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Differential theory of diffraction by finite
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We present a differential theory for solving Maxwell equations in cylindrical coordinates, projecting them onto
a Fourier–Bessel basis. Numerical calculations require the truncation of that basis, so that correct rules of
factorization have to be used. The convergence of the method is studied for different cases of dielectric and
metallic cylinders of finite length. Applications of such a method are presented, with a special emphasis on
the near-field map inside a hole pierced in a plane metallic film. © 2005 Optical Society of America
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1. INTRODUCTION
The differential method has been used with great success
in diffraction grating theory.1,2 In the case of infinite
gratings, Maxwell equations are projected onto a discrete
Fourier basis,2,3 while for finite gratings or aperiodic ob-
jects, Maxwell equations are projected onto a continuous
Fourier basis.4 The differential method has already been
developed in cylindrical coordinates to analyze the dif-
fraction of a plane wave by infinitely long rods.2 Maxwell
equations are in that case also projected onto a discrete
Fourier basis. However, in many cases, the diffraction
system consists of cylindrical objects having finite length,
for example, light transmission through a single sub-
wavelength hole in a metallic screen. We show in this
paper how to solve Maxwell equations when the diffract-
ing structure is invariant with respect to the polar angle
u, modulated (not necessarily periodically) with respect to
the variable r, and has a finite thickness along the z coor-
dinate. First, the electromagnetic field is projected onto
a cylindrical spatial coordinate basis. Then the periodic-
ity along the variable u allows us to develop the electro-
magnetic field into Fourier series.2 Maxwell equations
then lead to Helmholtz equations for the Fourier compo-
nents, with solutions represented as linear sums of Bessel
functions. This basis is called Fourier–Bessel basis.5

The numerical treatment of the method requires dealing
only with finite and discrete basis of functions. As is now
well known, the manner of factorizing products of func-
tions onto such a basis depends on the continuity of the
functions and of their products.6,7 We show how to apply
correct rules of factorization of products appearing in
Maxwell equations in the specific case of a Bessel-
function basis. The method can analyze various types of
diffracting devices, such as Fresnel lenses or a single hole.
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2. HELMHOLTZ EQUATIONS
IN CYLINDRICAL COORDINATES
PROJECTED ONTO A FOURIER BASIS
Let us write the harmonic Maxwell equations, assuming
an exp(2ivt) time dependence:

curl E~r! 5 ivm0H~r!, (1)

curl H~r! 5 2ive~r!E~r!. (2)

In cylindrical coordinates (r, u, z), any device and field
component is periodic with respect to the polar angle u,
with period 2p. We study structures that have cylindri-
cal symmetry and are piecewise invariant along z. Rep-
resenting the electromagnetic field by Fourier series, Eqs.
(1) and (2) become

curl (
n52`

`

En~r, z !exp~inu! 5 ivm0 (
n52`

`

Hn~r, z !

3 exp~inu!, (3)

curl (
n52`

`

Hn~r, z !exp~inu! 5 2ive~r, z ! (
n52`

`

En~r, z !

3 exp~inu!. (4)

The independence of e with respect to the variable u and
the orthogonality of the Fourier basis lead to separation
of equations for each value of n:
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(
n52`

`

@curl En~r, z ! 1 inû ∧ En~r, z !#exp~inu!

5 (
n52`

`

ivm0Hn~r, z !exp~inu!, (5)

(
n52`

`

@curl Hn~r, z ! 1 inû ∧ Hn~r, z !#exp~inu!

5 2 (
n52`

`

ive~r, z !En~r, z !exp~inu!. (6)

The components of the electric-field vector on the cylindri-
cal coordinates (r, u, z) are written as Er , Eu , Ez , and
their Fourier components verify the following coupled
equations:

DEr,n 2
Er,n

r2
1 v2m0e~r !Er,n 2

2in

r2
Eu,n 5 0, (7)

DEu,n 2
Eu,n

r2
1 v2m0e~r !Eu,n 1

2in

r2
Er,n 5 0.

