
1
L
d
d
a
a
e
p
d
a
p
b
t

t
e
m
n
t
d
t
t
d
R
n

i
c
i
f
t
i
i

2
T
1
s

1124 J. Opt. Soc. Am. A/Vol. 23, No. 5 /May 2006 Stout et al.
Mie scattering by an anisotropic object. Part II.
Arbitrary-shaped object: differential theory
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The differential theory of diffraction by an arbitrary-shaped body made of arbitrary anisotropic material is
developed. The electromagnetic field is expanded on the basis of vector spherical harmonics, and the Maxwell
equations in spherical coordinates are reduced to a first-order differential set. When discontinuities of permit-
tivity exist, we apply the fast numerical factorization to find the link between the electric field vector and the
vector of electric induction, developed in a truncated basis. The diffraction problem is reduced to a boundary-
value problem by using a shooting method combined with the S-matrix propagation algorithm, formulated for
the field components instead of the amplitudes. © 2006 Optical Society of America
OCIS codes: 290.5850, 050.1940, 000.3860, 000.4430.
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. INTRODUCTION
ight diffraction and scattering by arbitrary three-
imensional (3D) objects is a problem of interest in many
omains of science and technology, such as astrophysics,
tmospheric physics, remote detection, radar scattering,
nd photonics. In a previous paper1 we developed a differ-
ntial theory to analyze the problem in the case of isotro-
ic materials. However, in both nature and technology,
iffracting particles are more complicated. Two examples
re that interstellar dust can include crystalline
articles2 and that high-frequency light modulation can
e performed by using electro-optical effects in aniso-
ropic crystals such as LiNbO3.3

Although a great amount of work has been devoted to
he problem during the past 15 years, it seems that a gen-
ral theory that could handle arbitrary shaped objects
ade of arbitrary anisotropic lossless or lossy material

eeds to be formulated. Published studies address par-
icular shapes or kinds of anisotropy. For example, Ref. 4
eals with dielectric ellipsoids, and Ref. 5 considers rota-
ionally symmetric anisotropy with geometries conformal
o spherical coordinates; Ref. 6 deals with perfectly con-
ucting cylinders coated with an anisotropic layer, while
ef. 7 is restricted to spherical scatterers including an an-
ular layer of anisotropic material.
The aim of this paper is to take advantage of the flex-

bility of the differential theory of light diffraction,8 re-
ently extended to 3D optically isotropic objects described
n spherical coordinates,1 in order to develop the theory
or an arbitrary anisotropy. This has become possible
hanks to the possibility of representing the field in an an-
sotropic material in the basis of vector spherical harmon-
cs, described in Part I.9

. PRESENTATION OF THE PROBLEM
he diffracting object is represented schematically in Fig.
. It has an arbitrary shape limited by a surface S, de-
cribed in spherical coordinates by the equation
1084-7529/06/051124-11/$15.00 © 2
f�r,�,�� = 0, �1�

r by

r = g��,��, � � �0,��. �2�

he tensor of relative permittivity in Cartesian coordi-
ates has the form

�� = �
�xx �xy �xz

�yx �yy �yz

�zx �zy �zz
� , �3�

nd we assume that its elements do not depend on
x ,y ,z�. Its elements in any coordinate system with unit
ectors �î , ĵ , l̂� can be obtained using the formula �5
R��RT, where T stands for transpose and R is the corre-
ponding transformation matrix:

R = �î · x̂ î · ŷ î · ẑ

ĵ · x̂ ĵ · ŷ ĵ · ẑ

l̂ · x̂ l̂ · ŷ l̂ · ẑ
� . �4�

e divide the space into three regions by introducing two
pheres S1 and S2 with radii R1 and R2, respectively. The
rst sphere S1 is inscribed in the object, and the second
phere S2 is circumscribed around the object (Fig. 1). Re-
ions inside S1 and outside S2 are homogeneous. The in-
ermediate region is inhomogeneous and will be called the
odulated region. In this region, for any value of r �R1
r�R2� each tensorial component �5 ij, i , j= �r ,� ,��, of the

ermittivity is a periodic function of � with period 2� and
an furthermore be expressed on the basis of scalar
pherical harmonics:

�5 ij�r,�,�� = �
n=0

�

�
m=−n

n

�ij,nm�r�Ynm��,��, �5�

here
006 Optical Society of America
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�ij,nm�r� =�
0

2�

d��
0

�

�5 ij�r,�,��Ynm
* ��,��sin �d�

	�
0

4�

�5 ij�r,�,��Ynm
* ��,��d�. �6�

t is important to notice that the elements of �� in Carte-
ian coordinates are piecewise-constant with respect to �
nd �.

