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Light diffraction by a three-dimensional object:
differential theory
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The differential theory of diffraction of light by an arbitrary object described in spherical coordinates is devel-
oped. Expanding the fields on the basis of vector spherical harmonics, we reduce the Maxwell equations to an
infinite first-order differential set. In view of the truncation required for numerical integration, correct factor-
ization rules are derived to express the components of D in terms of the components of E, a process that ex-
tends the fast Fourier factorization to the basis of vector spherical harmonics. Numerical overflows and insta-
bilities are avoided through the use of the S-matrix propagation algorithm for carrying out the numerical
integration. The method can analyze any shape and/or material, dielectric or conducting. It is particularly
simple when applied to rotationally symmetric objects. © 2005 Optical Society of America
OCIS codes: 290.5850, 050.1940, 000.3860, 000.4430.
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. INTRODUCTION
ight scattering from arbitrarily shaped 3D objects com-
arable in size to the wavelength of the scattering radia-
ion is an important problem with applications covering a
ast range of fields of science and technology, including
strophysics, atmospheric physics, radiative transfer in
ptically thick media such as paints and papers, and re-
ote detection. By “comparable in size with the wave-

ength,” we are most often speaking of particles having a
haracteristic size D within an order of magnitude of the
avelength, � /10�D�10�. In this size regime, and for

catterers of sufficiently high dielectric contrast, popular
pproximations such as the Rayleigh–Gans1,2 or geomet-
ic optics approximations1,2 are invalid; one must resort
o an essentially full solution of the Maxwell equations.

The first full solution to the electromagnetic scattering
y a fully 3D object is that of Lorenz and Mie for the scat-
ering by a single homogeneous isotropic spherical object
mbedded in a homogeneous isotropic external
edium.3–5 This renowned solution takes the form of an

nfinite (but rapidly converging) series of coefficients in-
olving spherical Bessel functions. Being the only analyti-
ally manageable exact solution to the full electromag-
etic scattering problem, the Mie solution has played a
reponderate role in light-scattering calculations for
early a century.
In view of the size range in which the Mie theory is
ost useful, it comes as no surprise that Mie theory is
ost frequently applied to media containing a large num-

er of scattering inclusions. Since the Mie theory is a so-
ution only to an isolated particle, it has frequently been
oupled with the independent scattering approximation
nd applied to tenuous media systems containing only a
eek volume density of scatterers.6

The increasing interest in recent decades of light scat-
ering by aggregates and light propagation in dense me-
ia such as composites, containing a high volume density
f inclusions, has fueled considerable progress in the
1084-7529/05/112385-20/$15.00 © 2
ultiple-scattering problem of such dense media.7–9 In
iew of the already considerable difficulty of the multiple-
cattering equations, a majority of these studies have con-
inued to use spheres as the fundamental scattering ele-
ent. In reality, of course, it is extremely rare for

cattering inclusions to be so obliging as to separate
hemselves into distinct compact spheres, even though an
mpressive number of mechanical and chemical processes
n a number of industries have been developed with ex-
ctly this goal in mind (grinding, surfactants,…). Further-
ore, it has long been clear that nonspherical inclusions

an yield quantitatively different results on the macro-
copic scale than spherical inclusions.

Many multiple-scattering codes and theories have em-
loyed with considerable success the notion of a transfer
atrix (frequently called the T matrix in the multiple-

cattering community; see the note10) that consists of a
inear transformation between the excitation field inci-
ent on a scatterer and the scattered field emanating
rom it.2,7–9,11 The transfer matrix is more than a single
olution to the scattering problem corresponding to a
iven incident field; rather it can be viewed as a complete
olution to the scattering problem for any possible inci-
ent field. In the multiple-scattering theories employing
ransfer matrices, the Mie solution to the sphere takes
he form of a diagonal transfer matrix in a basis of the
ector spherical wave functions. It has long been recog-
ized by those working in this field that nonspherical
catterers can rather readily be integrated into existing
ultiple-scattering theories by simply replacing the diag-

nal Mie transfer matrices of spheres by the full transfer
atrices of nonspherical objects.
There exist a number of techniques for treating scatter-

ng by nonspherical objects, but not all of these can
eadily provide the complete solution required to derive a
ransfer matrix, and the reliability and applicability of
hese various techniques is a recurring stumbling bock.
ne of the most popular techniques in the literature is
005 Optical Society of America
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he Waterman (or extended boundary condition) method,
hose popularity is in large part due to the fact that one

an readily obtain from it a full transfer matrix for a large
ariety of nonspherical shapes.12 It has been shown, how-
ver, that the Waterman technique yields the same algo-
ithm as one obtains from a Rayleigh hypothesis.11 Both
he Rayleigh hypothesis and the Waterman technique
ave been demonstrated to have considerable limitations

n the theories of diffraction gratings,13 and it is well es-
ablished that both the Waterman technique and the Ray-
eigh hypothesis can break down for scatterers with high
spect ratios.11

The above remarks have in part provided our motiva-
ion to propose a new differential theory for deriving the
ransfer matrix of nonspherical scatterers. Although dif-
erential theories have been studied previously for 3D
catterers, we have developed our theory from first prin-
iples and made full use of recent breakthroughs in the
ifferential theory of 1D, 2D, and 3D diffraction gratings
hat have greatly improved the reliability and conver-
ence of differential theories. The new methods in ques-
ion have been presented and elaborated in a number of
rticles14–19 and a recent book,20 but these works are not
prerequisite for understanding the present work, which
as been conceived to be self-contained. The differential
echnique in diffraction gratings makes extensive use of
ourier series, and their extension to the 3D problem

eads us to make considerable use of vector spherical har-
onics (VSHs) in the derivation of our formulas. The
SHs, however, do not appear in the final computational
ethod, and the finer details of the VSH manipulations

re provided in Appendix C.
The work is organized as follows. We present the prob-

em in Section 2. We introduce the VSHs in Section 3 and
ntroduce their applications to field expansions in Section
. The propagation equations are derived in Section 5,
nd the fast numerical factorization (FNF) required for
onvergence of the series is thoroughly discussed in Sec-
ion 6. We study field developments outside the modu-
ated region in Section 7 and present the prescription for
esolving the boundary-value problem in Section 8. We
onclude this work by briefly illustrating the necessary
ormula for extracting physically relevant quantities such
s cross sections and scattering matrices.

. PRESENTATION OF THE PROBLEM
igure 1 shows a finite object, made of an isotropic mate-
ial, with arbitrary shape limited by a surface �S�. This
urface is described in spherical coordinates �r ,� ,��, with
� �0,�� defined in the figure by the equation

f�r,�,�� = 0 �1�

r

r = g��,��. �2�

t a given point M on the surface, the external normal
nit vector is N̂, and the unit vectors of spherical coordi-
ates are denoted r̂, �̂, �̂. The surface �S� divides the
pace into two regions. The first region, contained within
S�, is filled with a linear, homogeneous, and isotropic me-
ium, dielectric or conducting, described by complex per-
ittivity �1. The second region lies outside �S� and has

eal permittivity �m. In view of developing the differential
heory, we divide space into three regions by introducing
he inscribed sphere �S1� with radius R1 and the circum-
cribed sphere �S2� with radius R2; the region between
S1� and �S2� is called the “modulated region,” a denota-
ion that recalls that for any constant value r0 of r be-
ween R1 and R2, the permittivity, �, is a function of � and
and, furthermore, is obviously periodic with respect to �
ith a period of 2� and piecewise constant with respect to
and �.
The object is subject to an incident harmonic electro-
agnetic field described by its electric field, Ei, with an

xp�−i�t� time dependence. As is well known in quantum
echanics and electromagnetism,21–23 any function of an-

ular variables � and � can be developed on the basis of
calar spherical harmonics Ynm�� ,��. The dimensionless
elative dielectric constant, ��r ,� ,��, defined such that
0��r ,� ,�����r ,� ,�� can therefore be expressed as

��r,�,�� = �
n=0

	

�
m=−n

n

�nm�r�Ynm��,��, �3�

hich implies that �nm�r� can be obtained from the Her-
itian product:

�nm�r� = �Ynm��	 � 

0

4�

Ynm
* ��,����r,�,��d
. �4�

he reader should note that in Eq. (4) and throughout
his work we have adopted the convention for scalar Her-
itian products such that

�g�f	 �
 g*�x�f�x�dx. �5�

In Eq. (4), the asterisk denotes the complex conjugate,
nd 
 is the solid angle. Equation (4) can thus be rewrit-
en as

�nm�r� =

0

2� 

0

�

��r,�,��Ynm
* ��,��sin �d�d�. �6�

A development of the vector electromagnetic field is a
ore complicated affair. One might first be tempted to ex-

Fig. 1. Description of the diffracting object and notations.
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and each spherical coordinate component of the total
eld �E ,H� on the basis of the scalar spherical harmonics,
imilar to Eq. (3). But when such expansions are put into
he Maxwell equations, derivatives of the Ynm functions
rise that are difficult to calculate and manipulate. Con-
equently, we choose another way to expand vector fields;
.e., we represent them on the basis of VSHs.

. VECTOR SPHERICAL HARMONICS
SHs are described in several reference books,6,21–23 al-

hough their definitions and notations vary with the au-
hors. They arise in vector solutions of the wave equation
Helmholtz equation) and when appropriately defined can
orm an orthogonal complete basis to represent the elec-
romagnetic field. We choose to define and denote them by
he following equations:

Ynm��,�� � r̂Ynm��,��, �7�

Xnm��,�� � Znm��,�� � r̂ , �8�

here

Znm��,�� �
r � Ynm��,��

�n�n + 1�

if n � 0, Z00��,�� � 0. �9�

Equation (8) implies that

Znm��,�� = r̂ � Xnm��,��. �10�

ll the VSHs are mutually orthonormal in the sense that
f Wnm

�i� (i=1, 2, 3) denotes the vector harmonics Ynm, Xnm,
r Znm, we have

�Wnm
�i� �W�

�j� 	 � 

0

4�

Wnm
�i�* · W�

�j� d
 = �ij�n��m, �11�

here �ij is the Kronecker symbol and the Hermitian
roduct of Eq. (4) has been extended to vector fields. We
lso remark from Eqs. (7)–(9) that if the Wnm

�i� �� ,�� were
eal the trihedral �Ynm ,Xnm ,Znm� would be direct.