(8)

Using the notation

Eu,n 1 iEr,n 5 En
1 , (9)

Eu,n 2 iEr,n 5 En
2 , (10)

Eqs. (7) and (8) immediately give

DEn
1 2

En
1

r2
1 v2m0e~r !En

1 1
2n

r2
En

1 5 0, (11)

DEn
2 2

En
2

r2
1 v2m0e~r !En

2 2
2n

r2
En

2 5 0. (12)

The general solutions of these differential equations can
be written in terms of Bessel-function expansion:

En
1 5 Eu,n 1 iEr,n 5 E

kr50

`

2cn
E~kr , z !Jn21~krr !krdkr ,

(13)

En
2 5 Eu,n 2 iEr,n 5 E

kr50

`

2bn
E~kr , z !Jn11~krr !krdkr ,

(14)

kr being the radial wave number. The numerical calcu-
lations require truncating the basis of projection. This
means that we have to replace the integrals in Eqs. (13)
and (14) by discrete sums bounded by a finite limit. In
addition, the infinite limits of summations in Eqs. (5) and
(6) become finite. The following substitutions are made:

E
kr50

`

krdkr → (
m51

Max

kmDkm , (15)

(
n52`

1`

→ (
n52N

1N

. (16)
The discretization step Dkm is equal to km11 2 km and
can depend on m. In Section 5, it will be taken as a con-
stant and written as Dkr . Moreover, the unknown func-
tions bn

E(kr , z) and cn
E(kr , z) are turned into sets of dis-

crete unknowns denoted by bn,m
E (z) and cn,m

E (z).
Summing or subtracting Eqs. (13) and (14), we obtain

Er~r, z ! 5 i (
n52N

N

(
m51

Max

kmDkm@bn,m
E ~z !Jn11~kmr !

2 cn,m
E ~z !Jn21~kmr !#exp~inu!, (17)

Eu~r, z ! 5 (
n52N

N

(
m51

Max

kmDkm@bn,m
E ~z !Jn11~kmr !

1 cn,m
E ~z !Jn21~kmr !#exp~inu!. (18)

Similar calculations for the magnetic field components
lead to

Hr~r, z ! 5 i (
n52N

N

(
m51

Max

kmDkm@bn,m
H ~z !Jn11~kmr !

2 cn,m
H ~z !Jn21~kmr !#exp~inu!, (19)

Hu~r, z ! 5 (
n52N

N

(
m51

Max

kmDkm@bn,m
H ~z !Jn11~kmr !

1 cn,m
H ~z !Jn21~kmr !#exp~inu!. (20)

The other two field components can be expressed by using
Maxwell equations:

ivm0Hz,n 5 (
m51

Max

~bn,m
E 2 cn,m

E !Jn~kmr !km
2 Dkm , (21)

2ive~r !Ez,n 5 (
m51

Max

~bn,m
H 2 cn,m

H !Jn~kmr !km
2 Dkm .

(22)

The factorization of the product e(r)Ez,n(r) projected onto
a Bessel basis is made by using the direct rule since
Ez,n(r) is a continuous function.7 As a consequence, we
first develop Ez,n(r) as a sum of Bessel functions:

Ez,n 5 (
m51

Max

kmDkmEz,n,mJn~kmr !. (23)

Putting Eq. (23) into Eq. (22), multiplying the two mem-
bers by rJn(km8r) and integrating from 0 to infinity, the
orthogonality of the basis leads to

km8@bn,m8
H

2 cn,m8
H

# 5 2iv (
m51

Max

kmDkmEz,n,m

3 E
r50

`

e~r !Jn~kmr !Jn~km8r !rdr.

(24)

The different scalar products of the terms e(r)Jn(kmr)
(with m P @1, Max#) with the functions Jn(km8r) (with
m8 P @1, Max#) are written in a matrix @e#n,n, where the
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first (resp. second) superscript n indicates the order of
Bessel function with argument kmr (resp. km8r):

E
r50

`

e~r !Jn~kmr !Jn~km8r !rdr → @e#m,m8
n,n ,

m,m8 P @1, Max#. (25)

It is more convenient to introduce the following notation:

@e#m,m8
n,ñ

5 @e#m,m8
n,n km8Dkm8 and

@e#m,m8
ñ,n

5 @e#m,m8
n,n kmDkm (26)

so that Eq. (24) reads as

km@bn,m
H 2 cn,m

H # 5 2iv (
m851

Max

Ez,n,m8@e#m,m8
n,ñ . (27)

Inverting the matrix @e#n,ñ, we obtain the components
Ez,n,m , which we substitute into Eq. (23):

Ez,n 5 (
m51

Max
2 km

iv
DkmJn~kmr ! (

m851

Max

~@e#m,m8
n,ñ

!21km8

3 @bn,m8
H

2 cn,m8
H

#. (28)

3. EXPRESSION OF AN INCIDENT PLANE
WAVE IN THE FOURIER–BESSEL
BASIS
We consider here two types of incident waves that are im-
portant in practice: plane waves and Gaussian beams.
However, following the same lines, the method can easily
be generalized to an arbitrary shaped incident wave.

