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The differential theory of diffraction of light by an arbitrary object described in spherical coordinates is devel-
oped. Expanding the fields on the basis of vector spherical harmonics, we reduce the Maxwell equations to an
infinite first-order differential set. In view of the truncation required for numerical integration, correct factor-
ization rules are derived to express the components of D in terms of the components of E, a process that ex-
tends the fast Fourier factorization to the basis of vector spherical harmonics. Numerical overflows and insta-
bilities are avoided through the use of the S-matrix propagation algorithm for carrying out the numerical
integration. The method can analyze any shape and/or material, dielectric or conducting. It is particularly
simple when applied to rotationally symmetric objects. © 2005 Optical Society of America
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1. INTRODUCTION

Light scattering from arbitrarily shaped 3D objects com-
parable in size to the wavelength of the scattering radia-
tion is an important problem with applications covering a
vast range of fields of science and technology, including
astrophysics, atmospheric physics, radiative transfer in
optically thick media such as paints and papers, and re-
mote detection. By “comparable in size with the wave-
length,” we are most often speaking of particles having a
characteristic size D within an order of magnitude of the
wavelength, A/10=<D =<10\. In this size regime, and for
scatterers of sufficiently high dielectric contrast, popular
approximations such as the Rayleigh—Gansl’2 or geomet-
ric optics approximations'? are invalid; one must resort
to an essentially full solution of the Maxwell equations.

The first full solution to the electromagnetic scattering
by a fully 3D object is that of Lorenz and Mie for the scat-
tering by a single homogeneous isotropic spherical object
embedded in a homogeneous isotropic external
medium.?® This renowned solution takes the form of an
infinite (but rapidly converging) series of coefficients in-
volving spherical Bessel functions. Being the only analyti-
cally manageable exact solution to the full electromag-
netic scattering problem, the Mie solution has played a
preponderate role in light-scattering calculations for
nearly a century.

In view of the size range in which the Mie theory is
most useful, it comes as no surprise that Mie theory is
most frequently applied to media containing a large num-
ber of scattering inclusions. Since the Mie theory is a so-
lution only to an isolated particle, it has frequently been
coupled with the independent scattering approximation
and applied to tenuous media systems containing only a
week volume density of scatterers.®

The increasing interest in recent decades of light scat-
tering by aggregates and light propagation in dense me-
dia such as composites, containing a high volume density
of inclusions, has fueled considerable progress in the
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multiple-scattering problem of such dense media.” In
view of the already considerable difficulty of the multiple-
scattering equations, a majority of these studies have con-
tinued to use spheres as the fundamental scattering ele-
ment. In reality, of course, it is extremely rare for
scattering inclusions to be so obliging as to separate
themselves into distinct compact spheres, even though an
impressive number of mechanical and chemical processes
in a number of industries have been developed with ex-
actly this goal in mind (grinding, surfactants,...). Further-
more, it has long been clear that nonspherical inclusions
can yield quantitatively different results on the macro-
scopic scale than spherical inclusions.

Many multiple-scattering codes and theories have em-
ployed with considerable success the notion of a transfer
matrix (frequently called the 7' matrix in the multiple-
scattering community; see the note'®) that consists of a
linear transformation between the excitation field inci-
dent on a scatterer and the scattered field emanating
from it.>"2M The transfer matrix is more than a single
solution to the scattering problem corresponding to a
given incident field; rather it can be viewed as a complete
solution to the scattering problem for any possible inci-
dent field. In the multiple-scattering theories employing
transfer matrices, the Mie solution to the sphere takes
the form of a diagonal transfer matrix in a basis of the
vector spherical wave functions. It has long been recog-
nized by those working in this field that nonspherical
scatterers can rather readily be integrated into existing
multiple-scattering theories by simply replacing the diag-
onal Mie transfer matrices of spheres by the full transfer
matrices of nonspherical objects.

There exist a number of techniques for treating scatter-
ing by nonspherical objects, but not all of these can
readily provide the complete solution required to derive a
transfer matrix, and the reliability and applicability of
these various techniques is a recurring stumbling bock.
One of the most popular techniques in the literature is
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the Waterman (or extended boundary condition) method,
whose popularity is in large part due to the fact that one
can readily obtain from it a full transfer matrix for a large
variety of nonspherical shapes.? It has been shown, how-
ever, that the Waterman technique yields the same algo-
rithm as one obtains from a Rayleigh hypothesis.11 Both
the Rayleigh hypothesis and the Waterman technique
have been demonstrated to have considerable limitations
in the theories of diffraction gratings,13 and it is well es-
tablished that both the Waterman technique and the Ray-
leigh hypothesis can break down for scatterers with high
aspect ratios. !