Let us recall that the scalar spherical harmonics
nm�� ,�� are expressed in terms of associated Legendre

unctions Pn
m�cos �� as23

Ynm��,�� = �2n + 1

4�

�n − m�!

�n + m�!1/2

Pn
m�cos ��exp�im��

�12�

r by including the square root in the definitions of nor-
alized associated Legendre functions P̄n

m:

Ynm��,�� = P̄n
m�cos ��exp�im��. �13�

ntroducing functions ūn
m and s̄n

m defined by

ūn
m�cos �� =

1

�
m

sin �
P̄n

m�cos ��, �14�

n�n + 1�
s̄n
m�cos �� =

1

�n�n + 1�

d

d�
P̄n

m�cos ��, �15�

e can express the vector harmonics Xnm and Znm as

Xnm��,�� = iūn
m�cos ��exp�im���̂ − s̄n

m�cos ��exp�im���̂,

�16�

Znm��,�� = s̄n
m�cos ��exp�im���̂ + iūn

m�cos ��exp�im���̂.

�17�

quations (16) and (17), combined with Eq. (7), clearly
how that for a given n, m the �Ynm ,Xnm ,Znm� are mutu-
lly perpendicular in the sense that Wnm

�i� ·Wnm
�j� =0 for i

j.
Other interesting relations are the curl of products of a

adially dependent function h�r� by a Wnm
�i� . These rela-

ions will prove to be useful in the derivation of the propa-
ation equations and are given by

curl�h�r�Ynm� = �n�n + 1��1/2
h�r�

r
Xnm, �18�

curl�h�r�Xnm� =
h�r�

r
�n�n + 1��1/2Ynm + �h�r�

r
+ h��r�Znm,

�19�

curl�h�r�Znm� = − �h�r�

r
+ h��r�Xnm. �20�

. FIELD EXPANSIONS
n arbitrary vector field U�r ,� ,�� can be expressed in a
evelopment of the VSHs as stated by

U�r,�,�� = �
n=0

	

�
m=−n

n

�AYnm�r�Ynm��,�� + AXnm�r�Xnm��,��

+ AZnm�r�Znm��,���. �21�

uch a development will be subsequently applied to the
otal electric field E, the total magnetic field H, the dis-
lacement D, the incident electric field Ei, and the unit
ormal vector N̂. However, in view of a numerical treat-
ent, the summation in Eq. (21) will have to be limited to
value of n equal to nmax. Also, the double subscript

n ,m� will be replaced by a single subscript p, varying
rom 1 to N. It is then easy to establish that Eq. (21) takes
he form

U�r,�,�� = �
p=1

N

�AYp�r�Yp��,�� + AXp�r�Xp��,��

+ AZp�r�Zp��,���, �22�

here N��n +1�2 and
max
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p = n�n + 1� + m + 1. �23�

n the other hand, if p is given, n and m can be derived
rom it through the equations

n = Int�p − 1, m = p − 1 − n�n + 1�, �24�

here the function Int�x� calculates the integer part of x.
Throughout the rest of the work, the coefficients of the

arious field vectors will frequently be put in columns. As
result of Eq. (22), the total field E, for example, will be

epresented by a column �E� composed of three blocks
ontaining the functions EYp, EXp, and EZp. Since p

�1, �nmax+1�2�, the vector E will have 3� �nmax+1�2 com-
onents El :E↔ �E�, i.e.,

� ]

El

]

� ���
—

]

EY,p

]

—

]

EX,p

]

—

]

EZ,p

]

—

��3 � �nmax + 1�2. �25�

The unit vector N̂ can be represented in such a column
nce the surface S is specified; i.e., the function f�r ,� ,�� is
nown. Since N̂ is given by

N̂��,�� = � grad f

�grad f�
�

f=0

, �26�

e obtain in spherical coordinates

Nr = �
�f

�r

�grad f�
�

f=0

, N� = �
1

r

�f

��

�grad f�
�

f=0

,

N� = �
1

r sin �

�f

��

�grad f�
�

f=0

. �27�

ith N̂ known, its components on the VSHs are derived
rom the scalar products

NYnm = �Ynm�N̂	 = �Ynmr̂�r̂Nr	 =

0

4�

Ynm
* ��,��Nr��,��d


=

0

2� 

0

�

NrP̄n
m�cos ��exp�− im��sin �d�d�, �28�
NXnm =

0

2� 

0

�

�iN�ūn
m�cos �� − N�s̄n

m�cos ���

�exp�− im��sin �d�d�, �29�

NZnm =

0

2� 

0

�

�N�s̄n
m�cos �� + iN�ūn

m�cos ���

�exp�− im��sin �d�d�. �30�

rom Eqs. (28)–(30), the column associated with vector N̂,
ontaining the three blocks NYp, NXp, and NZp, p

�1, �nmax+1�2�, is fully determined. The case of a dif-
racted object with a revolution symmetry is especially
imple. Then not only is N� null [which eliminates a term
n Eqs. (29) and (30)] but more interesting is the fact that

r and N�, are then � independent. Then all terms with
ubscript m different from zero are null, and Eqs.
28)–(30) reduce to

NYn0 = 2�

0

�

Nr���P̄n
0�cos ��sin �d�, �31�

NXn0 = 0, �32�

NZn0 = 2�

0

�

N����s̄n
0�cos ��sin �d�, �33�

here we have used the fact that ūn
0�cos ��=0.

Of course, replacing double integrals by single ones,
ombined with the reduction of their number from 3

�nmax+1�2 to 2� �nmax+1� leads to great savings in com-
utation time. The same remark also applies to ��r ,� ,��,
hose components on the Yn

m�� ,�� basis reduce to �n,0,
iven by

�n,0 = 2�

0

�

��r,��P̄n
0�cos ��sin �d�. �34�

etails concerning an analytical calculation of �n,0 are
iven in Appendix A.

. PROPAGATION EQUATIONS
he main advantage of the field representation over the
asis of VSHs lies in the simplicity of the propagation
quations resulting from Maxwell equations. Writing
url E= i�0H, with  as the dimensionless relative
agnetic permeability, and representing E and H by ex-

ansions of the form given by Eq. (22), we find

�
p=1

N

�curl�EYp�r�Yp� + curl�EXp�r�Xp� + curl�EZp�r�Zp��

= i�0�
p=1

N

�HYpYp + HXpXp + HZpZp�. �35�

Using Eqs. (18)–(20) and equating the p components on
oth sides in Eq. (35), we also have
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�n�n + 1�
EYp�r�

r
Xp + �n�n + 1�

EXp�r�

r
Yp + �EXp�r�

r

+
dEXp�r�

dr
Zp − �EZp�r�

r
+

dEZp�r�

dr
Xp

= i�0�HYpYp + HXpXp + HZpZp�. �36�

Introducing ap=�n�n+1�, where n=Int�p−1, and pro-
ecting both members of Eq. (36) on vectors Yp, Xp, and
p, we obtain

ap

EXp

r
= i�0HYp, �37�

ap

EYp

r
−

EZp

r
−

dEZp

dr
= i�0HXp, �38�

EXp

r
+

dEXp

dr
= i�0HZp. �39�

imilarly, the Maxwell equation, curl H=−i�D leads to

ap

HXp

r
= − i�DYp, �40�

ap

HYp

r
−

HZp

r
−

dHZp

dr
= − i�DXp, �41�

HXp

r
+

dHXp

dr
= − i�DZp. �42�

Since we work in linear optics �D=�0�E�, and since E
nd D are represented on the same basis, there exists a
quare matrix Q� that links the column �E� to the column
D� such that

�D� = �0Q��E�. �43�

his Q� matrix is made of nine square blocks, each block
aving dimension �nmax+1�2, which depend on the compo-
ents of � defined in Eq. (6), and will be calculated in Sub-
ection 6.C. We represent Q� by the following block struc-
ure:

Q� = �Q�YY Q�YX Q�YZ

Q�XY Q�XX Q�XZ

Q�ZY Q�ZX Q�ZZ
� . �44�

rom Eqs. (43) and (44), we thus obtain

1

�0
�DY� = Q�YY�EY� + Q�YX�EX� + Q�YZ�EZ�, �45�

hich gives

�EY� = �Q�YY�−1� 1

�0
�DY� − Q�YX�EX� − Q�YZ�EZ�� . �46�

oreover,
1

�0
�DX� = Q�XY�EY� + Q�XX�EX� + Q�XZ�EZ�, �47�

1

�0
�DZ� = Q�ZY�EY� + Q�ZX�EX� + Q�ZZ�EZ�. �48�

We first insert Eq. (40) into Eq. (46). We then insert Eq.
46) into Eqs. (47) and (48) in order to express �DX� and
DZ� in terms of �EX�, �EZ�, and �HX�, expressions that are
hen inserted into Eqs. (41) and (42). In Eq. (41) �HYp� is
liminated thanks to Eq. (37). In Eq. (38) �EY� is elimi-
ated thanks to Eqs. (40) and (46). Introducing a diagonal
atrix a with elements ap�p,q, we finally reduce the set of

ix equations, Eqs. (37)–(42), to four equations with un-
nowns EXp, EZp, HXp, and HZp only:

EXp

r
+

dEXp

dr
= i�0HZp �49�

ap

r
��Q�YY�−1� ia

��0r
�HX� − Q�YX�EX� − Q�YZ�EZ��

p

−
EZp

r
−

dEZp

dr
= i�0HXp, �50�

HXp

r
+

dHXp

dr
= − i��0�Q�ZX�EX��p − i��0�Q�ZZ�EZ��p

− i��0�Q�ZYQ�YY
−1 � ia

��0r
�HX� − Q�YX�EX�

− Q�YZ�EZ���
p

, �51�

i
ap

2

�0

EXp

r2 +
HZp

r
+

dHZp

dr
= i��0�Q�XX�EX��p

+ i��0�Q�XZ�EZ��p

+ i��0�Q�XYQ�YY
−1 � ia

��0r
�HX�

− Q�YX�EX� − Q�YZ�EZ���
p

.

