) = >, (C);;.,Pocos 6),
n=0

n=0

(80);j(6) = X, (EC);jnYno(6,¢) = > (EC);;,,PY(cos 6).
n=0

n=0

(A6)

Their components (C);;, and (€C);;,, do not depend on r
and can be evaluated analytically, taking into account the
relations (see Appendix A of Ref. 1):

2n+1
PO

B- ,
n 477 n

2 1
f P?L(cos f)sin 6df= —[cos 0P2(cos 0)
0, n
)

- P, 1(cos )] (A7)

b1

To obtain the components of {C} and (éC), Eqs. (46) and
(43), it is necessary to project the vector spherical har-
monics onto the same basis of coordinate vectors (p,o,z).
This can be done using the form of W}(;’) in the basis of
Cartesian spherical vectors y,, presented in Appendix B.
The transformation matrix R is obtained by calculating
the scalar products of the basic vectors:

X-1°P X1 X-1°%

R=| Xo'P Xo @ Xo'2
i+1'i’ /i@l'é’ /i/+1 z
"~ explcip) —exp(-ig)
—exp(-ip) —=exp(-ip) O
V2 V2

= 0 0 1]. (A8)

-1 -
—=exp(ie)

5 exp(ip) 0
v v
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Let us first consider Eq. (46). The projections of W:(,:L,
onto (p,{,z) are represented as a product of W;(T)- X, and
the transformation matrix in Eq. (A8) and are expressed
through the coefficients b;’z,)l v Jj=p,e,z, obtained using

Egs. (B6)—(B9). They are used together with expansion
(A6) to give for the integrand in Eq. (46) the form

+1 ©
W0 (0,0) (CHY,nbo)= > > X bio,

wv==1j=p,¢z n'"=0
(C)jJ,n”Yn”OYnm :
(A9)

*

XY

n'+vm’+p

Thus the integrand is represented as a triple product of
scalar spherical harmonics. The only other dependence is
the ¢ dependence of some of the elements of R stated in
Eq. (A8). Given the simple form of this dependence, the
integration in ¢ can easily be performed, while the 6 in-
tegration can be avoided by using Gaunt coefficients, Eq.
(58). Thus, the elements of {C} can be obtained without
numerical integration.
The same reasoning applies for (€C).

2. Optically Anisotropic Brick

Let us consider a parallelepiped consisting of anisotropic
material (see Fig. 3). The parallelepiped is divided into six
pyramids each of which contains a wall of the parallelepi-
ped and has an apex at the origin of coordinates. The pro-
longation of the vectors normal and tangential to each
wall is made inside the pyramidal regions. Let us denote
each region as Vf,j:x,y,z, so that, for example, V! is the

exx exx

C=(Cy,Cy,Cy) =

Similar expressions are obtained in V}; and V7. As can be
observed, matrix C is a piecewise-constant function of 6
and ¢. The same is valid for (é€C), as the permittivity ten-
sor is independent of (x,y,z) inside each medium. Thus,
the two matrices can be represented in the form of Eq. (5).
The main difference from the matrices for the finite-
length cylinder is that now they depend on ¢ and thus
will contain spherical harmonics Y,,,,, with m # 0, in addi-
tion to Y, 0. These supplementary components cannot be
evaluated analytically, unlike in the case of Eq. (A7), so
that it is necessary to numerically integrate the integrals
in 6.

The second difference from the cylindrical structure
comes from the transformation matrix R, which here has
a simpler form and has constant components:

XX

1
z, —X, ¥/,
€out
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Fig. 3. Anisotropic brick and notation.

pyramid containing the wall perpendicular to the x axis
and crossing it at x>0, V is the opposite wall, etc. The
three vectors have the following form in V:

€xy .

Ti=2, N=%,  T,=j, (A10)
and thus
&0 = €xxs é1= €, &= Exy- (Al11)
Matrix C is written in V7 as
Exz 1 . . .
z-—%,—X,y-—x|, inside the parallelepiped
(A12)
outside the parallelepiped
[
1 -
e e e = = 0
X-1"X X-1'Y X-1°2 V2 42
R=| Xo'X X0V Xo'zl|=|] 0 0 1
i+1'5\( i+1'$’ i+1'2 __1 __l 0
\!’E \!’E
(A13)

The coefficients b(;,’zl v Jj=x,y,z are obtained from Eq.
(B12), they are independent of # and ¢ because $i=const.
The integrand in Eq. (46) has the same form as that in
Eq. (A9), adding a summation over the second index m” of
Yn//mnl
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+1 o n"
#(7) *(7)
W (€Y= 2 2 2 2 by
wov=—1j=xy.,2 n"=0 m"=—n"