A. Incident Plane Wave
Let us consider an arbitrary wave vector ki with compo-
nents ki,r and ki,z in the xOy plane and on the z axis, re-
spectively (Fig. 1). If u0 is the polar angle of ki,r in the
xOy plane, then a plane incident wave is represented in a
cylindrical basis in the form

Ei 5 E0 (
n52`

`

inJn~ki,rr !exp@in~u 2 u0!#exp~2iki,zz !.

(29)

The expression of the amplitude vector E0 in the cylindri-
cal spatial basis depends on the incident field polariza-

Fig. 1. Representation of the spatial cylindrical basis added to
the Cartesian one. In our problem the angle u0 is taken equal to
0. The angle u shows the possibility of conical incidence. The
projection of the wave vector onto the Oxy plane is equal to kir .
tion. For a linearly polarized incident wave, the Carte-
sian components of E0 are constant:

E0 5 E0xx̂ 1 E0yŷ 1 E0zẑ. (30)

Using the expression of the Cartesian unit vectors in cy-
lindrical coordinates, we obtain

E0 5 E0x~ r̂ cos u 2 û sin u! 1 E0y~ r̂ sin u 1 û cos u!

1 E0zẑ, (31)

or

E0 5 r̂F S E0x

2
1

E0y

2i D exp~iu! 1 S E0x

2
2

E0y

2i D exp~2iu!G
1 û F S 2

E0x

2i
1

E0y

2 D exp~iu!

1 S E0x

2i
1

E0y

2 D exp~2iu!G 1 ẑE0z . (32)

From these expressions, one can deduce the expression of
the electromagnetic components Er

i 5 Ei
– r̂ and Eu

i

5 Ei
– û of the incident plane wave:

Er
i 5 (

n52N

N S E0x

2
1

E0y

2i D in exp~2inu0!

3 Jn~ki,rr !exp@i~n 1 1 !u#exp~2iki,zz !

1 (
n52N

N S E0x

2
2

E0y

2i D in exp~2inu0!

3 Jn~ki,rr !exp@i~n 2 1 !u#exp~2iki,zz !. (33)

A simple translation of the subscript n by 61 then leads
to

Er
i 5 (

n52N11

N11

iS E0x

2i
2

E0y

2 D in21 exp@2i~n 2 1 !u0#

3 Jn21~ki,rr !exp~inu!exp~2iki,zz !

1 (
n52N21

N21

iS E0x

2i
1

E0y

2 D in11 exp~2i~n 1 1 !

3 u0!Jn11~ki,rr !exp~inu!exp~2iki,zz !, (34)

and

Eu
i 5 (

n52N11

N11 S 2
E0x

2i
1

E0y

2 D in21 exp~2i~n 2 1 !u0!

3 Jn21~ki,rr !exp~inu!exp~2iki,zz !

1 (
n52N21

N21 S E0x

2i
1

E0y

2 D in11 exp~2i~n 1 1 !u0!

3 Jn11~ki,rr !exp~inu!exp~2iki,zz !. (35)

We write these equations with N @ 1 so that N 6 1
→ N, and we replace continuous variables ki,r and ki,z
by discretized ones,

ki,r 5 kmi
, ki,z 5 kz,mi

, (36)
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so that in writing Eqs. (17) and (18) with only one radial
wave number kmi

, we are able to identify the components
of the incident electromagnetic field in a Fourier–Bessel
basis:

b̃n,mi

E 5 kmi
bn,mi

E 5 S E0x

2i
1

E0y

2 D in11

Dkmi

3 exp@2i~n 1 1 !u0#exp~2ikz,mi
z !, (37)

c̃n,mi

E 5 kmi
cn,mi

E 5 S 2
E0x

2i
1

E0y

2 D in21

Dkmi

3 exp@2i~n 2 1 !u0#exp~2ikz,mi
z !. (38)

We notice the necessity of introducing the new variables
b̃n,mi

E and c̃n,mi

E to avoid divergence of the components
bn,mi

E and cn,mi

E in the case of normal incidence, where
kmi

5 0 with mi 5 1.

B. Incident Gaussian Beam
We first recall that a Gaussian beam is characterized by
its waist w0 and its Rayleigh diffraction length zR with
zR 5 pw0

2/l, where l is the wavelength in the super-
strate. Introducing l 5 2zR 5 kw0

2 and the dimension-
less parameter s 5 w0 /l, Davis8 showed that the usual
‘‘Gaussian formula’’ used to describe a Gaussian beam is
an approximate solution to the homogeneous Maxwell
equations valid to o(s2). Let us assume that the Gauss-
ian beam is polarized with the electric vector in the xOz
plane and has a central wave vector ki parallel to the z
axis (normal incidence) so that kmi

5 0, and kz,mi
5 ki .