�52�

It is now useful to construct a column �F� containing
he unknowns of the problem, made with four blocks, each
lock having �nmax+1�2 components:

�F� = �
�EX�

�EZ�

�H̃X�

�H̃Z�
� , �53�

here the tilde means that the magnetic field is multi-
lied by the vacuum impedance Z0 so that it has the same
imension as an electric field:
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H̃ � Z0H =�0

�0
H =

1

c�0
H. �54�

he propagation equations, Eqs. (49)–(52), can then be
ritten in matrix form:

d�F�

dr
= M�r��F�, �55�

here M�r� is a square matrix made with 16 square
locks, each of them having dimension �nmax+1�2, which
an be explicitly written as

M11 = −
1

r
, M12 = M13 = 0, M14 = i

�

c
1,

M21 = −
a

r
Q�YY

−1 Q�YX, M22 = −
1

r
−

a

r
Q�YY

−1 Q�YZ,

M23 = i
�

c
�� c

r�
�2

aQ�YY
−1 a − 1�, M24 = 0,

M31 = i
�

c
�Q�ZYQ�YY

−1 Q�YX − Q�ZX�,

M32 = i
�

c
�Q�ZYQ�YY

−1 Q�YZ − Q�ZZ�,

M33 =
1

r
�Q�ZYQ�YY

−1 a − 1�, M34 = 0,

M41 = i
�

c
�Q�XX − Q�XYQ�YY

−1 Q�YX −
1


� ac

�r
�2� ,

M42 = i
�

c
�Q�XZ − Q�XYQ�YY

−1 Q�YZ�,

M43 = − Q�XYQ�YY
−1

a

r
, M44 = −

1

r
, �56�

here 1 is the unit matrix.
Equations (55) and (56) are the propagation equations.

hey will have to be numerically integrated across the
odulated region, and the numerical solution will have to

e matched with analytical expressions of the field in
ach homogeneous region (r�R1 and r�R2). It is known
hat such a process will determine the field everywhere.
owever, two difficulties are common in the process.20

he first difficulty is the exponential growth of the nu-
erical solutions during the integration process. This will
ave to be avoided by using the S-matrix propagation
lgorithm.14,20 The second difficulty comes with the slow
onvergence of the field expansions, which requires inte-
rating overly large sets of equations, which aggravates
he exponential growth. In the case of grating theory, the
ifficulty has been resolved15,16,20 by developing a tech-
ique called fast Fourier factorization (FFF), which is
ased on factorization rules developed by Li.17 Such a
echnique has been recently extended to basis functions
ifferent from the Fourier basis18 and is then called fast
umerical factorization (FNF). It has been applied with
uccess to the Bessel–Fourier basis used to analyze ob-
ects in cylindrical coordinates.19 Its extension to spheri-
al harmonics is not trivial and is described in Section 6.

. FAST NUMERICAL FACTORIZATION
PPLIED TO A SPHERICAL HARMONIC
ASIS
he difficulty of slow convergence of field expansion is

inked to the necessity of truncating the set of propaga-
ion equations. From a mathematical point of view, field
xpansions are infinite series, as stated by Eq. (21). Thus
he set of Eqs. (37)–(42) should be infinite, as should be
he set in Eq. (55). The truncation of Eq. (21) performed in
q. (22) limits the range of p in Eqs. (37)–(42) to �nmax+1�2,
nd the question that arises is how can DYp, DXp, and DZp
n Eqs. (40)–(42) be correctly expressed in terms of EYp,

Xp, and EZp.
It has been known for a long time that reconstructing a

iscontinuous function from its Fourier series leads to the
ibbs phenomenon, which means that, at the discontinu-

ty points, the sum of the truncated series does not con-
erge to the value of the function. Such a phenomenon
oes not exist for continuous functions, which results in
he fact that continuous functions are better recon-
tructed by summing their truncated Fourier series than
iscontinuous ones. This remark was used by Li to pro-
ose factorization rules17 that allowed a breakthrough in
rating theory.15,16,20 Extending the previous hypothesis
o arbitrary basis functions, namely, that continuous
unctions are better reconstructed than discontinuous
unctions by summing their truncated expansion on an
rbitrary continuous function basis, we were able to es-
ablish factorization rules valid for an arbitrary basis. We
riefly recall the basic ideas here.

. Factorization Rules
et us consider three functions f, g, and h of a common
ariable x with h=gf and assume that the truncation ex-
ansion of f over a continuous function basis �m is known:
�x�=�m=1

N fm�m�x�. The function g�x� may be known explic-
tly or from an expansion over a different or identical
unction basis. The question is how to determine with the
est accuracy the coefficients hm of the development of h
gf over the �m basis: h�x�=�m=1

N hm�m�x�. The answer de-
ends on whether f and g are discontinuous at a same
alue of x or not.

. Direct Rule
f f is a continuous function while g is discontinuous,
hich implies that h is discontinuous, we have

hm = ��m�h	 = ��m�gf	 = ��m�g�
p

fp�p� . �57�

n Eq. (57), the summation is a rapidly converging series,
ince f is continuous. From the linearity of the scalar
roduct we find
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hm = �
p

��m�gfp�p	 = �
p

��m�g�p	fp. �58�

efining

gmp � ��m�g�p	, �59�

e obtain the direct rule

hm = �
p

gmpfp. �60�

Since the sum in Eq. (57) is rapidly converging, so is
he sum in Eq. (60), which means that the hm components
re well calculated with p limited to small values. It is
orth noticing that the components gn of the function g
re not involved in the direct rule. It is the gmp coeffi-
ients given by Eq. (59) that are required.

. Inverse rule
et us now assume that f and g are functions that are dis-
ontinuous at the same point, with a continuous product
. In order to find the same situation as in Subsection
.A.1, we then consider f= �1/g�h, where h is continuous
nd 1/g and f are discontinuous. We thus find

fm = ��m�f	 =��m�
1

g
h� =��m�

1

g�
p

hp�p�
= �

p
��m�

1

g
�p�hp, �61�

hich will be a rapidly converging summation. Defining

ginv,mp ���m�
1

g
�p� , �62�

e obtain

fm = �
p

ginv,mphp. �63�

gain, the fast convergence of the summation in Eq. (61)
ue to the continuity of h ensures that the coefficients fm
re well calculated. Inverting the relation in Eq. (63), we
ave

hm = �
p

��ginv�−1�mpfp, �64�

hich is the inverse rule.

. Factorization Rules for Spherical Harmonic
xpansions
n electromagnetism, the tangential component DT of the
isplacement is the product of a discontinuous function �
y a continuous vector ET. The calculation of its compo-
ent on any basis will thus require using the direct rule.
n the other hand, the components of DN=N̂�N̂ ·D� will
ave to be obtained using the inverse rule.

. Direct Rule
epresenting both DT and ET by truncated expansions

21), we have
ET = �
n,m

�ETYnmYnm + ETXnmXnm + ETZnmZnm�, �65�

DT = �
n,m

�DTYnmYnm + DTXnmXnm + DTZnmZnm�. �66�

he DT and ET vectors are linked through the relation

DT = �0�ET, �67�

nd we want to express this in terms of a matrix relation
mong their components on the spherical harmonic basis:

�DT� = �0���T���ET�, �68�

here

���T�� = ���YY� ��YX� ��YZ�

��XY� ��XX� ��XZ�

��ZY� ��ZX� ��ZZ�
� �69�

nd each square block has dimension �nmax+1�2. Our aim
n what follows is to explicitly determine these blocks.

As established in Appendix B, since a given Ynm is per-
endicular to all X� and Z� vectors, we have ��YX�
��XY�= ��YZ�= ��ZY�=0, and ��T� takes the form

���T�� = ���YY� 0 0

0 ��XX� ��XZ�

0 ��ZX� ��ZZ�
� . �70�

utting Eqs. (65) and (66) in Eq. (67) above, we have

�
n�,m�

�DTYn�m�Yn�m� + DTXn�m�Xn�m� + DTZn�m�Zn�m��

= �0��r,�,���
�,

�ETY�Y� + ETX�X� + ETZ�Z��.

�71�

f we perform an ordinary scalar product of both sides of
q. (71) by Ynm

* , we obtain

Ynm
* · �

n�,m�

�DTYn�m�Yn�m� + DTXn�m�Xn�m� + DTZn�m�Zn�m��

= �0��r,�,��Ynm
* · �

�,
�ETY�Y� + ETX�X� + ETZ�Z��,

�72�

nd, using the fact that

Ynm
* · Xn�m� = Ynm

* · Zn�m� = Ynm
* · X� = Ynm

* · Z� = 0,

e find

�
n�,m�

DTYn�m�Ynm
* · Yn�m� = �0��r,�,���

�,
ETY�Ynm

* · Y�.