The above remarks have in part provided our motiva-
tion to propose a new differential theory for deriving the
transfer matrix of nonspherical scatterers. Although dif-
ferential theories have been studied previously for 3D
scatterers, we have developed our theory from first prin-
ciples and made full use of recent breakthroughs in the
differential theory of 1D, 2D, and 3D diffraction gratings
that have greatly improved the reliability and conver-
gence of differential theories. The new methods in ques-
tion have been presented and elaborated in a number of
articles'* ™ and a recent book,20 but these works are not
a prerequisite for understanding the present work, which
has been conceived to be self-contained. The differential
technique in diffraction gratings makes extensive use of
Fourier series, and their extension to the 3D problem
leads us to make considerable use of vector spherical har-
monics (VSHs) in the derivation of our formulas. The
VSHs, however, do not appear in the final computational
method, and the finer details of the VSH manipulations
are provided in Appendix C.

The work is organized as follows. We present the prob-
lem in Section 2. We introduce the VSHs in Section 3 and
introduce their applications to field expansions in Section
4. The propagation equations are derived in Section 5,
and the fast numerical factorization (FNF) required for
convergence of the series is thoroughly discussed in Sec-
tion 6. We study field developments outside the modu-
lated region in Section 7 and present the prescription for
resolving the boundary-value problem in Section 8. We
conclude this work by briefly illustrating the necessary
formula for extracting physically relevant quantities such
as cross sections and scattering matrices.

2. PRESENTATION OF THE PROBLEM

Figure 1 shows a finite object, made of an isotropic mate-
rial, with arbitrary shape limited by a surface (S). This
surface is described in spherical coordinates (r, 6, ¢), with
0 [0, ] defined in the figure by the equation

fir,6,¢4)=0 (1)
or
r=g(6,¢). 2)

At a given point M on the surface, the external normal
unit vector is N, and the unit vectors of spherical coordi-

nates are denoted T, @?, . The surface (S) divides the
space into two regions. The first region, contained within
(8), is filled with a linear, homogeneous, and isotropic me-
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Fig. 1. Description of the diffracting object and notations.

dium, dielectric or conducting, described by complex per-
mittivity ;. The second region lies outside (S) and has
real permittivity e,,. In view of developing the differential
theory, we divide space into three regions by introducing
the inscribed sphere (S;) with radius R; and the circum-
scribed sphere (S;) with radius Rg; the region between
(S1) and (Ssy) is called the “modulated region,” a denota-
tion that recalls that for any constant value r( of r be-
tween R; and R,, the permittivity, ¢, is a function of 6 and
¢ and, furthermore, is obviously periodic with respect to ¢
with a period of 277 and piecewise constant with respect to
6 and ¢.

The object is subject to an incident harmonic electro-
magnetic field described by its electric field, E;, with an
exp(-iwt) time dependence. As is well known in quantum
mechanics and elec‘cromagnetism,z1_23 any function of an-
gular variables 6 and ¢ can be developed on the basis of
scalar spherical harmonics Y,,,(6, ¢). The dimensionless
relative dielectric constant, (r, 0, ¢), defined such that
€e(r,0,¢)=¢€(r,0,¢) can therefore be expressed as

e, 0,0)= 2 2 un(1)Yn(6,9), (3)

n=0 m=-n

which implies that ¢,,,(r) can be obtained from the Her-
mitian product:

4
Snm(r)=<Ynm|8>Ef Y,.(6,9)2(r,0,4)dQ.  (4)
0
The reader should note that in Eq. (4) and throughout

this work we have adopted the convention for scalar Her-
mitian products such that

&lh = fg*(x)f(x)dx. (5)
In Eq. (4), the asterisk denotes the complex conjugate,

and () is the solid angle. Equation (4) can thus be rewrit-
ten as

2 T
Epm(r) = f f e(r,0,0)Y,,,(0,d)sin 6dods.  (6)
0 0

A development of the vector electromagnetic field is a
more complicated affair. One might first be tempted to ex-
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pand each spherical coordinate component of the total
field (E,H) on the basis of the scalar spherical harmonics,
similar to Eq. (3). But when such expansions are put into
the Maxwell equations, derivatives of the Y,,, functions
arise that are difficult to calculate and manipulate. Con-
sequently, we choose another way to expand vector fields;
i.e., we represent them on the basis of VSHs.