The electric-field components then read8

Ex
i 5 E0Q exp~2Qh2!exp~2ikz,mi

z !, (39)

Ez
i 5 2E02i

Q2x

l
exp~2Qh2!exp~2ikz,mi

z !

5 22i
Qx

l
Ex

i , (40)

where

h2 5 ~x2 1 y2!/w0
2, (41)

Q 5 i/~2z/l 1 i !, (42)

and E0 is a given field amplitude. It is worth noting that
the longitudinal component Ez

i is often omitted in the
textbook treatments of Gaussian beams. However, it is
necessary to include it in the theory, so that the Maxwell
equation div E 5 0 can be satisfied and the boundary con-
ditions can be fulfilled.

In the theory, we need only the expression of the inci-
dent field at z 5 0. There, Q 5 1, and the equations giv-
ing the Gaussian beam reduce to

Ex
i 5 E0 exp~2r2/w0

2!exp~2ikz,mi
z !, (43)

Ez
i 5 2E0

ix

zR
exp~2r2/w0

2!exp~2ikz,mi
z !, (44)

where r2 5 x2 1 y2. Following Eq. (31), we derive
Ei 5 Ex
i ~ r̂ cos u 2 û sin u! 1 Ez

i ẑ, (45)

which gives

Ei 5
E0

2
exp~2r2/w0

2!exp~2ikz,mi
z !~exp~iu!

1 exp~2iu!!r̂ 2
E0

2i
exp~2r2/w0

2!

3 exp~2ikz,mi
z !@exp~iu! 2 exp~2iu!#

3 û 2 i
E0x

zR
exp~2r2/w0

2!exp~2ikz,mi
z !

3 @exp~iu! 1 exp~2iu!#ẑ. (46)

In a way similar to that in Eqs. (13) and (14), let us cal-
culate

Eu
i 1 iEr

i 5 iE0 exp~2r2/w0
2!exp~2ikz,mi

z !exp~iu!, (47)

Eu
i 2 iEr

i 5 2iE0 exp~2r2/w0
2!exp~2ikz,mi

z !exp~2iu!.
(48)

We see that only the (11)th and the (21)th Fourier com-
ponents appear in Eqs. (47) and (48), respectively. These
expressions have to be represented in the discretized form
of Eqs. (13) and (14) in order to allow us to find the com-
ponents b21,mi

E and c1,mi

E in the Fourier–Bessel basis:

iE0 exp~2r2/w0
2!exp~2ikz,mi

z ! 5 2c1,mi

E J0~kmi
r !

3 kmi
Dkmi

, (49)

2iE0 exp~2r2/w0
2!exp~2ikz,mi

z ! 5 2b21,mi

E J0~kmi
r !

3 kmi
Dkmi

.
(50)

It is then necessary to multiply the equations by
rJ0(kmi

, r) and to integrate with respect to r from 0 to `.
Using the properties of Bessel functions [see Eq. (II.4.29)
of Ref. 9], one obtains

c1,mi

E 5
iE0

2Dkmi

exp~2ikz,mi
z !

w0
2

2
exp~2kmi

2 w0
2/4!

5 2b21,mi

E , (51)

4. DIFFERENTIAL METHOD
A. Presentation of the Method in a Fourier–Bessel
Basis
Projecting Maxwell equations onto a Fourier–Bessel basis
explicitly allows expression of the derivatives of the elec-
tromagnetic field with respect to the variables r and u.
The experience with diffraction gratings shows that it is
preferable to formulate the differential method in the
form of a set of first-order differential equations with re-
spect to the variable z of the form

dFn~z !

dz
5 MnFn~z !, n P @2N, N#, (52)
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where Fn are column vectors with dimension 4(Max
1 1) containing the electromagnetic-field components
onto the Fourier–Bessel basis:

Fn 5 U b̃n,m
E

c̃n,m
E

b̃n,m
H

c̃n,m
H

. (53)

The Mn matrices being z independent, the integration of
Eq. (52) is made with the use of the eigenvalue/
eigenvector technique. The device is invariant with re-
spect to the variable u so that, as can be seen in Eqs. (5)
and (6), the Fourier components are mutually indepen-
dent. If the structure were modulated with respect to u,
the differential problem would couple the equations for
different n in Eq. (52), which would require an M matrix
of dimension 4(Max 1 1) 3 (2N 1 1) 3 4(Max 1 1)
3 (2N 1 1). However, when the structure does not
present any modulation with respect to u, one has to in-
tegrate (2N 1 1) Eq. (52) with Mn matrices having di-
mension 4(Max 1 1) 3 4(Max 1 1).