�73�

ntegrating both sides of this equation over the solid
ngles,



a
t

w
r

O
s
E

w
w
�

l
o

U

I

W

s
E

w

Z

a
t

I

A
fi

w
i
p
I
t
(

I
f

2392 J. Opt. Soc. Am. A/Vol. 22, No. 11 /November 2005 Stout et al.
�
n�,m�

DTYn�m�

0

4�

d
Ynm
* · Yn�m�

= �0�
�,

ETY�

0

4�

d
��r,�,��Ynm
* · Y�, �74�

nd using the functional orthonormality of the VSHs, we
hen obtain

DTYnm = �0�
�,

ETY�

0

4�

d
��r,�,��Ynm
* · Y�. �75�

Defining

�YYnm,� � 

0

4�

d
��r,�,��Ynm
* · Y� � �Ynm��Y�	,

�76�

e find the linear relation between DTYnm and ETY�

eads as

DTYnm = �0�
�,

�YYnm,�ETY�. �77�

f course, the double subscripts �n ,m� and �� ,� can, re-
pectively, be replaced by single subscripts, p and q, using
q. (23). Then Eq. (77) takes a compact form:

DTYp = �0�
q

�YYp,qETYq, �78�

hich defines the elements of the block ��YY� and where
e recall that ��YY� is a square block with dimensions

nmax+1�2.
We derive the expressions of the other blocks in a simi-

ar way. Multiplying both sides of Eq. (71) now by Xnm
* , we

btain

Xnm
* · �

n�,m�

�DTYn�m�Yn�m� + DTXn�m�Xn�m� + DTZn�m�Zn�m��

= �0��r,�,��Xnm
* · �

�,
�ETY�Y� + ETX�X� + ETZ�Z��.

�79�

sing the fact that Xnm
* ·Yn�m�=Xnm

* ·Y�=0, we obtain

�
n�,m�

�DTXn�m�Xnm
* · Xn�m� + DTZn�m�Xnm

* · Zn�m��

= �0��r,�,��Xnm
* · �

�,
�ETX�X� + ETZ�Z��. �80�

ntegrating over the solid angle 
, we obtain

DTXnm = �0�
�,



0

4�

d
��r,�,��Xnm
* · �ETX�X� + ETZ�Z��.

�81�

e then define

�XXnm,� � 

0

4�

d
��r,�,��Xnm
* · X� � �Xnm��X�	,

�82�
�XZnm,� � 

0

4�

d
��r,�,��Xnm
* · Z� � �Xnm��Z�	,

�83�

o that, after the single-subscript notation is introduced,
q. (81) reduces to

1

�0
DTXp = �

q

�XXp,qETXq + �
q

�XZp,qETZq, �84�

hich gives the ��XX� and ��XZ� blocks.
In a third step, multiplying both sides of Eq. (71) by

nm
* , we find

Znm
* · �

n�,m�

�DTYn�m�Yn�m� + DTXn�m�Xn�m� + DTZn�m�Zn�m��

= �0��r,�,��Znm
* · �

�,
�ETY�Y� + ETX�X� + ETZ�Z��,

�85�

nd, using the fact that Znm
* ·Yn�m�=Znm

* ·Y�=0, we ob-
ain

�
n�,m�

�DTXn�m�Znm
* · Xn�m� + DTZn�m�Znm

* · Zn�m��

= �0��r,�,��Znm
* · �

�,
�ETX�X� + ETZ�Z��. �86�

ntegrating over the solid angle 
, we obtain

DTZnm = �0�
�,



0

4�

d
��r,�,��Znm
* · �ETX�X� + ETZ�Z��.

�87�

We then define

�ZXnm,� � 

0

4�

d
��r,�,��Znm
* · X� � �Znm��X�	,

�88�

�ZZnm,� � 

0

4�

d
��r,�,��Znm
* · Z� � �Znm��Z�	.

�89�

fter introducing the simplified subscript notation, we
nd that Eq. (87) reduces to

1

�0
DTZP = �

q

�ZXp,qETXq + �
q

�ZZp,qZTXq, �90�

hich gives the elements of the ��ZX� and ��ZZ� blocks. It
s worth noticing a simplification that comes from the ex-
ression of Xnm and Znm established in Eqs. (16) and (17).
t is straightforward to verify that Xnm

* ·X�=Znm
* ·Z� and

hat Xnm
* ·Z�=−Znm

* ·X�. From Eqs. (82), (83), (88), and
89), we then obtain

��XX� = ��ZZ�, ��XZ� = − ��ZX�. �91�

n summary, the matrix ���T�� in Eq. (70) will include the
ollowing blocks:
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���T�� = ���YY� 0 0

0 ��XX� ��XZ�

0 − ��XZ� ��XX�
� . �92�

onsidering Eqs. (76), (82), (83), (88), and (89), we remark
hat the blocks of the matrix in Eqs. (68) and (69) can be
xpressed in the concise form �ij,nm,�= �Wnm

�i� ��W�
�j� 	, with

, j=1, 2, 3 and �11��YY, �23��XZ, etc. Furthermore, Eqs.
91) and (92) can be seen as specifying certain interesting
roperties of these matrix elements.

. Inverse Rule
oncerning the normal components DN and EN of D and
, which are related by

DN = �0�EN, �93�

e want to find the matrix relation that links their com-
onents in the form

�DN� = �0���N���EN�, �94�

here, for the same reasons as pointed out for ���T��, ���N��
ill have the following block structure:

���N�� = ���YY
�N�� 0 0

0 ��XX
�N�� ��XZ

�N��

0 − ��XZ
�N�� ��XX

�N��
� . �95�

From Eq. (93), we have EN= �1/�0��DN where 1/� is dis-
ontinuous while DN is continuous. Thus the direct rule
as to be used to calculate the components of EN from
hose of 1/� and DN. Following the line stated in Subsec-
ion 6.A.2 and similar to Eq. (71), we write

�
n�,m�

�ENYn�m�Yn�m� + ENXn�m�Xn�m� + ENZn�m�Zn�m��

=
1

�0��r,�,����,
�DNY�Y� + DNX�X� + DNZ�Z��.

�96�

e continue the process as we did for obtaining Eqs. (76)
nd (77); defining

�1

�
�

YYnm;�

� 

0

4�

d

1

��r,�,��
Ynm

* · Y� ��Ynm�
1

�
Y�� ,

�97�

e obtain

�0ENYnm = �
�

�1

�
�

YYnm,�

DNY� �98�

r, with the single subscript,

�0ENYp = �
q
�1

�
�

YYp,q

DNYq. �99�

nversing this relation, we obtain an equation identical to
he inverse rule in Eq. (64) that we established for scalar
unctions:
DNYp = �0�
q
��1

�
�

YY

−1
p,q

ENYq, �100�

hich is to be expected, since DNYq depend only on ENYq
nd thus behave like scalars. Equation (100) provides the
rst block in ���N��:

��YY
�N�� = ��1

�
�

YY
�−1

. �101�

Things are a bit more complicated for the other blocks,
ince both �DNX� and �DNZ� depend on �ENX� and �ENZ�.
ut, following the same lines, we obtain

�0ENXnm = �
�,

�1

�
�

XXnm,�

DNX� + �
�,

�1

�
�

XZnm,�

DNZ�,

�102�

here

�1

�
�

XXnm,�

��Xnm�
1

�
X�� , �103�

�1

�
�

XZnm,�

��Xnm�
1

�
Z�� . �104�

ut in matrix form, Eq. (102) reads as

�0�ENX� = �1

�
�

XX

�DNX� + �1

�
�

XZ

�DNZ�, �105�

hich, with the help of Eq. (95), gives

�0�ENZ� = − �1

�
�

XZ

�DNX� + �1

�
�

XX

�DNZ�. �106�

Inverting Eqs. (105) and (106) leads to

��DNX�

�DNZ� = �0� �1

�
�

XX
�1

�
�

XZ

− �1

�
�

XZ
�1

�
�

XX

�
−1

��ENX�

�ENZ� , �107�

nd Eq. (95) reads as

���N�� = ���YY
�N�� 0 0

0 ��XX
�N�� ��XZ

�N��

0 − ��XZ
�N�� ��XX

�N��
�

=�
��1

�
�

YY
�−1

0 0

0 � �1

�
�

XX
�1

�
�

XZ

− �1

�
�

XZ
�1

�
�

XX

�
−1

0

� .

�108�

quations (94) and (108), together with Eqs. (97), (103),
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nd (104), state the inverse rule that applies to the vecto-
ial functions D and E represented on the basis of VSHs.

The determination of the various blocks of ���T�� and
��N�� requires computing integrals involving scalar prod-
cts of two VSHs, as shown in Eqs. (82) and (83), for ex-
mple. The introduction of the Gaunt coefficients23 devel-
ped by theoreticians working in quantum mechanics
ives analytic expressions for these integrals. This is ex-
lained in Appendix D.

. Total Field Representation: Fast Numerical
actorization Applied to Spherical Harmonic Basis
he concept of normal and tangential components of E or
is defined only on a surface S, whereas the direct and

nverse rules have to be applied into the entire modulated
egion in order to calculate the D components on the
SHs. The basic idea of what was first called the fast Fou-
ier factorization (FFF) in grating theory16,20 consisted of
xtending the definition of N̂ stated by Eq. (26) toward
he entire modulated area by simply stating that

∀r � �R1,R2�, N̂�r,�,�� = � grad f

�grad f�
�

f=0

. �109�

Equation (109) allows one to derive a normal compo-
ent EN of the field E via

EN = N̂�N̂ · E�, �110�

nd its tangential component, ET, is given by

ET = E − EN = E − N̂�N̂ · E�; �111�

hese definitions hold in the entire modulated area. Deal-
ng with an isotropic medium then leads to

D = �0�E = �0��ET + EN� = �0�„E − N̂�N̂ · E�… + �0�N̂�N̂ · E�.