3. VECTOR SPHERICAL HARMONICS

VSHs are described in several reference books,
though their definitions and notations vary with the au-
thors. They arise in vector solutions of the wave equation
(Helmholtz equation) and when appropriately defined can
form an orthogonal complete basis to represent the elec-
tromagnetic field. We choose to define and denote them by
the following equations:

621-23 1

Y, (0, ) =1Y,,(0,4), (7
Xm0, ¢) =Z,,,,(0,) X T, (8)
where
rVY,n(0,¢)
an(a’ ¢) =T
yn(n +1)
ifn#0, Zy(6,0)=0. (9)

Equation (8) implies that
an(ﬁ, ¢) =1 X Xnm(ea ¢) (10)

All the VSHs are mutually orthonormal in the sense that
if W::n (=1, 2, 3) denotes the vector harmonics Y,,,,,, X,,,,.,
or Z,,,, we have

(l) (1)>_f W(l)“ W(’)dﬂ 5 8,0

mu»s

(11)

where §; is the Kronecker symbol and the Hermitian
product of Eq. (4) has been extended to Vector fields. We
also remark from Egs. (7) (9) that if the W (0, $) were
real the trihedral (Y,,,,, X, ,Zy,) would be direct.

Let us recall that the scalar spherical harmonics
Y,.m(6,¢) are expressed in terms of associated Legendre
functions P’ (cos 6) as??

2n+1(n-m)!

1/2
Yom(0,¢) = { } P™(cos O)exp(im¢)

47 (n+m)!

(12)

or by including the square root in the definitions of nor-
malized associated Legendre functions P™:

Y.m(6,0) = I_’Z‘(cos fexp(imd). (13)
Introducing functions )’ and s} defined by
1

m _
————P(cos 0), (14)
yn(n+1)sin ¢

u,'(cos 6) =
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1

:-P (cos 0), (15)

snt(cos 0) =
Jn(n+1)dé

we can express the vector harmonics X,,,,, and Z,,,,, as

X, (0, ) =iu)(cos 6)exp(imq§):9— snt(cos Oexp(ime),
(16)

Z,,.(6,$) =57 (cos B)exp(im )0+ iz (cos O)exp(im ).
(17)

Equations (16) and (17), combined with Eq. (7), clearly
show that for a given n, m the (Ynm,Xnm,Z m) are mutu-
ally perpendicular in the sense that W W V) =0 for i
#J-

Other interesting relations are the curl of products of a
radially dependent function A(r) by a Wi;)n These rela-
tions will prove to be useful in the derivation of the propa-
gation equations and are given by

h
curl[h(r)Ynm] = [n(n + 1)]1/2ﬁxnm5 (18)
r

h(r) h(r)
curllh(r)X,, 1= —I[nmn+ D)IY2Y,,, + | — + ' () |Z,,,,,
r r

(19)

curllh(NZ,,,]=- | — +h' (") |X,,. (20)
r

4. FIELD EXPANSIONS

An arbitrary vector field U(r, 8, ¢) can be expressed in a
development of the VSHs as stated by

U 60,0)= > 2 [Avum )Y (6, ) + Axyn (N Xy (6, )

n=0 m=—

+Aan(7‘)an(0, ¢):| (21)

Such a development will be subsequently applied to the
total electric field E, the total magnetic field H, the dis-
placement D, the incident electric field E;, and the unit
normal vector N. However, in view of a numerical treat-
ment, the summation in Eq. (21) will have to be limited to
a value of n equal to np,,. Also, the double subscript
(n,m) will be replaced by a single subscript p, varying
from 1 to N. It is then easy to establish that Eq. (21) takes
the form

N

U(r,0,¢) = 2, [Ay, (MY, (6,8) + Ax, (X, (6, ¢)

p=1

+Az,(r)Z,(0,4)], (22)

where N=(n,,,,+1)? and
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p=nn+1)+m+1. (23)

On the other hand, if p is given, n and m can be derived
from it through the equations

n=Int\p-1, m=p-1-n(n+1), (24)

where the function Int(x) calculates the integer part of x.