. FIELD EXPANSION ON VECTOR
PHERICAL HARMONICS

n spherical coordinates, several different basis sets are
vailable to represent the electromagnetic field in any iso-
ropic or anisotropic material. As already discussed in de-
ail in Ref. 1, we shall use the basis of vector spherical
armonic functions Ynm�� ,��, Xnm�� ,��, and Znm�� ,��,
hich allows the electric field to be expressed as

E�r,�,�� = �
n=0

�

�
m=−n

n

�EYnm�r�Ynm��,�� + EXnm�r�Xnm��,��

+ EZnm�r�Znm��,���. �7�

numerical treatment requires truncation of the infinite
um in n, Eq. (7), to a value denoted by nMax. We define a
ingle summation index p to replace the two integers n
nd m through the relation p=n�n+1�+m+1 so that
Max= �nMax+1�2. The inverse relations permit the deter-
ination of n and m from the values of p:

n = Int
p − 1,

m = p − 1 − n�n + 1�. �8�

n addition, we introduce a generic notation for the vector
pherical harmonic functions, using a Greek letter
uperscript:

Wp
��� = �

Yp, � = 1

Xp, � = 2

Zp, � = 3
� . �9�

sing Eqs. (8) and (9), we can represent the electric field
n a form more compact than Eq. (7):

Fig. 1. Depiction of the diffracting object and notation.
E�r,�,�� = �
p=1

pMax

�
�=1

3

E�p�r�Wp
�����,��. �10�

imilar expansions will be used for the magnetic field H
nd electric induction D. In addition, Eq. (5) takes the
orm

�5 ij�r,�,�� = �
p=1

pMax

�ij,p�r�Yp��,��. �11�

ne of the advantages of using vector spherical harmon-
cs is that the Maxwell equations take a simple form1:

ap

EX,p

r
= i	
0HY,p, �12�

ap

EY,p

r
−

EZ,p

r
−

dEZ,p

dr
= i	
0HX,p, �13�

EX,p

r
+

dEX,p

dr
= i	
0HZ,p, �14�

ap

HX,p

r
= − i	DY,p, �15�

ap

HY,p

r
−

HZ,p

r
−

dHZ,p

dr
= − i	DX,p, �16�

HX,p

r
+

dHX,p

dr
= − i	DZ,p, �17�

here ap=
n�n+1� and n is given in Eq. (8).
As we have done in the isotropic case,1 we introduce a
atrix Q� that links the components of E and D:



�DY�

�DX�

�DZ�
� = �0Q�


�EY�

�EX�

�EZ�
� , �18�

here each column denoted by square brackets contains
he pMax−1 elements of each vector component. For
xample,

�EX� = 

EX,2

]

EX,pMax

� . �19�

hen the set of Eqs. (12)–(17) can be written in the form
f a first-order differential set,

d

dr
�F� = M�r��F�, �20�

here the column �F� has four blocks:
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�F� = 

�EX�

�EZ�

�H̃X�

�H̃Z�
� �21�

ith H̃=

0 /�0H, and the matrix M is a square matrix
aving 16 blocks, each having dimension pMax−1 and
qual to

M11 = −
I

r
, M12 = M13 = 0, M14 = i
k0I,

M21 = −
a

r
Q�,YY

−1 Q�,YX, M22 = −
I

r
−

a

r
Q�,YY

−1 Q�,YZ,

M23 = i�aQ�,YY
−1 a

k0r2 − 
k0I�, M24 = 0,

M31 = ik0�Q�,ZYQ�,YY
−1 Q�,YX − Q�,ZX�,

M32 = ik0�Q�,ZYQ�,YY
−1 Q�,YZ − Q�,ZZ�,

M33 =
1

r
�Q�,ZYQ�,YY

−1 a − I�, M34 = 0,

M41 = i�k0Q�,XX − k0Q�,XYQ�,YY
−1 Q�,YX −

a2


k0r2� ,

M42 = ik0�Q�,XZ − Q�,XYQ�,YY
−1 Q�,YZ�,

M43 = − Q�,XYQ�,YY
−1

a

r
, M44 = −

I

r
. �22�

ere I is a unit matrix and a is a diagonal matrix with
iagonal elements equal to ap.
These equations are valid for both isotropic and aniso-

ropic materials. The difference between isotropic and an-
sotropic cases is contained in the form of both the matrix

� and the field expansion inside the homogeneous aniso-
ropic region �r�R1�. In the following sections we deal
onsecutively with these two topics.

. DETERMINATION OF THE Q� MATRIX
SING THE FAST NUMERICAL
ACTORIZATION
s in the isotropic case, the components of Q� are deter-
ined by obtaining the link between E and D, projected

nto the same truncated basis. The truncation requires
pplying special factorization rules, one for the tangential
subscript T) components, the other for the normal (sub-
cript N) ones.10,11 However, in contrast to the isotropic
ase,1 the tensorial character of �5 complicates the relation
etween E and D, so DN depends on both EN and ET, and
ikewise for DT. This requires applying an approach quite
ifferent from the one used in Ref. 1 but similar to that
ollowed in Cartesian coordinates to analyze anisotropic
iffraction gratings.8

Let us consider the unit vector N̂, normal to the surface
of the object, defined on the surface:

N̂��,�� = grad f/�grad f�f=0. �23�

e need to extend the definition of N̂ to the entire modu-
ated region; we state

N̂�r,�,�� 	 N̂��,��, " r � �R1,R2�. �24�

s previously stated, the circumflex denotes unit vectors.
e then construct two unit tangential vectors T̂1 and T̂2,

efined by

T̂1 =
N̂ � �̂

�N̂ � �̂�
	

N�


Nr
2 + N�

2
r̂ −

Nr


Nr
2 + N�

2
�̂, �25�

T̂2 = T̂1 � N̂ 	 −
NrN�


Nr
2 + N�

2
r̂ −

N�N�


Nr
2 + N�

2
�̂

+
1 − N�

2


Nr
2 + N�

2
�̂, �26�

f N̂ is not parallel to �̂. If they are parallel, then

T̂1 = r̂, �27�

T̂2 = T̂1 � N̂ 	 − �̂. �28�

he column

F� 	 

F�,1

F�,2

F�,3
� = 


ET1

1

�0
DN

ET2

� =
def


E · T̂1

1

�0
D · N̂

E · T̂2

� �29�

s continuous across the object surface S, where the per-
ittivity is discontinuous. Let us underline the fact that