�112�

xpressing the components of DT=�0�„E−N̂�N̂ ·E�… im-
lies the direct rule that requires ���T��, whereas the com-
onents of DN=�0�N̂�N̂ ·E� requires the inverse rule and
hus requires ���N��. Introducing the matrix �N̂N̂�, with
ine blocks �NiNj�, with i and j equal to Y, X, and Z,
hich relates �E� to �EN�, we thus have

1

�0
�D� = ���T���ET� + ���N���EN�

= „���T���1 − �N̂N̂�� + ���N���N̂N̂�…�E�. �113�

As a result, matrix Q� defined in Eq. (44) reads

Q� = ���T�� + ����N�� − ���T����N̂N̂�,

n equation that has to be interpreted in block form as

Q�ij = ��ij
�T�� + �

k

���ik
�N�� − ��ik

�T����N̂kN̂j�. �114�

n order to state explicitly the various blocks, we first in-
roduce the matrix �����N��− ���T��, with blocks �ij
���N��− ���T��, which reads
ij ij
� = ��YY 0 0

0 �XX �XZ

0 − �XZ �XX
� . �115�

hus, finally, Q� has the following blocks:

Q�YY = �YY�NYNY� + ��YY�, Q�YX = �YY�NYNX�,

Q�YZ = �YY�NYNZ�,

Q�XY = �XX�NXNY� + �XZ�NZNY�,

Q�XX = �XX�NXNX� + �XZ�NZNX� + ��XX�,

Q�XZ = �XX�NXNZ� + �XZ�NZNZ� + ��XZ�,

Q�ZY = �XX�NZNY� − �XZ�NXNY�,

Q�ZX = �XX�NZNX� − �XZ�NXNX� − ��XZ�,

Q�ZZ = �XX�NZNZ� − �XZ�NXNZ� + ��XX�. �116�

The differential set written in Eqs. (55) and (56) with
atrix Q� given by Eqs. (116) is the fast converging for-
ulation of the Maxwell equations projected onto a trun-

ated spherical harmonic basis, and the way of deriving
hem is the fast numerical factorization (FNF) in spheri-
al coordinates.

. FIELD EXPANSIONS OUTSIDE THE
ODULATED REGION

nside a homogeneous isotropic medium characterized by
he relative electric and magnetic permitivities, �j and j,
he two Maxwell curl equations result in a second-order
ropagation equation involving the electric field:

curl�curl E� − ��/c�2�jjE = 0. �117�

n a source-free medium, div E=0, and Eq. (117) leads to
he vector Helmholtz equation:

�E + kj
2E = 0, �118�

here

kj
2 = ��/c�2�jj. �119�

Classical textbooks1 explain how to construct the gen-
ral solution of Eq. (117). Searching for a general vectorial
olution of the form M�curl�r�� and expressing the La-
lacian operator in spherical coordinates, we find that � is
solution of the scalar Helmholtz equation:

1

r2

�

�r
�r2

��

�r
� +

1

r2 sin �

�

��
�sin �

��

��
� +

1

r2 sin2 �

�2�

��2 + kj
2�

= 0. �120�

xpressing � on the basis of scalar spherical harmonics,

��r,�,�� = �
n,m

R�r�Ynm��,��, �121�

e find that R�r� verifies
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d

dr
�r2

dR

dr
� + �kj

2r2 − n�n + 1��R�r� = 0. �122�

Introducing the dimensionless variable ��kjr and the
unction Ř�R�� we find that Eq. (122) leads to

d2Ř

d2�
+

1

�

dŘ

d�
+ �1 −

�n + 1
2�2

�2 Ř��� = 0. �123�

quation (123) is the Bessel equation with half-integer or-
er n+1/2; its independent solutions are thus the half-
nteger Bessel functions Ř=Jn+1/2��� and Yn+1/2��� or Han-
el functions Ř=Hn+1/2

+ ��� and Hn+1/2
− ���. Consequently,

inearly independent solutions of Eq. (122) are called
pherical Bessel functions and are defined by

R�r� = jn�kjr� �� �

2kjr
Jn+1/2�kjr�,

�124�

R�r� = yn�kjr� �� �

2kjr
Yn+1/2�kjr�,

here the factor �� /2 is introduced for convenience.
Any combination of jn��� and yn��� is also a solution to

q. (122). Two such combinations deserve special atten-
ion, which are called spherical Bessel functions of the
hird and fourth kind, or spherical Hankel functions:

hn
+��� = jn��� + iyn���,

hn
−��� = jn��� − iyn���. �125�

t will be useful to designate one of the four spherical
essel functions by the generic notation zn�kjr�. Following
qs. (121)–(125), � can be expressed as a series of elemen-

ary functions �nm, with

�nm�r,�,�� = zn�kjr�Ynm��,��. �126�

ach �nm can be used to generate a solution to Eq. (117)
frequently called a vector spherical wave function):

Mnm �
curl�r�nm�

�n�n + 1�
. �127�

rom Mnm, a second solution to Eq. (117) can be
onstructed1 by taking Nnm�curl Mnm /kj. Classical
extbooks1 then establish that one can write

Mnm��,�,�� = zn���Xnm��,��, �128�

Nnm��,�,�� =
1

�
��n�n + 1�zn���Ynm��,��

+ ��zn�����Znm��,���, �129�

here the prime here, and from here on, is a shorthand
or expressing derivatives with respect to the argument of
he Bessel function; i.e., explicitly we have

f��x0� � � d

dx
f�x��

x=x0

. �130�
From Eq. (128) and (129), it is established that Nnm���
re orthogonal to Mnm��� and are thus linearly indepen-
ent. As a result, the general solution of the propagation
quation inside a homogeneous medium, Eq. (117), can be
ritten as

E�r� = �
n,m

�Ah,nm
�j� jn�kjr�Xnm +

Ae,nm
�j�

kjr

���n�n + 1�jn�kjr�Ynm + „kjrjn�kjr�…�Znm� 
+ �

n,m
�Bh,nm

�j� hn
+�kjr�Xnm +

Be,nm
�j�

kjr

���n�n + 1�hn
+�kjr�Ynm + „kjrhn

+�kjr�…�Znm� .

�131�

he coefficients Ah,nm
�j� , Ae,nm

�j� , and Bh,nm
�j� , Be,nm

�j� , play in the
D scattering problem the same role as Rayleigh coeffi-
ients in grating theory.20 The choice made among the
n�kjr� functions allows one to distinguish the terms that
emain bounded at the coordinate origin (corresponding
o Ah,nm

�j� , Ae,nm
�j� ,) from terms that correspond to outgoing

aves or waves decaying at infinity (corresponding to

h,nm
�j� , Be,nm

�j� ,).
The general expression for E in Eq. (131) is applicable

o the inner region �r�R1� and the outer region �r�R2�.
or r�R1, in order to obtain a solution that remains
ounded, we impose

Be,nm
�1� = 0 = Bh,nm

�1� ∀ n,m. �132�

et us introduce the Ricatti–Bessel functions, �n�z� and
n�z�, defined in Appendix E, so that Eq. (131) for r�R1
educes to

E = �
n,m

�Ah,nm
�1� jn�k1r�Xnm +

Ae,nm
�1�

k1r

���n�n + 1�jn�k1r�Ynm + �n��k1r�Znm� . �133�

On the other hand, if r�R2, the field must be the sum
f the diffracted field, expressed by the second summation
n Eq. (131), and the incident field. This means that the
rst summation in Eq. (131) must here reduce to the in-
ident field, with coefficients denoted Ah,nm

i , and Ae,nm
i .

xpressed in terms of the polarization vector, êi, these co-
fficients for an incident plane wave Ei=exp�ikM ·r�êi
ave analytic expressions2,6,24:

Ah,nm
i = 4�inXnm

* ��i,�i� · êi, �134�

Ae,nm
i = 4�in−1Znm

* ��i,�i� · êi, �135�

here �i and �i specify the direction of the incident wave,
i= ��ẑ ,kM��, with �i� �0,��, and �i= �x̂ ,kMt�, where kMt is
he projection of kM on the xOy plane while ẑ and x̂ are
he unit vectors of the z and x axes. It could be useful to
otice that in order to be able to analyze a circularly po-

arized incident plane wave, we allow ê to be a complex
i
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nit vector. Defining kM= �� /c���MM, we find that the
eld for r�R2 reads as

E = �
n,m

�Ah,nm
i jn�kMr�Xnm +

Ae,nm
i

kMr
� ��n�n + 1�jn�kMr�Ynm

+ �n��kMr�Znm� + �
n,m

�Bh,nm
�M� hn

+�kMr�Xnm +
Be,nm

�M�

kMr

� ��n�n + 1�hn
+�kMr�Ynm + �n��kMr�Znm� . �136�

. RESOLUTION OF THE BOUNDARY-
ALUE PROBLEM
he problem is now reduced to the numerical integration
n the �R1 ,R2� interval of the first-order differential set
tated by Eqs. (55), (56), and (114)–(116) in such a way
hat the numerical solution matches the boundary condi-
ions stated by Eqs. (133) and (136), concerning both the
nknown functions and their derivatives. When dealing
ith objects far different from a sphere, the distance R2
R1 can be large enough so that numerical overflows and

nstabilities may appear. It is then safer to make a parti-
ion of the modulated region and to use the S-matrix
ropagation algorithm.