Throughout the rest of the work, the coefficients of the
various field vectors will frequently be put in columns. As
a result of Eq. (22), the total field E, for example, will be
represented by a column [E] composed of three blocks
containing the functions Ey,, Ex,, and Egz, Since p
e[1, (nmax+ 1)2], the vector E will have 3 X (72, + 1)% com-
ponents E;:E—[E], i.e.,

-1

E Y,p

E, Ex, >3 X (Npax + 1)2. (25)

Ey

The unit vector N can be represented in such a column

once the surface S is specified; i.e., the function f(r, 6, ¢) is
known. Since N is given by

. gradf
N, )= ——1| , (26)
lgradfl | .,
we obtain in spherical coordinates
of 1df
ar N rado
"= Jgradfl| .y 7 lgradfl|.,
1
rsin 0d¢p @7
Ny= ———1| . 27
lgradfl | .,

With N known, its components on the VSHs are derived
from the scalar products

4
NYnm = <Ynm|N> = <Ynmf|fNr> = f Y;m(e, ¢)Nr(0’ ¢)dQ
0

27
= f f N,P™(cos f)exp(—im¢)sin 6d6d¢g,  (28)
o Jo
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27 T
Nxum = f j [iN ity (cos 6) — N 45, (cos 6)]
0o Jo

Xexp(—imd¢)sin 6d6d ¢, (29)

27
Nzpm = f f [N g5, (cos 6) +iN i, (cos 6)]
o Jo
Xexp(—imde)sin 0d 6d ¢. (30)

From Egs. (28)—(30), the column associated with vector N,
containing the three blocks Ny,, Nx,, and Nz, p
e[1,(mpax+1)?], is fully determined. The case of a dif-
fracted object with a revolution symmetry is especially
simple. Then not only is N, null [which eliminates a term
in Egs. (29) and (30)] but more interesting is the fact that
N, and N, are then ¢ independent. Then all terms with
subscript m different from zero are null, and Egs.
(28)—(30) reduce to

Ny,o= 27-rf N.(6)P(cos 6)sin 6d6, (31)
0

NXrLO = 0’ (32)

Ny, = 277J N ,(60)5°(cos 6)sin 6d6, (33)
0

where we have used the fact that ﬁg(cos 0)=0.

Of course, replacing double integrals by single ones,
combined with the reduction of their number from 3
X (Npax+1)% t0 2 X (n .+ 1) leads to great savings in com-
putation time. The same remark also applies to &(r, 6, ¢),
whose components on the Y)'(6,¢) basis reduce to g,,
given by

€n.0= 277J &(r, O)P?(cos O)sin 6d6. (34)
0

Details concerning an analytical calculation of &, are
given in Appendix A.

5. PROPAGATION EQUATIONS

The main advantage of the field representation over the
basis of VSHs lies in the simplicity of the propagation
equations resulting from Maxwell equations. Writing
curl E=iwppoH, with p as the dimensionless relative
magnetic permeability, and representing E and H by ex-
pansions of the form given by Eq. (22), we find

N
> {eurl[Ey,("Y,] + curl[Ex,(X,] + curl[E,,(r)Z,]}
p=1
N
= ioppo, (Hy,Y, + Hx,X, + Hy,Z,). (35)
p=1
Using Eqs. (18)—(20) and equating the p components on
both sides in Eq. (35), we also have
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Ey (r) Ex,(r) Ex,(r)
4+ DX+ nn + 1) — Y, + { i
r r r
dEXp(r) EZp(r) dEZp(r)
+ Z,- + X,
dr r dr
= i(x),LL,LL()(HYpr + HXpo + HZpr) . (36)

Introducing a,=\n(n+1), where n=Int\p-1, and pro-
jecting both members of Eq. (36) on vectors Y, X,,, and
Z,, we obtain

Ex,
ap_p = inI‘LOHYp’ (37)
r

Ey, Bz dEyg

o = , 38
P r r dr wlu'lu'OHXp ( )

Ey, dEx,
— +
r dr

= loupueHyz,. (39)
Similarly, the Maxwell equation, curl H=-iwD leads to

a,— = —iwDy,, (40)

Hy, Hz, dHy,
— - ———-—— = —iwDy,, 41
@ r r dr HOPXp (41)

Hy, dH
R Dy, (42)
r dr

Since we work in linear optics (D=¢ycE), and since E
and D are represented on the same basis, there exists a
square matrix @, that links the column [E] to the column
[D] such that