B. Determination of the Column Vector Fn8
The elements of the Mn matrix are determined from the
relation between the components of Fn and its derivative
Fn8 (Fn8 5 dFn /dz). The relation between the derivative
b̃n,m

E8 and the components of Fn are

d

dz
~Eu,n 2 iEr,n! 5 (

m51

Max

2kmDkmbn,m8E Jn11~kmr !

5
in

r
Ez,n 2 ivm0Hr,n 2 i

]Ez,n

]r

1 vm0Hu,n . (54)

Multiplying the two terms by Jn11(km9r)rdr and inte-
grating from 0 to infinity, we obtain, with the use of Eq.
(28) and the orthogonality property of the Bessel-
functions basis, the following relation:

b̃n,m8E 5 vm0b̃n,m
H 2

km

2v (
m851

max

~@ ẽ #m̃,m8
ñ,n

!21km8

3 @ b̃n,m8
H

2 c̃n,m8
H

#. (55)

One can calculate in the same way the relation between
the derivative b̃n,m

H8 and the components of Fn :

d

dz
~Hu,n 2 iHr,n! 5 2 (

m51

`

kmDkmbn,m8H Jn11~kmr !

5
1

r

]Hz,n

]u
1 ive~r !

3 Er,n 2 i
]Hz,n

]r
2 ve~r !Eu,n .

(56)

Multiplying the two terms by Jn11(km9r)rdr and inte-
grating from 0 to infinity, we obtain
2b̃n,m8H 5
km

2

vm0
~ b̃n,m

E 2 c̃n,m
E !

1 ivkmE
r50

`

e~r !Er,n~r !Jn11~kmr !rdr

2 vkmE
r50

`

e~r !Eu,n~r !Jn11~kmr !rdr. (57)

The projection of the product e(r)Er,n(r) onto the
Fourier–Bessel basis has to be made with use of the in-
verse rule, as extended to the Fourier–Bessel basis in Ap-
pendix A:

ikmE
r50

`

e~r !Er,n~r !Jn11~kmr !rdr

5 2 (
m851

Max

(
m951

Max

~@C#n21̃,n11!m,m9S F1

e
Gn11̃,n11D

m9,m8

21

3 b̃n,m8
E

1 (
m851

Max S F1

e
Gn21̃,n21D

m,m8

21

c̃n,m8
E , (58)

where

@C#m,m9
n21̃,n11

5 kmDkmE
r50

`

Jn21~kmr !Jn11~km9r !rdr.

(59)

All the terms of the matrix @C#n21̃,n11 have analytical ex-
pressions given in Ref. 9. The projection of the product
e(r)Eu,n onto the Fourier–Bessel basis is done by using
the direct rule (Appendix A):

E
r50

`

kme~r !Eu,nJn11~kmr !rdr

5 (
m851

Max

@e#m,m8
n11̃,n11b̃n,m8

E
1 (

m851

max

@e#m,m8
n11̃,n21c̃n,m8

E .

(60)

The components c̃n,m8E and c̃n,m8H are calculated in the same
way, using a sum instead of subtracting in the first term
of Eqs. (54) and (56), and replacing the Bessel function
Jn11(kmr) in the scalar products by the Bessel function
Jn21(kmr).

C. Expression of the Mn-Matrix Elements
Using the results obtained in Subsection 4.B, we are able
to write the expressions of the elements of the Mn matrix.
We introduce submatrices Mn,ij with dimension 2(Max
1 1) 3 2(Max 1 1):

Mn 5 FMn,11 Mn,12

Mn,21 Mn,22
G , (61)

where matrices Mn,ij are determined according to the
Subsection 4.B:

where Kmn 5 kmdmn , Imn 5 dmn , m, n P @1, Max#.
Since Mn,11 5 0 and Mn,22 5 0, the derivatives b̃n,m8E and
c̃n,m8E (resp. b̃n,m8H and c̃n,m8H ) depend only on the components
b̃n,m