. Partition of the Modulated Area and S-Matrix
ropagation Algorithm
e follow a process similar to that performed in grating

heory.20 As illustrated in Fig. 2 for an example with M
6, the modulated region with thickness R2−R1 is cut

nto M−1 slices with equal thicknesses at radial distances
j=R1+ ��R2−R1� / �M−2���j−1�, so that r1=R1 and rM−1
R2. With this partition, a region labeled by the subscript
lies between rj−1 and rj, region 1 lying between 0 and R1,
hile region M extends from rM−1��R2� toward infinity.
t each distance rj�j�1�, we introduce infinitely thin
lices of a medium with electric and magnetic permittiv-
ty �M and M. In each of these infinitely thin homoge-
eous regions, the general expansion in Eq. (131) fully de-
nes the field, provided that kj is taken equal to kM, that

ig. 2. Example of the partition of the modulated region in
hich M=6, and an illustration of the notation for the coeffi-

ients appearing in Eq. (131) used inside the various homoge-
eous regions.
=rj, and that we use primed coefficients (see Ref. 20 and
he following paragraph for a discussion of the primed co-
fficients). We thus consider a column matrix V�j� con-
tructed with the Z and X components of the impinging
nd outgoing waves, defined by

�V�j�� = �
]

Ae,p��j��n��kMrj�/�kMrj�

]

Ah,p��j�jn�kMrj�

]

Be,p��j��n��kMrj�/�kMrj�

]

Bh,p��j�hn
+�kMrj�

]

� , �137�

here p is related to �n ,m� through Eq. (23). One should
ote that the prime on the coefficients serves as a re-
inder that the field is developed inside one of the infini-

esimal homogeneous slices within the modulated region
the prime on the coefficients does not stand for the de-
ivative). Inside the circumscribed sphere, the field is de-
eloped in a truly homogeneous region and

Ae,p��1� = Ae,p
�1� ; Ah,p��1� = Ah,p

�1� ; Be,p��1� = Be,p
�1� ; Bh,p��1� = Bh,p

�1� ,

�138�

hile

Ae,p��M−1� = Ae,p
�M�; Ah,p��M−1� = Ah,p

�M�; Be,p��M−1� = Be,p
�M�;

�139�

Bh,p��M−1� = Bh,p
�M�.

Since we are working in linear optics, there exists a lin-
ar relation between the field at ordinate rj−1 and the field
t ordinate rj. We thus have

�V�j�� = T�j��V�j−1��, �140�

relation that defines the transmission matrix, T�j�, of the
egion �j� (not to be confused with the transfer matrix of
he object).

When the four-block S matrix of the stack including j
egions (not to be confused with the S matrix of the jth
egion nor with the S matrix of scattering theory!) is de-
ned by
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�
]

Be,p��j��n��kMrj�/�kMrj�

]

Bh,p��j�hn
+�kMrj�

]

—

]

Ae,p
�1��n��k1r1�/�k1r1�

]

Ah,p
�1� jn�k1r1�

]

� = �S11
�j�

—

S21
�j���

S12
�j�

—

S22
�j��

��
]

Be,q
�1��n��k1r1�/�k1r1�

]

Bh,q
�1� hn

+�k1r1�

]

—

]

Ae,q��j��n��kMrj�/�kMrj�

]

Ah,q��j�jn�kMrj�

]

� ,

�141�

he S-matrix propagation algorithm14,20 reads as

S12
�j� = �T21

�j� + T22
�j�S12

�j−1��Z�j−1�, �142�

S22
�j� = S22

�j−1�Z�j−1�, �143�

here

Z�j−1� = �T11
�j� + T12

�j�S12
�j−1��−1. �144�

The recursive evaluation for the S�j� matrices is
tarted20 by taking S12

�1�=0 and S22
�1�=1, which means that

hen there is no boundary, no reflection occurs, and the
ransmission is unity. Each recursive step requires the
orresponding T�j� matrix, which is determined through
he following shooting method.

. Shooting Method: Determination of the T„j… Matrices
onsidering the jth region, we have to integrate numeri-

ally, from rj−1 to rj, the differential set stated by Eqs.
55), (56), and (116) in order to construct the matrix T�j�.
owever, Eq. (55) deals with the column �F�, while T�j�

inks columns �V�j��. The first step is to express the link
etween these two columns via a matrix ��r�.
Indeed, at any value of rj�j�1�, from Eq. (131) we have

�EX�p = Ah,p��j�jn�kMrj� + Bh,p��j�hn
+�kMrj�, �145�
�EZ�p =
1

kMrj
�Ae,p��j��n��kMrj� + Be,p��j��n��kMrj��. �146�

quations (38), (54), and (131) yield

�H̃X�p =
1

i�M��00
�n�n + 1�

kMrj
2 �Ae,p��j�jn�kMrj� + Be,p��j�hn

+�kMrj��

−
1

kMrj
2 �Ae,p��j��n��kMrj� + Be,p��j��n��kMrj��

−
d

dr
�Ae,p��j�

�n��kMrj�

kMrj
+ Be,p��j�

�n��kMrj�

kMrj
 

=
1

i�M��00

1

kMrj
2�n�n + 1��Ae,p��j�jn�kMrj�

+ Be,p��j�hn
+�kMrj�� − �Ae,p��j��kMrj�2jn��kMrj�

+ Be,p��j��kMrj�2�hn
+���kMrj���� , �147�

here we have used the relation

�2
d

d�
�1

�
„�zn���…�� + „�zn���…� =

d

d�
„�2zn����…. �148�

sing now the fact that the spherical Bessel functions
atisfy Eq. (122) shows us that

n�n + 1�zn��� −
d

d�
„�2zn����… = �2zn���.

ne obtains finally the compact result:

�H̃X�p = − i� �M

M
�Ae,p��j�jn�kMrj� + Be,p��j�hn

+�kMrj��. �149�

oreover, with Eqs. (39), (54), and (131) one finds

�H̃Z�p = − i� �M

M

1

kMrj
�Ah,p��j��n��kMrj� + Bh,p��j��n��kMrj��.

�150�

s a result, we obtain

�F�j�� � �
�EX

�j��

�EZ
�j��

�H̃X
�j��

�H̃Z
�j��
� � ��j��

]

Ae,p��j��n��kMrj�/�kMrj�

]

Ah,p��j�jn�kMrj�

]

Be,p��j��n��kMrj�/�kMrj�

]

Bh,p��j�hn
+�kMrj�

]

� = ��j��V�j��,

�151�

hich entails
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��j� =�
0 1 0 1

1 0 1 0

− i� �M

M
/p�j� 0 − i� �M

M
/q�j� 0

0 − i� �M

M
p�j� 0 − i� �M

M
q�j�
� , �152�
a

m
=

w
a
�

w
a
t

F
i

9
Q
O
t
j
c
i
a
c
o
m
t

ith

pp,q
�j� � �p,q��n��z�

�n�z�
�

z=kMrj

, qp,q
�j� � �p,q� �n��z�

�n�z�
�

z=kMrj

.

�153�

he calculation of the pp,q
�j� and qp,q

�j� matrix elements is
implified by invoking the recurrence relations of the
icatti–Bessel functions as shown in Appendix E.
The matrix ��j−1� (at rj−1) links the column �V�j−1�� to

he field �F�, noted �F�j−1��, and, since the columns �V�j��
ave 4� �nmax+1�2 components, we perform successively
� �nmax+1�2 numerical integrations with linearly inde-
endent columns �V�j−1��i, i� �1,4�nmax+1�2�, by taking
heir elements as Vp,i

�j−1�=�pi. As a result, these vectors
orm a square matrix �V̂�j−1�� with

�V̂�j−1�� = 1. �154�

e thus take, for initiating the integration, columns
F�j−1��rj−1��i=��j−1��V�j−1��i, which form a square matrix
F̂�rj−1��=��j−1�1=��j−1�. Performing the numerical inte-
ration with a standard subroutine leads to numerical
alues at r=rj, which form a matrix named �F̂int�rj��. In-
erting the matrix relation of Eq. (151), �F�j��=��j��V�j��,
e then deduce

�V̂int
�j� � = ���j��rj��−1�F̂int�rj��, �155�

hich, thanks to Eq. (154), results in

�V̂int
�j� � = ���j��rj��−1�F̂int�rj���V̂�j−1��. �156�

omparison with Eq. (140) shows that

T�j� = ���j��rj��−1�F̂int�rj��. �157�

hus the shooting method provides the transmission ma-
rix at the end of the integration process.

. Determination of the Diffracted Field
nce the T�j� matrices for each region have been calcu-

ated, the S-matrix propagation algorithm given by Eqs.
142)–(144) is performed in order to find the S matrix of
he total modulated area S�M−1�. Using a block notation
hat includes the various Bessel and Ricatti functions, we
hus obtain
�
�Be�

�M−1��

�Bh�
�M−1��

�Ae
�1��

�Ah
�1��

� = S�M−1��
�Be

�1��

�Bh
�1��

�Ae�
�M−1��

�Ah�
�M−1��

� , �158�

nd, from Eq. (139), we obtain

�
�Be

�M��

�Bh
�M��

�Ae
�1��

�Ah
�1��

� = �S11

—

S21
��S12

—

S22
�

�M−1��
�Be

�1��

�Bh
�1��

�Ae
�M��

�Ah
�M��

� . �159�

Recalling that inside the sphere S1 the field must re-
ain bounded, especially at r=0, we must state Beq

�1�=0
Bhq

�1� ∀q. Thus Eq. (159) gives the diffracted field through

��Be
�M��

�Bh
�M�� = S12

�M−1���Ae
�M��

�Ah
�M�� , �160�

here Beq
�M�, Bhq

�M� will be called the scattering coefficients
nd the union of the two �nmax+1�2 column matrices
Be

�M��, �Bh
�M�� will henceforth simply be denoted �B�M��.

The Ae,p
�M�, Ae,p

�M� are provided by the incident field:

Ae,p
�M� = Ae,p

i , Ah,p
�M� = Ah,p

i , �161�

hich for an incident plane wave are given by Eqs. (134)
nd (135). It may be useful in some problems to determine
he field inside sphere S1. Equation (159) indeed leads to

��Ae
�1��

�Ah
�1�� = S22

�M−1���Ae
�M��

�Ah
�M�� . �162�

rom the coefficients Ae,p
�1� and Ah,p

�1� , the field everywhere
nside the modulated area could be computed if necessary.