[D] = &Q.[E]. (43)

This @, matrix is made of nine square blocks, each block
having dimension (72, + 1)2, which depend on the compo-
nents of ¢ defined in Eq. (6), and will be calculated in Sub-
section 6.C. We represent @, by the following block struc-
ture:

QEYY QEYX QEYZ
Q.=| Qexy Qexx Qoxz |. (44)
QaZY QsZX QsZZ

From Egs. (43) and (44), we thus obtain
;O[Dy] =QuyvlEy] + QuyxlEx] + QuyzEzl,  (45)

which gives
[Ey]= (Qayy)‘l( ElO[Dy] - Qeyx[Ex] - stz[Ez]> . (46)

Moreover,
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1
E_[DX] = QSXY[EY] + QSXX[EX] + QSXZ[EZ]7 (47)
0

1
f_o[DZ] =Q.zylEv] + Q.zxEx] + Q.77 E]. (48)

We first insert Eq. (40) into Eq. (46). We then insert Eq.
(46) into Egs. (47) and (48) in order to express [Dx] and
[Dz] in terms of [Ex], [E;], and [Hx], expressions that are
then inserted into Eqgs. (41) and (42). In Eq. (41) [Hy,] is
eliminated thanks to Eq. (37). In Eq. (38) [Ey] is elimi-
nated thanks to Eqs. (40) and (46). Introducing a diagonal
matrix a with elements a,d, 4, we finally reduce the set of
six equations, Eqgs. (37)—(42), to four equations with un-
knowns Ex,, Ez,, Hx,, and Hy, only:

EXp dEXp
— +
r dr

=ioppetz, (49)

a, ia
—| (Quyy) ™" [Hx] - Q.yx[Ex] — Qv E/]
r weyr »

EZ dEZ
-—- . = iw:“’lu“OHXp9 (50)
r dr
Hy, dHy
— g = i0a(QulExD), - ioe(QuzAEzD),
) » a
—iwe)| Q.zyQoyy E[HX] - Q.vx[Ex]
0
- QSYZ[EZ])) ) (51)
P
o’ Ey, H, dH
i—— 2+ 2 e — 2 ey QuxdlEx)),
oupy T r dr
+iwe) (@ xz[Ez]),

+ iwfo(QgXYQ;%Y<%[HX]
0

- QsYX[EX] - QSYZ[EZ])) .

P
(52)

It is now useful to construct a column [F] containing
the unknowns of the problem, made with four blocks, each
block having (71,,.,+1)% components:

[Ex)
[E7]
[Hx] |
[H]

where the tilde means that the magnetic field is multi-
plied by the vacuum impedance Z, so that it has the same
dimension as an electric field:

[F]= (53)
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- ot 1
A=ZH=+/—H=—H. (54)

€ C€y

The propagation equations, Eqgs. (49)—(52), can then be
written in matrix form:

d[F]
. =M(r)[F], (65)
r

where M(r) is a square matrix made with 16 square
blocks, each of them having dimension (71,,,,+1)2, which
can be explicitly written as

1 w
My =- ;, Mqy=M;3=0, M14=i,U«;1,

a 1 a
My = - =QyyQ.yx, Mog=——~-—
r ror

-1
QBYYQSYZ?

c ro

R ¢ \? X
M23=L_ - (IQ;YYa—/,Ll 5 M24=0,
L@ -1
Ms, = l;(QaZYQsYYQaYX -Q.zx),
. w -1
M3y = l;(QsZYQaYYQsYZ -Q.z2),

1
Ms3= ;(QSZYQ;%’Ya -1), Mss=0,

[ ac

1 2
My = i_(QsXX_ QuxyQyyQevx — ;(_) ),

c wr

w

My =i—(Q.xz - QuxyQ:3vQ:v2),

4

a 1
M43=_Q£XYQ;1]}Y;’ M44=_;’ (56)

where 1 is the unit matrix.