H and c̃n,m
H (resp. b̃n,m

E and c̃n,m
E ).
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Mn,11 5 0,

Mn,12 5 F 2
1

2v
K@e ñ,n#21K 1 vm0I 2

1

2v
K@e ñ,n#21K

2
1

2v
K@e ñ,n#21K

1

2v
K@e ñ,n#21K 2 vm0I

G ,

Mn,21

5 F K2

2vm0
I 2

v

2 S F1

e
n11̃,n11G21

1 @en11̃,n11# D 2
K2

2vm0
I 1

v

2 S @C#n11̃,n21F1

e
n21̃,n21G21

2 @en11̃,n21# D
K2

2vm0
I 2

v

2 S @C#n21̃,n11F1

e
n11̃,n11G21

2 @en21̃,n11# D 2
K2

2vm0
I 1

v

2 S F1

e
n21̃,n21G21

1 @en21̃,n21# D G ,

Mn,22 5 0, (62)
The present method of writing Maxwell equations in a
truncated basis, called fast Fourier factorization method
in the diffraction-grating theory,2,3 is called fast numeri-
cal factorization (FNF) method when one is dealing with
arbitrary truncated basis of continuous functions. When
the correct rules are not used, the inverse rule is replaced
by the direct one, and the following substitutions have to
be made:

F1

e
n11̃,n11G21

→ @en11̃,n11#, F1

e
n21̃,n21G21

→ @en21̃,n21#.

(63)

5. NUMERICAL IMPLEMENTATION
A. Near-Field Map Calculations in the Vicinity of a
Glass Cylinder
To demonstrate the possibilities of the method, we first
consider the diffraction of light by a cylinder made of
glass, lying below the surface of a plane dielectric of the
same dielectric permittivity. The exit substrate is air.
We illuminate the device from the superstrate in normal
incidence by a plane wave with wavelength of 647 nm.
The electric field is polarized parallel to the Oy axis [per-
pendicular to the Oxz plane represented in Figs. 2(a) and
2(b)]. The height of the cylinder is 100 nm, and its diam-
eter is taken equal to the wavelength. Figures 2(a) and
2(c) present the near-field map in the Oxz and Oxy plane,
and Fig. 2(b) shows the Poynting vector. The conver-
gence of the method has been studied and is quite fast.
Reducing the integration step Dkr or increasing the ratio
kr,Max /k0 compared with the ones chosen for the calcula-
tions (given in the figure caption) does not bring any
change in the results.

In Fig. 2(a), one can observe a focalization of the light
in an area around a point of the z axis with coordinate z
5 2400 nm. A confirmation is given in Fig. 2(b), show-
ing the direction and values of the Poynting vector. The
darker the arrow, the stronger the Poynting vector modu-
lus. The Poynting vector deviates from the z axis above
the cylinder (z 5 125 nm) and converges below the cylin-
der toward the z axis. It looks as if the glass cylinder
were working like a lens with a short focal distance.
However, no simple physical explanation can be given for
this phenomenon, which appears far outside the Gaussian
approximation of optics.

Finally, Fig. 2(c) represents the field map in the Oxy
plane below the cylinder. As can be observed, although
the structure is u independent, the polarization of the in-
cident plane wave leads to variations of the electric field
with respect to u.

B. Cylindrical Hole in a Plane Metallic Screen
The method is suitable for modeling diffraction by a
single or structured hole pierced in a metallic screen. To
study its possibilities, we have chosen two examples of
circular holes having different radius pierced in a silver
screen with 200-nm thickness having a relative permittiv-
ity eAg 5 28 1 i3 at 500-nm wavelength.

In the first example, the hole diameter is equal to the
wavelength (R 5 250 nm). Figure 3 presents the values
of uEru calculated on the z axis at a point situated 15 nm
below the screen, as a function of the truncation param-
eter kr,Max for two different values of the integration con-
stant Dkr 5 0.0003 nm21 and 0.0006 nm21. No visible
difference is observed between the results obtained with
these values of Dkr . On the contrary, the results depend
significantly on the truncation parameter and on the
method used. When applying the correct factorization
rules (FNF), the convergence with respect to kr,Max /k0 is
much faster than the method without FNF [Eq. (63)].
This difference is even more pronounced in the spatial
near-field distribution. Figure 4 shows the r dependence
of uEru 15 nm below the slab for different values of Max
(i.e., of kr,Max /k0). As observed in Fig. 4(b), with the
FNF method, Max 5 400 (corresponding to kr,Max /k0
5 9.6) is already sufficient to obtain satisfactory results,
presenting no difference from Max 5 800. When com-
paring Figs. 4(b) and 4(c), one can see clearly that without
FNF [Eq. (63)] the results contain Gibbs’ phenomenon ow-
ing to the discontinuity of uEru across the hole boundaries,
a phenomenon that is absent when the FNF rules are
used. Figure 5 shows the spatial distribution of uEzu,
presenting sharp peaks at the hole boundaries. In the
second example, presented in Figs. 6 and 7, the hole ra-
dius is ten times smaller (R 5 25 nm). Figure 6 pre-
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sents the convergence of the value of uEru as a function of
the truncation parameter in the same way as was done in
Fig. 3 for R 5 250 nm. Without the FNF approach, no
convergence is observed. Owing to the small hole dimen-
sion, it is necessary to go much farther into the k space, so