� is not a vector: each of its elements represents a scalar.
he elements can be expressed through the components
f E using a square matrix A�,

F� = A�E, �30�

hich can be determined by taking into account that

1

�0
DN =

1

�0
D · N̂ = N̂ · ��5E�

= Nr��rrEr + �r�E� + �r�E�� + N����rEr + ���E� + ���E��

+ N����rEr + ���E� + ���E��. �31�

s a result, one obtains
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A� = �
T1,r T1,� 0

�Nr�rr + N���r + N���r� �Nr�r� + N���� + N����� �Nr�r� + N���� + N�����

T2,r T2,� T2,�
� , �32�
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hich can be written in a more compact form by introduc-
ng a dot product �N ·�5� denoting a contraction over the
rst tensorial subscript of �5:

A� = �
T1,r T1,� 0

�N̂ · �5�r �N̂ · �5�� �N̂ · �5��

T2,r T2,� T2,�
� . �33�

fter tedious but elementary calculations, it can be shown
hat its inverse matrix has the form

C =
def

A�
−1 =

1

�0���N̂ · �5� � T̂2�r Nr �T̂1 � �N̂ · �5��r

��N̂ · �5� � T̂2��
N� �T̂1 � �N̂ · �5���

��N̂ · �5� � T̂2��
N� �T̂1 � �N̂ · �5���

� ,

�34�

here �0=N̂ ·�5 ·N̂ is the determinant of A�. Using the mu-
ual orthogonality of N̂, T̂1, and T̂2, and the fact that the
ixed product of three vectors is null when two of the vec-

ors are identical, one can easily verify that A�A�
−1= I. In

ddition, due to the symmetry of �5, the determinant �0 of
� is a positive quadratic form and thus is never null. By
sing Eqs. (25) and (26), we can write matrix C in another

orm:

C =

T1,r −

�1

�0
Nr

1

�0
Nr T2,r −

�2

�0
Nr

T1,� −
�1

�0
N�

1

�0
N� T2,� −

�2

�0
N�

T1,� −
�1

�0
N�

1

�0
N� T2,� −

�2

�0
N�

� = �C1,C2,C3�,

�35�

here �1=N̂ ·�5 · T̂1 and �2=N̂ ·�5 · T̂2 are scalars. As can be
bserved, the three vectors �C1 ,C2 ,C3� representing the
hree columns of C consist of a linear combination of the
ormal �N̂� and tangential �T̂1 , T̂2� vectors, whatever the
oordinated system used. In the anisotropic case,
1 ,C2 ,C3 are not mutually orthogonal, while they are or-

hogonal in isotropic media, with �1=�2=0.
Inversing Eq. (30) gives

E = CF�, �36�

nd thus

D = �0�5E = �0�5CF�. �37�

et us recall that the aim is to express the components of
he column �D�, made of three block columns �DY�, �DX�,
nd �DZ� in terms of the column �E�, made of �EY�, �EX�,
nd �EZ�. To achieve this goal we have to pass through the
olumn F , which is composed of those components of the
�
lectric and induction field that are continuous across the
iffractive object surface S.

. Direct Factorization Rule
ll the components of the column F� are continuous
cross S, while some of the components of D are discon-
inuous and some are continuous. We can then apply the
irect factorization rule to Eq. (37) by projecting D onto
he basis of vector spherical harmonics [see Eq. (10)] and
rojecting the scalar elements of F� onto the basis of sca-
ar spherical harmonics. Then Eq. (37) takes the form

�
p,�

D�,p�r�Wp
�����,�� = �0�5�r,�,��C�r,�,��

��
p 


F�,1,p�r�

F�,2,p�r�

F�,3,p�r�
�Yp��,��, �38�

here �5 is a square matrix of size 3�3 with elements �5 ij.
atrix C is also a square matrix of size 3�3 with ele-
ents CiJ representing the components of the three vec-

ors CJ, J=1,2,3, Eq. (35), expressed in the same coordi-
ate system as �5. Their product ��5C� has the same form
ith elements

��5C�iJ = �
j=r,�,�

�5 ijCjJ. �39�

f the basis used to represent the tensor elements differs
rom the set of unit vectors of the spherical coordinate
ystem, then i and j stay for the basic vectors, for ex-
mple, in the Cartesian coordinate system i , j=x ,y ,z. In
ontrast, the last subscript J=1,2,3 corresponds to the
angential or normal field components, which form the
olumn F�, Eq. (29). Since they are scalars, they do not de-
end on the coordinate system. Using this convention, we
an write Eq. (38) in a more compact form:

�
p,�

D�,pWp
��� = �0�

J,p
��5CJ�F�,J,pYp. �40�

he next step is to use the orthogonality of the vector
pherical harmonics with respect to their argument:

�
0

4�

d�Wp
�����,�� · Wq

*�
���,�� = �pq��
. �41�

ultiplying Eq. (40) by Wq
*�
� and integrating over the en-

ire solid angle, one obtains

D
,q�r� = �0�
J,p

�Wq
�
����5CJ�Yp�F�,J,p�r�

= �0�
J,p

��5C�
,J,qpF�,J,p�r�, �42�

here
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�5C�
J,qp = �Wq
�
����̃̃CJ�Yp� =�

0

4�

d�Wq
*�
���,�� · ��5CJ�Yp��,��,

�43�

nd the dot product here is reduced to the ordinary scalar
roduct. This equation is written in a form independent of
he coordinate system used, owing to the scalar product,
hich has to be explicitly calculated in each specific coor-
inate system.
Owing to Eq. (A22) of Part I,9 the � dependence of the

ntegrand in Eq. (43) is exponential, exp�i�m�p�−m�q����,
o that the integration with respect to � represents a Fou-
ier transform of ��5C�iJ. In addition, the facts that Yp are
arallel to r̂ and that Xp and Zp are perpendicular to r̂
implify the form of ��5C� when it is represented in spheri-
al coordinates:

��5C�YJ,pq = �Yp���5C�rJYq�,

��5C�XJ,pq = �
i=�,�

�Xp,i���5C�iJYq�,

��5C�ZJ,pq = �
i=�,�

�Zp,i���5C�iJYq�. �44�

he integration with respect to � is significantly simpli-
ed when ��5C�iJ can be represented in the form of series of
calar spherical harmonics. This is the case of isotropic
edia, as discussed in detail in Ref. 1. Another situation

s discussed in Section 5 and concerns the case of absence
f discontinuity of the permittivity tensor inside the
odulated region, for example, gradient-index anisotropy.

wo more cases are described in detail in Appendix A.
Equations (42) and (43) establish the direct factoriza-

ion rule.

. Inverse Rule
s already discussed, all the components of the column F�

re continuous across S. However, some of the compo-
ents of E may be discontinuous there. Thus, it is neces-
ary to apply the inverse rule to Eq. (30). This is simply
one by applying the direct factorization rule as stated in
qs. (42) and (43) to Eq. (36), taking into account that C is
iscontinuous, while F� is continuous. Thus, Eq. (36) can
e written in components

E
,q�r� = �
J,p

C
J,qpF�,J,p�r�, �45�

here the elements

C
J,qp = �Wq
�
���CJ�Yp� =�

0

4�

d�Wq
*�
���,�� · �CJ�Yp��,��

�46�

orm a square matrix �C� with nine blocks C
J. Its nu-
erical inversion makes it possible to express the compo-

ents of F� as function of �EY�, �EX�, and �EZ�:

�F � = �C�−1�E�. �47�
�
he remarks following Eq. (43) and concerning ��5C� also
old for the matrix �C� derived in Eq. (46). Equation (44)
gain apply by replacement of �5C with C.
Equations (46) and (47) state the inverse factorization

ule extended to anisotropic materials.

. Fast Numerical Factorization Equation
t is now straightforward to determine the relation be-
ween �DY�, �DX�, and �DZ� on one side and �EY�, �EX�, and
EZ� on the other side. Combining Eqs. (42) and (47), we
btain

�D� = �0��5C��C�−1�E�. �48�

hus the matrix Q� takes the form

Q� = ��5C��C�−1. �49�

t is worth noticing that Eq. (49), together with Eqs. (43)
nd (46), generalize Eq. (114) of Ref. 1 to anisotropic me-
ia. When applied to isotropic medium, they lead to Eqs.
76), (82), (83), (88), and (89) of Ref. 1 with � being a sca-
ar. This can be easily observed by taking into account
hat for isotropic media the triad �C1 ,C2 ,C3� simplifies
nto �T̂1 ,1 /�N̂ , T̂2�. When projected onto the basis
Yp ,Xp ,Zp� as stated by Eq. (46), matrix �C� becomes

�C� = ��T̂1�,�1

���N̂�,�T̂2�� �50�

nd can be inverted analytically:

�C�−1 = 

�T̂1�T

�1

��−1

�N̂�T

�T̂2�T
� . �51�

n the other hand, Eq. (43) simplifies to the form

��5C� = �����T̂1�,�N̂�,����T̂2�� �52�

o that matrix Q� takes the form written in Eq. (116) of
ef. 1 when we take into account the relation T̂1T̂1

T̂2T̂2+N̂N̂= I.
In contrast to the isotropic case, in the anisotropic case

he elements of matrix Q� are determined numerically
nd cannot be explicitly written, as they were in Ref. 1.
e also note that the matrix product in Eq. (49) cannot

ancel matrix C and its inverse, because the matrix ele-
ents of ��5C� are not represented as elements of the prod-
ct of two matrices, ��5C�� ��5��C�, owing to the integration

n Eq. (43). ��5C� would be the product of two matrices only
f one worked in a nontruncated basis, which is impossible
umerically.