Equations (55) and (56) are the propagation equations.
They will have to be numerically integrated across the
modulated region, and the numerical solution will have to
be matched with analytical expressions of the field in
each homogeneous region (r<R; and r>Ry). It is known
that such a process will determine the field everywhere.
However, two difficulties are common in the process.20
The first difficulty is the exponential growth of the nu-
merical solutions during the integration process. This will
have to be avoided by using the S-matrix propagation
algorithm.'?° The second difficulty comes with the slow
convergence of the field expansions, which requires inte-
grating overly large sets of equations, which aggravates
the exponential growth. In the case of grating theory, the
difficulty has been resolved'®'%*® by developing a tech-
nique called fast Fourier factorization (FFF), which is
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based on factorization rules developed by Li.'" Such a
technique has been recently extended to basis functions
different from the Fourier basis'® and is then called fast
numerical factorization (FNF). It has been applied with
success to the Bessel-Fourier basis used to analyze ob-
jects in cylindrical coordinates.'? Its extension to spheri-
cal harmonics is not trivial and is described in Section 6.

6. FAST NUMERICAL FACTORIZATION
APPLIED TO A SPHERICAL HARMONIC
BASIS

The difficulty of slow convergence of field expansion is
linked to the necessity of truncating the set of propaga-
tion equations. From a mathematical point of view, field
expansions are infinite series, as stated by Eq. (21). Thus
the set of Eqgs. (37)—(42) should be infinite, as should be
the set in Eq. (55). The truncation of Eq. (21) performed in
Eq. (22) limits the range of p in Egs. (37)—(42) to (nmaxs1)?,
and the question that arises is how can Dy, Dx,,, and Dy,
in Egs. (40)—(42) be correctly expressed in terms of Ey,,
E Xp> and E Zp-

It has been known for a long time that reconstructing a
discontinuous function from its Fourier series leads to the
Gibbs phenomenon, which means that, at the discontinu-
ity points, the sum of the truncated series does not con-
verge to the value of the function. Such a phenomenon
does not exist for continuous functions, which results in
the fact that continuous functions are better recon-
structed by summing their truncated Fourier series than
discontinuous ones. This remark was used by Li to pro-
pose factorization rules'” that allowed a breakthrough in
grating theory.'®1%?° Extending the previous hypothesis
to arbitrary basis functions, namely, that continuous
functions are better reconstructed than discontinuous
functions by summing their truncated expansion on an
arbitrary continuous function basis, we were able to es-
tablish factorization rules valid for an arbitrary basis. We
briefly recall the basic ideas here.

A. Factorization Rules

Let us consider three functions f, g, and & of a common
variable x with h=gf and assume that the truncation ex-
pansion of f over a continuous function basis ¢,, is known:
fx) =EI,X=1fm<pm(x). The function g(x) may be known explic-
itly or from an expansion over a different or identical
function basis. The question is how to determine with the
best accuracy the coefficients £, of the development of A
=gf over the ¢, basis: h(x) =EZ,X=1hm<pm(x). The answer de-
pends on whether f and g are discontinuous at a same
value of x or not.

1. Direct Rule
If f is a continuous function while g is discontinuous,
which implies that % is discontinuous, we have

hm=<¢m|h>=<<pm|gf>=<<Pm|g2fp<pp>- (57)
P

In Eq. (57), the summation is a rapidly converging series,
since f is continuous. From the linearity of the scalar
product we find



Stout et al.

o = 2 {Pmlgfo®p) = 2 (Emlg@p)f- (58)
p p

Defining
Emp = enlgey), (59)

we obtain the direct rule
B = 2 &l (60)
p

Since the sum in Eq. (57) is rapidly converging, so is
the sum in Eq. (60), which means that the 4,, components
are well calculated with p limited to small values. It is
worth noticing that the components g, of the function g
are not involved in the direct rule. It is the g,,, coeffi-
cients given by Eq. (59) that are required.

2. Inverse rule

Let us now assume that f and g are functions that are dis-
continuous at the same point, with a continuous product
h. In order to find the same situation as in Subsection
6.A.1, we then consider f=(1/g)h, where h is continuous
and 1/g and f are discontinuous. We thus find

1 1
fm = <‘Pm|f> = <§Dm|_h> = <‘Pm|_2 hp¢’p>
g 8 p

1
=2 eml=0, )1y, (61)
B gP P

which will be a rapidly converging summation. Defining
1
ginv,mp = @m‘;‘xpp ) (62)

fm = Eginv,mphp- (63)
D

we obtain

Again, the fast convergence of the summation in Eq. (61)
due to the continuity of & ensures that the coefficients f,,
are well calculated. Inverting the relation in Eq. (63), we
have

hm = E [(ginv)_l]mpfp, (64)
p

which is the inverse rule.