Fig. 2. Representations of the near field. The superstrate is
glass with a relative dielectric permittivity er 5 2.28. The sub-
strate is air. The device is illuminated in normal incidence with
wavelength of 647 nm. The thickness of the cylinder is 100 nm,
and its diameter is taken equal to the wavelength. (a) Near-
electric-field map in the Oxz plane, (b) Poynting vector, (c) shows
electric-field uEu map in the Oxy plane. Dkr 5 0.001 nm21,
kr,Max /k0 5 6.001, N 5 4.
that now even with use of the correct FNF rules [Figs.
7(a) and 7(b)], the value of kr,Max /k0 5 9.6 corresponding
to Max 5 400 is not sufficient to present the spatial field
distribution correctly [compare Figs. 7(a) and 7(b), in con-
trast to the previous case [Fig. 4(b)] when the hole was
much wider. Without FNF, the fine structure of the field
is not well represented even for values of kr,Max /k0 ap-
proaching 20 [Fig. 7(c)].

Finally, during the testing of the code, we observed
some difficulties for highly conducting metals. This is
not surprising, as the differential method (as well as the
rigorous coupled-wave approach, in particular) also pre-
sents some difficulties with high conductivity.10 The con-
vergence with respect to kr,Max becomes slower when, for
example, it is necessary to model aluminum, having
larger relative permittivity in the visible, eAl 5 250
1 i20. Moreover, owing to the smaller absorption losses,
the plasmon anomaly in the highly conducting metals be-
comes sharper and requires smaller values of the integra-
tion step Dkr . The combination of these two require-
ments makes the computation difficult, because it needs
much larger matrices than in the cases presented in Figs.
3–7. And it is necessary to point out that even in the lat-
ter cases the matrices are already very large. For ex-
ample, Max 5 800 requires solution of 3200 equations
with 3200 unknowns.

A similar difficulty is observed when one is studying
diffraction by objects much larger than the wavelength,
because these objects require a much smaller integration
step (the field variations in the k space become more
rapid).

Although it is not the aim of this paper, which is de-
voted to theory, to present an extensive study of the ex-
traordinary transmission through subwavelength holes, it
is interesting to study the spectral variation of the
electric-field pattern and to compare the numerical re-
sults with those obtained in a recent experiment.11 To
that end, using the same device as preceding, we study
the near field at z 5 240 nm below the hole with a radius
R equal to 135 nm. Although the code is able to take into

Fig. 3. Convergence of the near-field amplitude as a function of
the truncation parameter kr,Max , normalized with respect to the
incident wave number k0 . The results represent the value of
uEru at a point on the z axis situated 15 nm below the hole open-
ing. Solid curve, FNF method; dashed curve, without FNF.
The working parameters (Dkr and m) are represented in the fig-
ure. R 5 250 nm.
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account the dispersion of the permittivity, for better vis-
ibility of the results we do not use it in the study. We
then plot the maximum of uEu2 when x and y are varied in
the plane z 5 240 nm as a function of wavelength. Fig-

Fig. 4. Near-field distribution of uEru (u 5 0) in the x direction
for different working parameters, calculated 15 nm below the
hole opening. Dkr 5 0.0003 nm21. (a) Max 5 100, kr,max /k0
5 2.387. Solid curve, FNF; dashed curve, without FNF. (b)
dotted curve, Max 5 200; dashed curve, Max 5 400; solid curve,
Max 5 800. FNF method. (c) Same as (b) but without FNF.
ure 8 shows the spectral dependence of uEu2. One ob-
serves a well-expected gradual decline of transmission
when increasing the wavelength from 200 to 400 nm.
However, an unexpected second maximum at l
' 750 nm is observed. This confirms recent experimen-
tal observations.11 In Fig. 1 of Ref. 11, the authors ana-
lyzed the transmittance of a single hole of 270-nm diam-
eter pierced in Ag films with different thicknesses. In
particular, when thickness was equal to 200 nm, the
transmittance presented a spectral dependence similar to
the one shown in Fig. 8. The phenomenological explana-
tion of that behavior requires further study.

6. CONCLUSION
We have presented a new formulation of the differential
method in cylindrical coordinates, suitable for modeling
diffraction by systems having finite axial dimensions. At
present, the theory seems particularly well adapted to
study of the near-electric-field map inside and outside de-
vices such as holes, modulated or not, pierced in a metal-
lic plane and dielectric or metallic cylinders with finite di-
mensions. The method is rapidly converging in the case
of dielectric devices and still has a fast enough conver-
gence when one is dealing with silver objects.