B

XY, €O Y it Y
(Al4)

APPENDIX B: PROJECTION OF VECTOR
SPHERICAL HARMONICS ONTO DIFFERENT
BASIS

Let us recall the definition of Cartesian spherical unit
vectors:

1
X-1= —g(x— iy),

\!
XO = iv
A 1 A . A
K= - =& +i9). (B1)
V2

The vector spherical harmonics can be defined as a linear
combination of these vectors, as discussed in Appendix A
of Part 1.7 This fact makes them extremely suitable for
projecting Wz(;]) onto a basis, independent of the observa-
tion point. Using the formulas in Appendix A of Part I,
one obtains

n n+1
Yo Xu=| A ——Y" - ——Y" |-
nm Xp, on+1 n,n-1 on+1 n,n+1l Xu
1
n

> (n-1m=-u;1u|n,m)
w'=-1

" Von+1

X Yn—l,m—,u"x,u" : i/[,
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n+1l é ( | |
- n+lm-u;1,u|n,m
2”+1,u=_1

XYn+1,m—M’/Q;L’ : X,u,’ (B2)

1
Xnm'/AY;L= ?Ynm,n/i/,u,
1
=-1 2 (n’m_/1',;1’/"‘,|n’m)Yn,m—,u’/AYﬂ’ '/Q/J,'

w'=-1
(B3)
A n+1 . n . R
Z,,- Xu= on + 1Yn,n—1 + mY’%’”l “Xu
n+1 i
= n-1m-u';1,u'|n,m
o1 ( ©';1,u' |n,m)

w'=-1
XYn—l,m—,u’X,u,’ : X/,L
1

n+lm-u;1,u'|n,m
2n+1ﬂ§_1( w'31p'|n,m)

n

XYn+1,m—,u’/i//.L’ '*#. (B4)

On the other hand, the scalar products of the Cartesian
spherical vectors give, by use of Eq. (B1),

/AY/.L : i/:/ = 5/.wa

X-1°X-1=0,  Xx1-X=0,
X1 Xe1=-1,

XoXo=1, X1 X0=0,
X+1°X+1=0. (B5)

These relations finally produce

n+1l
Ynm'/AY—1=_ 2n+1(n_1’m_1;1y1‘n’m)Yn—l,m—l+ 2n+1(n+1ym_1;1’1‘n’m)Yn+1,m—1’
R n n+1l
Yon Xo= ot 1(n— 1,m;1,0ln,m)Y, 1, - -~ (n+1,m;1,0|n,m)Y, .1,
n n+1l
Ynm'i/1=_ 2n+1(n_17m+1;1a_ 1|nrm)Yn—1,m+1+ 2n+1(n+17m+1;1’_ 1|n7m)Yn+l,m+1' (BG)

Xnm : 5(—1 = l(n;m - 1;1’1|nam)Yn,m—ly
Xom - Xo=—1i(n,m;1,0ln,m)Y, .,

Xnm : /A\/l = L(n,m +1;1,- 1|nam)Yn,m+1'

(B7)
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n+1 n
an'x—lz_ (n_1;m_1;1,1|n;m)Yn—lm—1_ —(n+1 m — 1,1,1|n m) n+l,m-1»
2n+1 ’ 2n+1
n+1 n
an'i/0= (n_l,m;l}o‘nam)Yn—lm"' (n+17m;1,0‘n7m)Yn+l m»
2n+1 ’ 2n+1 ’
n+1 n
an'/AYl=_ (n—l,m+1;1,— 1|n’m)Yn—1 m+l~ (n+1,m+1;1,— 1|nym)Yn+1m+1- (Bs)
2n+1 ’ 2n+1 ’
[
The coefficients in front of Y, ,,, in Eqs. (B6)—(B8) repre- REFERENCES

which express the projec-
(7) 3

sent the coefficients bnm P

tions of the vector spherical harmonics W,” on %, in
terms of scalar spherical harmonics Y, ,,:
Wi X 2 LS " (B9)

v=-1

A similar expression applies in an arbitrary basis (j,,):

W -j,= E IS SR (B10)

v=-1

The transfer from the basis (,) to the basis (j ) is made
through the corresponding transformation matrix R
=(j-X), so that (j W=9R(X,). The components of vector
spherical harmonics in different basis sets are related
through the same transformation matrix:

W §,=3 W =2 R,k W2, (Bl

This relation ensures the transfer between the two sets of
b coefficients:

nm,u,v,Jj nm,u' v, x"

b = > Ry (B12)
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