B. Factorization Rules for Spherical Harmonic
Expansions

In electromagnetism, the tangential component Dy of the
displacement is the product of a discontinuous function &
by a continuous vector Ep. The calculation of its compo-
nent on any basis will thus require using the direct rule.
On the other hand, the components of DN=N(N-D) will
have to be obtained using the inverse rule.

1. Direct Rule
Representing both D and Ep by truncated expansions
(21), we have
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ET = 2 (ETYannm + ETXnanm + ETanan)a (65)

n,m

DT = 2 (DTYerYnm + DTXnanm + DTanan) . (66)

n,m
The Dy and Eq vectors are linked through the relation
Dy = geEr, (67)

and we want to express this in terms of a matrix relation
among their components on the spherical harmonic basis:

[Dr]= EO{S(T)}[ET], (68)
where

{evy} {evxt {evz}
{eM}=| {exy} {exx} {exz (69)
{ezy} {ezxt {ezz}
and each square block has dimension (7,.+1)2. Our aim
in what follows is to explicitly determine these blocks.
As established in Appendix B, since a given Y,,,, is per-

pendicular to all X,, and Z,, vectors, we have {eyx}
={exy}={eyz}={ezy}=0, and &™ takes the form

{evy} 0 0

™= 0 {exx} {exz}]. (70)
0 {ezx} {ezz

Putting Eqgs. (65) and (66) in Eq. (67) above, we have

2 (DTYn’m’Yn’m’ +DTXn’m’XrL’m’ +DTZ7L’m’Zn’m’)

n',m’

= 508(7', 0’ ¢)2 (ETYV;LYV/L + ETXV/LXVp, + ETZV/J.ZV,U.) .

vy

(71)

If we perform an ordinary scalar product of both sides of
Eq. (71) by Y. . we obtain

nm’

£
Ynm' E (DTYn’m’ n’m’+DTXn’m’Xn’m’+DTZn’m’Zn’m’)
.

n',m

= €e(r,0,9)Y,,, - > (Eryy Yo, + Erx, X, + Evz,,2,,)

v,

(72)
and, using the fact that

Yo Xom =Y Zr =Y, X, =Y, - Z,,=0,

m Vi

we find

E DTYn’m’Y:m . Yn’m’ = 508(7‘, 67 d’)z ETYV/.LY:;m . YV,LL'

v,u

(73)

Integrating both sides of this equation over the solid
angles,



2392 J. Opt. Soc. Am. A/Vol. 22, No. 11/November 2005

47
2 DTYn’m’f dQY;kLm'Yn’m’
n',m' 0

4

= 602 ETYV/-LJ dQs(r, 07 ¢)Y:Lm : YV/.U (74)

v, 0

and using the functional orthonormality of the VSHs, we
then obtain

4
DTYnm = 602 ETYV,uf dQS(I", 0, ¢)Y;m ' YV}L' (75)
v, 0

Defining

4
EYYnm,vu = f dQe(r, 0, ¢)Y:Lm : YV,U. = <Ynm‘8YvM>,
0

(76)

we find the linear relation between Dty,,, and Ery,,
reads as

Dryym = 602 8YYnm,quTYV,u- (77)
v

Of course, the double subscripts (n,m) and (v, ) can, re-
spectively, be replaced by single subscripts, p and g, using
Eq. (23). Then Eq. (77) takes a compact form:

DTYP = EOE SYYp,qETYq’ (78)
q

which defines the elements of the block {eyy} and where
we recall that {eyy} is a square block with dimensions
(nmax+ 1)2-

We derive the expressions of the other blocks in a simi-
lar way. Multiplying both sides of Eq. (71) now by X:m, we
obtain

£
Xnm : E (DTYn’m’Yn’m’ +DTXn’m’Xn’m’ +DTZn’m’Zn’m’)

’ ’
n',m

= 608(7‘, 0’ d’)X:zm : 2 (ETYVM,YVH + ETXV,LLXV,LL + ETZV,U,ZV[L) .

v,

(79)
Using the fact that X -Y,,/,, =X:;m-Y,,M=0, we obtain
E (DTXn’m’X::m : Xn’m’ + DTZn’m’X;kLm : Zn’m’)
n',m’
= 608(7', 6’ ¢)Xr;m : E (ETXV;/.XV,U, + ETZV,u,ZV/.L) . (80)
v,