Fig. 5. Radial distribution of uEzu 15 nm below the hole opening
(FNF method).

Fig. 6. Same as Fig. 3 but for R 5 25 nm. Dkr
5 0.0003 nm21.
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APPENDIX A: FACTORIZATION RULES
1. Direct Rule @Du,n(r)Äe(r)Eu,n(r)#
We present the calculation of the scalar product of the
product of functions e(r)Eu,n(r) with the Bessel function
Jn11(kmr):

E
r50

`

kme~r !Eu,nJn11~kmr !rdr. (A1)

Fig. 7. uEru as a function of x for u 5 0 calculated with Dkr
5 0.0003 nm21 15 nm below the hole with R 5 25 nm. (a)
Max 5 400 (FNF), (b) Max 5 800 (FNF), (c) Max 5 800 without
FNF.
The function Eu,n(r) is continuous. Thus it can be repre-
sented by the truncated series of Bessel functions shown
in Eq. (18). Putting this sum into Eq. (A1), we obtain

(
m851

Max

b̃n,m8
E kmDkm8E

r50

`

e~r !Jn11~km8r !Jn11~kmr !rdr

1 (
m851

Max

c̃n,m8
E kmDkm8

3 E
r50

`

e~r !Jn21~km8r !Jn11~kmr !rdr

5 (
m851

Max

b̃n,m8
E kmDkm@e#m,m8

n11,n11

1 (
m851

Max

c̃n,m8
E kmDkm@e#m,m8

n11,n21. (A2)

2. Inverse Rule @Dr,n(r)Äe(r)Er,n(r)#
We present the calculation of the scalar product of the
product of functions e(r)Er,n(r) with the Bessel function
Jn21(kmr):

E
r50

`

kme~r !Er,nJn21~kmr !rdr 5 Dr,n,m . (A3)

The function Er,n(r) is discontinuous; thus we cannot rep-
resent it as a truncated series of Bessel functions, because
of the poor convergence that would occur. We have to de-
velop the continuous product of functions Dr,n
5 e(r)Er,n(r):

Dr,n 5 (
m51

Max

Dr,n,mJn21~kmr !kmDkm . (A4)

We must calculate the components Dr,n,m as functions of
the components Er,n,m . We then write

Er,n 5 (
m51

Max 1

e~r !
Dr,n,mJn21~kmr !kmDkm . (A5)

Fig. 8. Spectral dependence of the maximum of uEu2 in the plane
z 5 240 nm, R 5 135 nm. The dispersion of the permittivity is
not taken into account.
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Its scalar product with the function Jn21(kmr) reads as

Er,n,m8 5 E
r50

`

Er,nJn21~km8r !rdr

5 (
m51

Max

Dr,n,mkmDkmE
r50

` 1

e~r !

3 Jn21~kmr !Jn21~km8r !rdr, (A6)

km8Er,n,m8 5 (
m51

Max F1

e
G

m8,m

n21̃,n21

kmDr,n,m . (A7)

By inverting the matrix @1/e#n21̃,n21, we obtain the ex-
pression of Dr,n,m :

kmDr,n,m 5 (
m851

Max S F1

e
Gn21̃,n21D

m,m8

21

km8Er,n,m8 . (A8)

At this stage, we have to calculate the term Er,n,m8 ,
which is a scalar product of the function Er,n with the
Bessel function Jn21(kmr). With Eqs. (17) and (59), this
scalar product reads as

ikm8Er,n,m8 5 km8 (
m951

Max

~2b̃n,m9
E Dkm9@C#m9,m8

n11̃,n21
! 1 c̃n,m8

E .

(A9)

Replacing Er,n,m8 in Eq. (A8), one obtains
ikmDr,n,m 5 2 (
m851

Max

(
m950

Max S F1

e
Gn21̃,n21D

m,m9

21

3 ~@C#n21̃,n11!m9,mb̃n,m8
E

1 (
m851

Max S F1

e
Gn21̃,n21D

m,m8

21

c̃n,m8
E ,

(A10)

ikmDr,n,m 5 2 (
m851

Max

(
m950

Max

~@C#n21̃,n11!m,m9

3 S F1

e
Gn11̃,n11D

m9,m8

21

b̃n,m8
E

1 (
m851

Max S F1

e
Gn21̃,n21D

m,m8

21

c̃n,m8
E .

(A11)
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