. EXTRACTION OF PHYSICAL
UANTITIES
ne should remark that the S22

�M−1� and S12
�M−1� block ma-

rices obtained by our method are rather complicated ob-
ects owing to the fact they contain a great deal of physi-
al information in both near and far fields. This detailed
nformation is essential if we wish to use these matrices
s the basic building blocks for multiple-scattering
odes.2,25 For a given single-scattering situation, however,
ne is typically interested in studying more limited, but
ore physical accessible, quantities such as cross sec-

ions. This extraction of physical quantities has been ex-
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ensively studied elsewhere,24–27 and we content our-
elves here with a few illustrative formulas.

Physical quantities of interest can usually be obtained
irectly from analytical formulas of the coefficients of the
ncident and scattered fields. We recall that for a given in-
ident field, with expansion coefficients placed in a �Ai�
olumn vector and multiplied by suitable Bessel and Ri-
atti functions to obtain the vector �A�M��, Eq. (160) allows
s to obtain the scattering vector �B�M�� via

�B�M�� = S12
�M−1��A�M��, �163�

rom which a vector �Bc
�M�� containing only the scattering

oefficients can be derived. We shall define the Hermitian
onjugate or adjoint vector �Bc�†, which takes the form of
row matrix of the complex conjugates of the �Bc

�M�� ele-
ents:

�Bc
�M��† � �…,Beq

�M�,*,…�…,Bhq
�M�,*,…�. �164�

The T-matrix, denoted here by t, familiar to the 3D
cattering community is defined by the equation

�Bc
�M�� � t�Ai�, �165�

nd a comparison with Eqs. (141), (160), and (163) shows
hat the elements of t can be obtained from the elements
f S12

�M−1� through the multiplication by appropriate ratios
f Ricatti–Bessel functions.

With �Bc
�M��, one can readily express the total scatter-

ng, extinction, and absorption cross sections, respec-
ively, given by24,26

�s =
1

kM
2 �Bc�†�Bc�,

�e = Re� 1

kM
2 �Bc�†�Ai� ,

�a = �e − �s. �166�

For a number of applications, however, total cross sec-
ions provide too-crude information, and one is interested
n the angular distribution of the scattered radiation in
he far field. For such situations, it is frequently useful to
efine an amplitude scattering matrix,2,6 F [not to be con-
used with the F column used in propagation equations
53) and (55) nor with the S matrix of Eqs. (141) and
159)]. The scattering matrix is defined in the context of
n incident plane wave, which we express as Ei

E exp�ikM ·r��e��̂i+e��̂i�, where �̂i and �̂i are the spheri-
al unit vectors associated with the incident wave vector,
M. The scalar E has the dimensions of an electric field.
e are in the habit of normalizing the polarization factors

� and e� such that �e��2+ �e��2=1, in which case E is sim-
ly the electric field amplitude �Ei�=E. In the far-field
imit, the scattered field at r→	 will have the form

lim
r→	

Es�r� = E
exp�ikr�

ikr
�Es,��̂ + Es,��̂�, �167�

here �̂ and �̂ are the spherical unit vectors associated
ith the vector r. The scattered field factors E and E
s,� s,�
an be calculated in terms of the 2�2 scattering matrix
:

�Es,�

Es,�
� = E

exp�ikr�

ikr
�F�� F��

F�� F��
��e�

e�
� , �168�

here each of the F elements is a function of the incident
eld direction �i, �i and the observation angle of the scat-
ered field �, �. They can be calculated by defining the

cattering dyadic F̄
¯

:

F̄
¯ � 4��X*�r̂�,Z*�r̂��t�X�k̂i�

Z�k̂i�
 , �169�

here we call X and Z the phase-modified VSH24:

Xnm�r̂� � inXnm
* �r̂�, Znm�r̂� � in−1Znm

* �r̂�. �170�

he F elements of Eq. (168) can then be readily expressed
s

F�� � �̂ · F̄
¯

· �̂i, F�� � �̂ · F̄
¯

· �̂i, F�� � �̂ · F̄
¯

· �̂i,

F�� � �̂ · F̄
¯

· �̂i. �171�

The scattering matrix can subsequently be invoked to
erive other angularly dependent physical quantities
uch as the Stokes matrix.6,24,27 Here we simply remark
hat a quantity of frequent interest is the differential
ross section d� /d
, which in our notation can be com-
uted from6,24,27

d�

d

��,�;�i,�i� = lim

r→	

r2
�Es�r��2

E2 =
�Es,��2 + �Es,��2

k2

=
�F�� e� + F�� e��2 + �F�� e� + F��e��2

k2 .

�172�

0. CONCLUSION
his achieves the detailed presentation of the differential

heory of light diffraction by a 3D object. Although the
heory makes use of the basis of vector spherical harmon-
cs, which is much more complicated to manipulate than
he Fourier basis used in Cartesian coordinates, the final
esult looks quite simple in the sense that it is not more
omplicated than analyzing crossed gratings,20 for which
he propagation equations are quite similar.

The current theory can also be extended to treat the
iffraction from anisotropic materials. A forthcoming pa-
er will present numerical results concerning prolate and
blate spheroids and will include comparisons with re-
ults given by approximate methods in view of studying
heir domain of validity.
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PPENDIX A: CALCULATION OF �N,0

n the case of an axisymmetric object, in the modulated
egion the permittivity ��r ,�� is a piecewise constant
unction with step discontinuities. With c=cos �, ��r ,�� is
ransformed into �̃�r ,c�, and Eq. (34) reads as �n,0

2�!−1
1 �̃�r ,c�P̄n

0�c�dc, where P̄n
0 are the normalized Leg-

ndre polynomials:

P̄n
0�cos �� = �2n + 1

4�
�1/2

Pn
0�cos ��. �A1�

We can evaluate this integral by invoking the recur-
ence relation

�n + 1�Pn
0�c� =

d

dc
Pn+1

0 �c� − c
d

dc
Pn

0�c�. �A2�

sing the relation

d

dc
„cPn

0�c�… = c
d

dc
Pn

0�c� + Pn
0�c�, �A3�

e find

c
d

dc
Pn

0�c� =
d

dc
„cPn

0�c�… − Pn
0�c�, �A4�

nd the recurrence relation becomes

Pn
0�c� =

1

n

d

dc
Pn+1

0 �c� −
1

n

d

dc
„cPn

0�c�…. �A5�

We have then



c2

c1

Pn
0�c�dc =

1

n



c2

c1 d

dc
Pn+1

0 �c�dc −
1

n



c2

c1 d

dc
„cPn

0�c�…dc,

�A6�

nd the piecewise integral is then



c2

c1

Pn
0�c�dc =

1

n
�Pn+1

0 �c1� − Pn+1
0 �c2�� +

1

n
�c2Pn

0�c2�

− c1Pn
0�c1��. �A7�

An example of the determination of the �n,0 coefficients
s illustrated on a spheroid with half large and small axes
and b, respectively; Oz is the symmetry axis, and, in the

Oz plane, its Cartesian equation is

z2

a2 +
y2

b2 = 1. �A8�

ince z=r cos � and y=r sin �, this equation in spherical
oordinates reads as

r��� =
ab

� 2 2 2 2
. �A9�
a + �b − a �cos �
Inversing this relation leads to

��r� = arccos�a

r
� r2 − b2

a2 − b2� �A10�

r� �b ,a�; Eq. (A10) defines a value �1�r�, with �1�r�
�0,� /2�. Defining �2�r�=�−�1�r�, we have

��r,�� = �1 if � � �0,�1�r�� � ��2�r�,��,

��r,�� = �M if � � ��1�r�,�2�r��. �A11�

he limits c1 and c2 that appear in Eq. (A7) are cos �1�r�
nd cos �2�r�.

PPENDIX B: VANISHING OF SOME
LEMENTS OF THE Q� MATRIX
xpanding D and E on the basis of VSH, the equation
=�0�E gives

�
n�,m�

�DYn�m�Yn�m� + DXn�m�Xn�m� + DZn�m�Zn�m��

= �0��r,�,���
�,

�EY�Y� + EX�X� + EZ�Z��.

�B1�

erforming an ordinary scalar product of both sides of Eq.
B1) with Ynm

* , we obtain

Ynm
* · �

n�,m�

�DYn�m�Yn�m� + DXn�m�Xn�m� + DZn�m�Zn�m��

= �0��r,�,��Ynm
* · �

�,
�EY�Y� + EX�X� + EZ�Z��.

�B2�

sing the fact as one can see from Eqs. (7), (16), and (17)
hat Ynm

* ·Xn�m�=Ynm
* ·Zn�m�=Ynm

* ·X�=Ynm
* ·Z�=0, we

nd

�
n�,m�

DYnmYnm
* · Yn�m� = �0��r,�,���

�,
EY�Ynm

* · Y�.

�B3�

his equation establishes a linear relation between DYnm
nd EY� only; thus Q�YX and Q�YZ must be null.
Now, performing a scalar product on both sides of Eq.

B1) with Xnm
* , we find that

Xnm
* · �

n�,m�

�DYn�m�Yn�m� + DXn�m�Xn�m� + DZn�m�Zn�m��

= �0��r,�,��Xnm
* · �

�,
�EY�Y� + EX�X� + EZ�Z��.

�B4�

sing the fact that X* ·Y =X* ·Y =0, we obtain
nm n�m� nm �
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1

�0
�

n�,m�

�DXn�m�Xnm
* · Xn�m� + DZn�m�Xnm

* · Zn�m��

= ��r,�,��Xnm
* · �

�,
�EX�X� + EZ�Z��. �B5�

ntegrating over the solid angles 
, we obtain, taking into
ccount Eq. (11),

DXnm = �0�
�,



0

4�

d
��r,�,��Xnm
* · �EX�X� + EZ�Z��.