. INHOMOGENEOUS SPHERICAL BODY
f the permittivity tensor does not present any disconti-
uity inside the modulated region but presents only
mooth inhomogeneity, it is not necessary to use the fast
umerical factorization (FNF) rules. Such an example
ontains a spherical optically inhomogeneous anisotropic
ody with the elements of �� being continuously varying
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unctions of �x ,y ,z�, for example, a graded-permittivity
nisotropic sphere. In that case both D and E are continu-
us and the first relation in Eq. (37) can be directly used:
=�0�5E. Both D and E are expressed in terms of vector

pherical harmonics, Eq. (10), and the left-hand side of
q. (38), so that

D = �0�5E Þ �
�,p

D�p�r�Wp
�����,��

= �0�5�r,�,���

,q

E
q�r�Wq
�
���,��. �53�

ultiplying by Wp
*�
� and integrating over the entire solid

ngle leads to a simplified form of matrix Q� in Eq. (18):

Q� = ��5�, �54�

here the elements of the matrix ��5� are given by

��5�
�,pq�r� = �Wp
�
����5�Wq

����

=�
0

4�

d�Wp
*�
���,�� · �5�r,�,��Wq

�����,��. �55�

ach element ��5�
�,pq is a scalar independent of the coor-
inate system and contains a product of the tensor �5 with
he vector Wp

*�
� on the left and Wq
��� on the right. In a spe-

ific coordinate system it is represented as a summation
ver the tensorial indices i and j of �5:

Wp
*�
� · �5Wq

��� = �
i,j

Wp,i
*�
��5 ijWq,j

���, �56�

here Wq,j
���=Wq

��� · ĵ is the projection of Wq
��� onto the coor-

inate unit vector ĵ.
Unfortunately, Eq. (55) requires a numerical integra-

ion of the products of spherical harmonics. However, in
ome cases, it is possible to avoid this by using Eq. (5). If
he inhomogeneity of �5 is such that its elements can be
epresented with only a few terms in the expansion on
calar spherical harmonics, Eq. (5), these terms can be
sed to rapidly calculate the integrals that appear in Eq.
55). In Cartesian or cylindrical coordinates, the projec-
ion Wp

����� ,�� · ĵ of Wp
����� ,�� on the axis ĵ takes a simple

orm (see Appendix B) proportional to the scalar spherical
armonics Ynm�� ,��:

Wnm
��� ��,�� · ĵ = �

�=−1

+1

bnm,
�,j
��� Yn+�,m+
��,��. �57�

ith coefficients bnm,
�,j
��� proportional to the projections of

he vector spherical harmonics on the basis �ĵ�, as given in
ppendix B. With the use of Eq. (57), the integrand in Eq.

55) becomes a triple product of scalar spherical harmon-
cs. As discussed in Appendix D of Ref. 1, the integrals of
riple products represent the normalized Gaunt coeffi-
ients ā12:

ā����,
��,��,
�,�n,m�� =�
0

2�

d��
0

�

sin �d�Y��,
���,��

�Y�,
��,��Ynm��,��, �58�

hich can be calculated rapidly through recursion
elations.13 Then each element ��5�
�,qp is given as a linear
ombination of the products of Gaunt coefficients ā and
he coefficients bnm,
�,j

��� seen in Eq. (57), which depend on
he coordinate system used to represent the permittivity
ensor.

. RESOLUTION OF THE
OUNDARY-VALUE PROBLEM
he integration of Eq. (20) can be done numerically be-

ween R1 and R2. However, this requires starting values
f the components of the unknown column �F�r��. In addi-
ion, as long as this column contains electromagnetic field
omponents that are continuous across S1 and S2, it is
ecessary to match the results of the integration with the
orresponding field components outside S2 and inside S1.

Using the expansion of a plane wave on the vector
pherical harmonic basis in an anisotropic material, Eqs.
50) and (55) of Part I,9 the column �F� at the innermost
phere S1 takes the form

�F�Rj�� = �aniso�R1��Ã� �59�

ith a column �Ã� containing the unknown amplitudes in-
ide S1,

�Ã� = ��Ã1�

�Ã2�
� =


]

Ã1,�

]

Ã2,�

]

� , �60�

nd the matrix �aniso having a block form,

�aniso = ��1,aniso �2,aniso�, �61�

n which each block consists of four subblocks with rank
Max−1:

�j,aniso�r� =

� 1

kj,�r
ah,p,j,��n�kj,�r��

� 1

kj,�r
�ae,p,j,��n��kj,�r� + apao,p,j,�jn�kj,�r���

� 1

ik0r
ae,p,j,��n�kj,�r��

� 1

ik0r
ah,p,j,��n��kj,�r�� � .

�62�

s usual, jn and hn
+ are the spherical Bessel functions and

n and �n are the Ricatti–Bessel functions:

�n�z� = zjn�z�, �n�z� = zhn
+�z�. �63�

he matrix �aniso can be used as a starting matrix at r
R1 in the process of numerical integration of Eq. (20). At

he end of the integration, the integrated matrix �Finteg�
epresents the transmission matrix of the system:

T�R ,R � = �F �, �64�
2 1 integ
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hich links the field on S2 to the unknown amplitudes �Ã�
nside S1:

�F�R2�� = T�R2,R1��Ã�. �65�

n the other hand, the field components �F�R2�� are con-
inuous across S2 and can be expressed through the inci-
ent and diffracted field amplitudes in the outermost ho-
ogeneous and isotropic medium, discussed in detail in
art I9:

EX,p�r = R2� = �Ah,p
�i� jn�noutk0R2� + Bh,phn

+�noutk0R2��,

EZ,p�r = R2� =
1

noutk0R2
�Ae,p

�i� �n��noutk0R2�

+ Be,p�n��noutk0R2��, �66�

H̃X,p�r = R2� =
1

ik0R2
�Ae,p

�i� �n�noutk0R2�

+ B � �n k R ��,
e,p n out 0 2

i
w
T
c

7
T
a
t
f
o
d
t
t
s

t
s
u
p
d
p
f

H̃Z,p�r = R2� =
1

ik0R2
�Ah,p

�i� �n��noutk0R2�

+ Bh,p�n��noutk0R2��, �67�

here Ah,p
�i� and Ae,p

�i� are the incident (known) field ampli-
udes and Bh,p and Be,p are the diffracted (unknown) field
mplitudes in the outermost region. With these expres-
ions, the column �F� in the outermost region takes the
orm

�F�R2�� = �iso�noutk0R2�

]

Ae,p
�i� �n��noutk0R2�/noutk0R2

]

Ah,p
�i� �n�noutk0R2�/noutk0R2

]

Be,p�n��noutk0R2�/noutk0R2

]

Bh,p�n�noutk0R2�/noutk0R2

]

� ,

�68�

here
�iso =

0 I 0 I

I 0 I 0

− inout

p�noutk0R2�
0

− inout

q�noutk0R2�
0

0 − inoutp�noutk0R2� 0 − inoutq�noutk0R2�
� �69�
nd

pp,q�z� = �p,q

�n��z�

�n�z�
, qp,q�z� = �p,q

�n��z�

�n�z�
. �70�

quations (65) and (68) represent the same column
F�R2��, and thus they form a set of 4�N�−1�=4�pMax−1�
inear algebraic equations for the unknown field ampli-
udes �Ã1�, �Ã2�, �Be�, and �Bh�. The set can be solved nu-
erically when the incident field amplitudes Ah,p

�i� and Ae,p
�i�

re known.
During the integration process, one can expect the ap-

earance of numerical problems, and it is necessary to di-
ide the integration region into subregions so that inside
ach subregion the integration remains possible. Instead
f obtaining the transmission matrix T, it is possible to di-
ectly determine the scattering matrix S, which links the
iffracted to the incident amplitudes. This procedure is
ell known in the diffraction theories in Cartesian and

ylindrical coordinates and is explained in detail in Ref. 1.
he equations in the case of anisotropic media do not dif-

er from the formulas developed in the isotropic case; the
nterested reader can find them in Ref. 1. The first differ-
nce is the start of the integration, which uses as a shoot-
ng matrix the matrix �aniso, defined by Eqs. (61) and (62),
hich requires 2�pMax−1� independent starting vectors.
he second difference is the form of the Q� matrix, dis-
ussed in detail in Section 4.

. CONCLUSION
his work extends the differential theory of diffraction to
n arbitrary-shaped 3D body made of arbitrary aniso-
ropic lossless or lossy material. The theory extends the
ast numerical factorization (FNF) of products of continu-
us and discontinuous vector functions to anisotropic me-
ia described in vector spherical harmonic basis. It is able
o analyze uniaxial, biaxial or chiral materials. Moreover,
he theory can be applied to ferromagnetic materials, de-
cribed by a tensorial magnetic permeability.

Some particular cases permit significant simplifications
hat avoid numerical integration of the products of
pherical harmonics. Certain examples are the optically
niaxial finite-length cylinder and arbitrary-anisotropic
arallelepiped, described in detail in Appendix A. In ad-
ition, the theory can be directly applied to graded-
ermittivity materials by using only the direct rule of
actorization.
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PPENDIX A: TWO PARTICULAR
EOMETRIES

et us consider two particular cases, which permit signifi-
ant simplifications in calculating the matrix elements of
C� and ��5C�.

. Finite-Length Circular Cylinder with Uniaxial
nisotropy
et us consider a finite-length circular cylinder with
eight H and radius R with axis coinciding with the z axis
nd the origin of the coordinate system located in the cen-
er of the body, Fig. 2. The numerical integration of Eq.
20) has to be performed from r=R1=min�R ,H /2� to R2
�R2+ �H /2�2�1/2, and it is necessary to extend the defini-

ion of the normal vectors defined at the surface to the en-
ire region of integration. This can be done, for example,
s represented in Fig. 2. If the cylinder material has
niaxial anisotropy with the optic axis coinciding with the
xis of symmetry, the permittivity tensor has the same
orm in a Cartesian and in a cylindrical coordinate
ystem:

�5 = 

�x 0 0

0 �x 0

0 0 �z
� . �A1�

ince the normal and the tangential vectors can be simply
xpressed in cylindrical coordinates, we represent the ma-
rices C and ��5C� in cylindrical basis ��̂ , �̂ , ẑ�. We distin-
uish two cases:

(1) �� ��c ,�−�c�. In this interval, we can write

N̂ = �̂, T̂1 = ẑ, T̂2 = �̂, �A2�

o that �0=�x in Eq. (35) and matrices C and ��5C� become

C = 

0 1/�x 0

0 0 1

1 0 0
�, ��5C� = 


0 1 0

0 0 �x

�z 0 0
� . �A3�

(2) �� ��c ,�−�c�. Equations (A2) and (A3) become,
espectively,

N̂ = ẑ, T̂1 = − �̂, T̂2 = �̂, �A4�

Fig. 2. Finite-length cylinder and notation.
C = 

− 1 0 0

0 0 1

0 1/�z 0
�, ��5C� = 


− �x 0 0

0 0 �x

0 1 0
� . �A5�

s can be observed, both C and ��5C� are piecewise-
onstant functions of � and do not depend on �. Moreover,
he components of T̂2 are constant in � as well. It is
traightforward to represent the elements of �C� and ��5C�
n the basis of scalar spherical functions, Eq. (5):

�C�ij��� = �
n=0

�

�C�ij,nYn0��,�� 	 �
n=0

�

�C�ij,nP̄n
0�cos ��,

��5C�ij��� = �
n=0

�

��5C�ij,nYn0��,�� 	 �
n=0

�

��5C�ij,nP̄n
0�cos ��.