�B6�

ince DXnm does not depend on EY�, we deduce that
�XY=0.
A similar calculation starting from multiplying both

ides of Eq. (B1) by Znm
* leads to Q�ZY=0.

PPENDIX C: TWO RELATIONS BETWEEN
ECTOR SPHERICAL HARMONICS

n order to derive two relations between VSHs that are
ecessary to construct the theory, it is useful to invoke an-
ther set of VSHs, denoted Yn,n+1

m , Yn,n
m , and Yn,n−1

m , as in-
roduced by quantum-mechanic theoreticians who worked
n the angular-momentum coupling formalism.23 We first
ecall the definition of the Cartesian spherical unit
ectors23:

X1 = −
1

�2
�x̂ + iŷ�, X0 = ẑ, X−1 =

1

�2
�x̂ − iŷ�,

�C1�

here x̂, ŷ, ẑ are the unit vectors of the Cartesian coordi-
ate system. Making use of the Clebsch–Gordan
oefficients,23 we then define the new set of VSHs as

Yn,l
m = �

=−1

1

�l,m − ;1,�n,m�Yl,m−X, �C2�

ith l=n−1, n, n+1.
Using the conversion from spherical to Cartesian coor-

inates and the expressions of our Ynm, Xnm, Znm VSHs in
spherical coordinate system of Eqs. (7), (16), and (17),
e can painstakingly verify that our Ynm, Xnm, and Znm
SHs can be expressed in terms of the Yn,n+1

m , Yn,n+1
m ,

n,n+1
m spherical harmonics via the relations

Xnm =
Yn,n

m

i
, �C3�

Znm = � n + 1

2n + 1
�1/2

Yn,n−1
m + � n

2n + 1
�1/2

Yn,n+1
m , �C4�

Ynm = � n

2n + 1
�1/2

Yn,n−1
m − � n + 1

2n + 1
�1/2

Yn,n+1
m . �C5�

With the above equations in place, we first calculate the
ollowing two products.
. X�� ·Xnm
*

sing Eq. (C3), we find

X� · Xnm
* = Y�,�

 · �Yn,n
m �*. �C6�

utting Eq. (C2) in Eq. (C6) and calculating the Clebsch–
ordan coefficients lead us to

X� · Xnm
* = � 1

n�n + 1���� + 1�1/2

��1

2
��n + m + 1��n − m��� +  + 1��� − ��1/2

�Y�,+1Yn,m+1
* + mY�Ynm

*

+
1

2
��n + m��n − m + 1�

��� + ��� −  + 1��1/2Y�,−1Yn,m−1
*  . �C7�

. X�� ·Znm
*

n order to calculate this scalar product, we use the fact
hat X� ·Ynm

* =0. Thus Eq. (C5) gives

� n + 1

2n + 1
�1/2

X� · Yn,n+1
m,* = � n

2n + 1
�1/2

X� · Yn,n−1
m,* ,

�C8�

.e.,

X� · Yn,n+1
m,* = � n

n + 1
�1/2

X� · Yn,n−1
m,* . �C9�

sing Eq. (C4), we then obtain

X� · Znm
* = � n + 1

2n + 1
�1/2

X� · Yn,n−1
m,*

+ � n

2n + 1
�1/2

X� · Yn,n+1
m,*

= �2n + 1

n + 1
�1/2

X� · Yn,n−1
m,*

= − i�2n + 1

n + 1
�1/2

Y�,�
 · Yn,n−1

m,* . �C10�

nserting Eq. (C2) and the expression of the Clebsch–
ordan coefficients into Eq. (C10) leads to

X� · Znm
* = i� 1

n�n + 1���� + 1�

2n + 1

2n − 1
�1/2

��−
Y�,−1Yn−1,m−1

*

2

���n + m��n + m − 1��� + ��� −  + 1��1/2
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+ ��n2 − m2��1/2Y�,Yn−1,m
* +

Y�,+1Yn−1,m+1
*

2

���n − m��n − m − 1��� − ��� +  + 1��1/2 .

�C11�

PPENDIX D: USE OF THE GAUNT
OEFFICIENTS
heoreticians working on the coupling of angular momen-
um in quantum mechanics have introduced the concepts
f Gaunt coefficients and Wigner 3J coefficients.23,28 With
ur definitions, the normalized Gaunt coefficients, ā, arise
rom solid-angle integration of the product of three scalar

23
pherical harmonics : t

comparison with Eq. (77) shows that

i
t
s
s
l

b
t
�

ā����,��,��,�,�n,m�� � 

0

2� 

0

�

Y�����,��Y���,��

�Ynm��,��sin �d�d�. �D1�

These coefficients can be rapidly calculated through re-
ursion relations.29 They naturally appear if, starting
rom Eq. (71), we expand in it the ��r ,� ,�� function as
tated in Eq. (3):

�
n�m�

�DTYn�m�Yn�m� + DTXn�m�Xn�m� + DTZn�m�Zn�m��

= �0 �
��,�

�
�,

����Y����ETY�Y� + ETX�X� + ETZ�Z��.

�D2�

ultiplying both sides by Ynm
* �� ,�� and integrating over
he angular variables �, �, we obtain
1

�0
DTYnm = �

��,�
�
�,

����ETY�/
Y�����,��Y���,�� · Ynm

* ��,��sin �d�d�

= �
��,�

�
�,

����ETY��− 1�m
/

Y�����,��Y���,�� · Yn,−m��,��sin �d�d�

= �
��,�

�
�,

����ETY��− 1�m
/

Y�����,��Y���,��Yn,−m��,��sin �d�d�

= �
��,�

�
�,

����ETY��− 1�mā����,��,��,�,�n,− m��. �D3�
A useful property of Gaunt coefficients defined in Eq.
D1) is that they are null except if �=m− and ��� ��n
�� ,n+��. Thus the summation over � is eliminated, and
q. (D3) reduces to

DTYnm = �0 �
��=�n−��

n+�

�
�=0

N

�
=−�

�

�− 1�mā����,m − �,

��,�,�n,− m�����,m−ETY�. �D4�
�YYnm,� = �− 1�m �
��=�n−��

n+�

ā����,m − �,��,�,�n,

− m�����,m−�r�, �D5�

n which the calculation of ���,m−�r� involves computing
he integrals stated in Eq. (6), which implies integrating
ingle spherical harmonics multiplied by piecewise con-
tant functions, a task that can readily be performed ana-
ytically as described in Appendix A.

We now can derive similar expressions for the other
locks. Multiplying both sides of Eq. (71) by Xnm

* �� ,��, in-
egrating over the angular variables �, �, and expanding

as stated by Eq. (3), we obtain
DTXnm = �0 �
��,�

�
�,

����ETX�
 Y�����,��X���,�� · Xnm
* ��,��sin �d�d�

+ �
��,�

�
�,

����ETZ�
 Y�����,��Z���,�� · Xnm
* ��,��sin �d�d�. �D6�

rom Eq. (C7) in Appendix C we thus obtain
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�XXnm,� = � 1

n�n + 1���� + 1�1/2

�− 1�−m �
��=�n−��

n+�

���,m− � �−
1

2
��n + m + 1��n − m��� +  + 1��� − ��1/2ā����,m − �,��, + 1�,�n,

− m − 1�� + ā����,m − �,��,�,�n,− m�� −
1

2
��n + m��n − m + 1��� + ��� −  + 1��1/2ā����,m − �,��, − 1�,�n,− m

+ 1�� . �D7�

rom Eq. (C11) in Appendix C, we obtain

�XZnm,� =
i

2
� 1

n�n + 1���� + 1�

2n + 1

2n − 1
�1/2

�− 1�m �
��=�n−1−��

n+�−1

���,m− � ˆ− ��n + m��n + m − 1��� + ��� −  + 1��1/2ā����,m

− �,��,�,�n − 1,− m + 1�� + 2��n2 − m2��1/2ā����,m − �,��,�,�n − 1,− m�� + ��n − m��n − m − 1��� − ��� + 

+ 1��1/2ā����,m − �,��, + 1�,�n − 1,− m − 1��‰ . �D8�
w
r

s
o
m
v

R

1

An alternative exists to determine the Gaunt coeffi-
ients. Introducing the Wigner 3J coefficients

� n1 n2 n3

m1 m2 m3
� ,

hich are given by standard subroutines, we can calcu-
ate the normalized Gaunt coefficients from

ā����,��,��,�,�n,m�� = � �2�� + 1��2� + 1��2n + 1�

4�
1/2

���� � n

0 0 0
���� � n

�  m
� .

PPENDIX E: RICATTI–BESSEL
UNCTIONS
e recall the definition of the Ricatti–Bessel functions

n�z� and �n�z�:

�n�z� � zjn�z�, �n�z� � zhn
+�z�. �E1�

heir derivatives �n��z� and �n��z� can be readily calculated
sing the Bessel function recursion relations:

�n��z� =
�n + 1�

z
�n�z� − �n+1�z�,

�n��z� =
�n + 1�

z
�n�z� − �n+1�z�. �E2�

We note, for example, the elements of the p�j� and q�j�

atrices of Eq. (152) are simply the logarithmic deriva-
ives of the Ricatti–Bessel functions:

pp,q
�j� � �pq�n�kMrj� � ��pq

�n��z�

�n�z�
�

z=kMrj

,

qp,q
�j� � �pq�n�kMrj� � ��pq

�n��z�

�n�z�
�

z=kMrj

, �E3�

hich can be rapidly and reliably calculated1 from recur-
ence relations derived from Eqs. (E2),

�n−1�z� =
n

z
−

1

�n�z� + n/z
,

or

�n�z� =
1

n/z − �n−1�z�
−

n

z
, �E4�

o that Ricatti–Bessel functions simplify the initialization
f the shooting method. Of course, the partition of the
odulated area should be done in such a way that no

alue of rj coincides with a zero of a Ricatti �n�z� function.
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