�A6�

heir components �C�ij,n and ��5C�ij,n do not depend on r
nd can be evaluated analytically, taking into account the
elations (see Appendix A of Ref. 1):

P̄n
0 =
2n + 1

4�
Pn

0 ,

�
�1

�2

Pn
0�cos ��sin �d� = � 1

n
�cos �Pn

0�cos ��

− Pn+1
0 �cos ����

�1

�2

. �A7�

o obtain the components of �C� and ��5C�, Eqs. (46) and
43), it is necessary to project the vector spherical har-
onics onto the same basis of coordinate vectors ��̂ , �̂ , ẑ�.
his can be done using the form of Wp

��� in the basis of
artesian spherical vectors �̂
, presented in Appendix B.
he transformation matrix R is obtained by calculating
he scalar products of the basic vectors:

R = 

�̂−1 · �̂ �̂−1 · �̂ �̂−1 · ẑ

�̂0 · �̂ �̂0 · �̂ �̂0 · ẑ

�̂+1 · �̂ �̂+1 · �̂ �̂+1 · ẑ
�

=

1


2
exp�− i��

− i


2
exp�− i�� 0

0 0 1

− 1


 exp�i��
− i


 exp�i�� 0� . �A8�
2 2
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et us first consider Eq. (46). The projections of Wn�m�
*�
�

nto ��̂ , �̂ , ẑ� are represented as a product of Wp
*�
� · �̂
 and

he transformation matrix in Eq. (A8) and are expressed
hrough the coefficients bnm,
�,j

��� , j=� ,� ,z, obtained using
qs. (B6)–(B9). They are used together with expansion

A6) to give for the integrand in Eq. (46) the form

Wn�m�
*�
� ��,�� · �CJ�Ynm��,�� = �


,�=−1

+1

�
j=�,�,z

�
n�=0

�

bn�m�,
�,j
*�
�

�Yn�+�,m�+

* �C�jJ,n�Yn�0Ynm.

�A9�

hus the integrand is represented as a triple product of
calar spherical harmonics. The only other dependence is
he � dependence of some of the elements of R stated in
q. (A8). Given the simple form of this dependence, the

ntegration in � can easily be performed, while the � in-
egration can be avoided by using Gaunt coefficients, Eq.
58). Thus, the elements of �C� can be obtained without
umerical integration.
The same reasoning applies for ��5C�.

. Optically Anisotropic Brick
et us consider a parallelepiped consisting of anisotropic
aterial (see Fig. 3). The parallelepiped is divided into six

yramids each of which contains a wall of the parallelepi-
ed and has an apex at the origin of coordinates. The pro-
ongation of the vectors normal and tangential to each
all is made inside the pyramidal regions. Let us denote
ach region as V±, j=x ,y ,z, so that, for example, V+ is the
j x

T
(
T
E
Y

yramid containing the wall perpendicular to the x axis
nd crossing it at x�0, Vx

− is the opposite wall, etc. The
hree vectors have the following form in Vx

+:

T̂1 = ẑ, N̂ = x̂, T̂2 = ŷ, �A10�

nd thus

�0 = �xx, �1 = �xz, �2 = �xy. �A11�

atrix C is written in V± as

Fig. 3. Anisotropic brick and notation.
x

C 	 �C1,C2,C3� = ��ẑ −
�xz

�xx
x̂,

1

�xx
x̂,ŷ −

�xy

�xx
x̂� , inside the parallelepiped

�ẑ,
1

�out
x̂, ŷ� , outside the parallelepiped� . �A12�
imilar expressions are obtained in Vy
± and Vz

±. As can be
bserved, matrix C is a piecewise-constant function of �
nd �. The same is valid for ��5C�, as the permittivity ten-
or is independent of �x ,y ,z� inside each medium. Thus,
he two matrices can be represented in the form of Eq. (5).
he main difference from the matrices for the finite-

ength cylinder is that now they depend on � and thus
ill contain spherical harmonics Ynm with m�0, in addi-

ion to Yn0. These supplementary components cannot be
valuated analytically, unlike in the case of Eq. (A7), so
hat it is necessary to numerically integrate the integrals
n �.

The second difference from the cylindrical structure
omes from the transformation matrix R, which here has
simpler form and has constant components:
R = 

�̂−1 · x̂ �̂−1 · ŷ �̂−1 · ẑ

�̂0 · x̂ �̂0 · ŷ �̂0 · ẑ

�̂+1 · x̂ �̂+1 · ŷ �̂+1 · ẑ
� =


1


2

− i


2
0

0 0 1

− 1


2

− i


2
0� .

�A13�

he coefficients bnm,
,�,j
��� , j=x ,y ,z are obtained from Eq.

B12), they are independent of � and � because R=const.
he integrand in Eq. (46) has the same form as that in
q. (A9), adding a summation over the second index m� of

:
n�m�
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Wn�m�
*�
� · �CJ�Ynm = �


,�=−1

+1

�
j=xy,z

�
n�=0

�

�
m�=−n�

n�

bn�m�,
�,j
*�
�

�Yn�+�,m�+

* ��5C�jJ,n�m�Yn�m�Ynm.

�A14�

PPENDIX B: PROJECTION OF VECTOR
PHERICAL HARMONICS ONTO DIFFERENT
ASIS
et us recall the definition of Cartesian spherical unit
ectors:

�̂−1 =
1


2
�x̂ − iŷ�,

�̂0 = ẑ,

�̂+1 = −
1


2
�x̂ + iŷ�. �B1�

he vector spherical harmonics can be defined as a linear
ombination of these vectors, as discussed in Appendix A
f Part I.9 This fact makes them extremely suitable for
rojecting Wp

��� onto a basis, independent of the observa-
ion point. Using the formulas in Appendix A of Part I,
ne obtains

Ynm · �̂
 = �
 n

2n + 1
Yn,n−1

m −
 n + 1

2n + 1
Yn,n+1

m � · �


=
 n

2n + 1 �

�=−1

1

�n − 1,m − 
�;1,
��n,m�

ˆ ˆ
�Yn−1,m−
��
� · �
 T

nm 1 n,m+1
−
 n + 1

2n + 1 �

�=−1

1

�n + 1,m − 
�;1,
��n,m�

�Yn+1,m−
��̂
� · �̂
, �B2�

Xnm · �̂
 =
1

i
Yn,n

m · �̂


= − i �

�=−1

1

�n,m − 
�;1,
��n,m�Yn,m−
��̂
� · �̂
.

�B3�

Znm · �̂
 = �
 n + 1

2n + 1
Yn,n−1

m +
 n

2n + 1
Yn,n+1

m � · �̂


=
 n + 1

2n + 1 �

�=−1

1

�n − 1,m − 
�;1,
��n,m�

�Yn−1,m−
��̂
� · �̂


+
 n

2n + 1 �

�=−1

1

�n + 1,m − 
�;1,
��n,m�

�Yn+1,m−
��̂
� · �̂
. �B4�

n the other hand, the scalar products of the Cartesian
pherical vectors give, by use of Eq. (B1),

�̂
 · �̂�
* = �
�,

�̂−1 · �̂−1 = 0, �̂−1 · �̂0 = 0,

�̂−1 · �̂+1 = − 1,

�̂0 · �̂0 = 1, �̂1 · �̂0 = 0,

�̂+1 · �̂+1 = 0. �B5�
hese relations finally produce
Ynm · �̂−1 = −
 n

2n + 1
�n − 1,m − 1;1,1�n,m�Yn−1,m−1 +
 n + 1

2n + 1
�n + 1,m − 1;1,1�n,m�Yn+1,m−1,

Ynm · �̂0 =
 n

2n + 1
�n − 1,m;1,0�n,m�Yn−1,m −
 n + 1

2n + 1
�n + 1,m;1,0�n,m�Yn+1,m,

Ynm · �̂1 = −
 n

2n + 1
�n − 1,m + 1;1,− 1�n,m�Yn−1,m+1 +
 n + 1

2n + 1
�n + 1,m + 1;1,− 1�n,m�Yn+1,m+1. �B6�

Xnm · �̂−1 = i�n,m − 1;1,1�n,m�Yn,m−1,

Xnm · �̂0 = − i�n,m;1,0�n,m�Yn,m,

X · �̂ = i�n,m + 1;1,− 1�n,m�Y . �B7�
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Znm · �̂−1 = −
 n + 1

2n + 1
�n − 1,m − 1;1,1�n,m�Yn−1,m−1 −
 n

2n + 1
�n + 1,m − 1;1,1�n,m�Yn+1,m−1,

Znm · �̂0 =
 n + 1

2n + 1
�n − 1,m;1,0�n,m�Yn−1,m +
 n

2n + 1
�n + 1,m;1,0�n,m�Yn+1,m,

Znm · �̂1 = −
 n + 1

2n + 1
�n − 1,m + 1;1,− 1�n,m�Yn−1,m+1 −
 n

2n + 1
�n + 1,m + 1;1,− 1�n,m�Yn+1,m+1. �B8�
R

1

1

1

1

he coefficients in front of Yn,m in Eqs. (B6)–(B8) repre-
ent the coefficients bnm,
�,�

��� , which express the projec-
ions of the vector spherical harmonics Wnm

��� on �̂
 in
erms of scalar spherical harmonics Yn,m:

Wnm
��� · �̂
 = �

�=−1

1

bnm,
,�,�
��� Yn+�,m+
. �B9�

similar expression applies in an arbitrary basis �ĵ
�:

Wnm
��� · ĵ
 = �

�=−1

1

bnm,
�, j
��� Yn+�,m+
. �B10�

he transfer from the basis ��̂
� to the basis �ĵ
� is made
hrough the corresponding transformation matrix R

�ĵ · �̂*�, so that �ĵ
�=R��̂��. The components of vector
pherical harmonics in different basis sets are related
hrough the same transformation matrix:

Wnm
��� · ĵ
 	 ĵ
 · Wnm

��� = �

�

R

��̂
� · Wnm
��� . �B11�

his relation ensures the transfer between the two sets of
coefficients:

bnm,
,�, j
��� = �


�

R

�bnm,
�,�,�
��� . �B12�
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