Integrating over the solid angle (), we obtain

4
DTXnm = 602 f d‘Q'S(r, 0, ¢)X;m . (ETXV/.LXV/.L + ETZV,LLZV/.L) -
v,u Y0

(81)
We then define

4
EXXnm,vp — f dQS(I", 0, ¢)X2m : Xyﬂ = <Xnm|8xyp,>’

0
(82)
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4
EXZnm,vu = f dQS(ry 0’ d))X;m : ZV;L = <Xnm|szyp,>’
0

(83)

so that, after the single-subscript notation is introduced,
Eq. (81) reduces to

1
G_DTXp => exxp.oPxg + > exzp.eErzq (84)
0 q q
which gives the {exx} and {exz} blocks.
In a third step, multiplying both sides of Eq. (71) by

Z, ., we find
Z:Lm : 2 (DTYn’m’YrL’m’ +DTXn’m’Xn’m’ +DTZn’m’Zn’m’)
= 608(7", 0> ¢)Z:Lm ) 2 (ETYV,LLYV,LL + ETXV/LXV;L + ETZV/.LZV/.L)7

Vi
(85)
and, using the fact that sz-Yn,m,zzzm-szo, we ob-
tain
E (DTXn’m’Zjlm X +DTZn’m’ijm “Zyimr)

’ ’
n',m

= 608(7‘, 0’ d))z;:m : 2 (ETXV,LLXV,LL + ETZV/LZV/L) . (86)

v,

Integrating over the solid angle (), we obtain

4
DTan = EOZ j dQS(r’ 0, d))z:;,m : (ETXV/.LXV,LL + ETZV/.LZV;L) .
v, v 0

(87)
We then define
47
EZXnm,vu = f dQS(r, '9, d’)ZZm : Xv,u. = <an|axv,u>,
0
(88)
4
EZZnm,vu = f dQS(}‘, 07 ¢)Z;m : ZV/.L = (an|8ZV/.,L>'
0
(89)

After introducing the simplified subscript notation, we
find that Eq. (87) reduces to

1
:DTZP = &zxp,qBxg + > £27p,qLrxq> (90)
0 q q

which gives the elements of the {¢;x} and {55} blocks. It
is worth noticing a simplification that comes from the ex-
pression of X,,,, and Z,,,, established in Eqgs. (16) and (17).
Itis stl;aightforwa}'d to verify that X:m -X,,”=Z2m -Z,, and
that X, ,,-Z,,=-Z,,,-X,,. From Eqgs. (82), (83), (88), and
(89), we then obtain

{exxt ={ezz}, {exzh=—{ezx). 91)

In summary, the matrix {¢M} in Eq. (70) will include the
following blocks:
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{evy} 0 0
{£My=| 0 {exxt {exz}|. (92)
0 —{8XZ} {SXX}

Considering Eqgs. (76), (82), (83), (88), and (89), we remark
that the blocks of the matrix in Eqgs. (68) and (69) can be
expressed in the concise form 8ij,nm,vu=<wsp)n|swg,)¢>’ with
1,j=1, 2, 3 and e11 =¢eyy, e93=¢exy, etc. Furthermore, Eqs.
(91) and (92) can be seen as specifying certain interesting
properties of these matrix elements.

2. Inverse Rule
Concerning the normal components Dy and Ey of D and
E, which are related by

DN = 608EN, (93)

we want to find the matrix relation that links their com-
ponents in the form

[Dx] = eofe™}{EN], (94)

where, for the same reasons as pointed out for {&™}, {c™
will have the following block structure:

£ o 0
™= 0 {80 {2} (95)
0 —{e} {&%

From Eq. (93), we have Ex=(1/€ye)Dy where 1/¢ is dis-
continuous while Dy is continuous. Thus the direct rule
has to be used to calculate the components of Ey from
those of 1/e and Dy. Following the line stated in Subsec-
tion 6.A.2 and similar to Eq. (71), we write

E (ENYn’m’Yn’m’ +ENXn’m’Xn’m’ +ENZn’m’Zn’m’)

n',m’

=————> (DnyupYou+ DxxXo + DxziZo,) -
6()8(7", 0, ¢) v, e e e

(96)

We continue the process as we did for obtaining Eqgs. (76)
and (77); defining

(1> fmdﬂ ! Y, Y Y 1Y
s YYnm;V’u_ 0 8(?,0,¢) nm v nm|8 v [

(97
we obtain
1
oBxynm= 2 | = Dyy., (98)
v € YYnm,vu
or, with the single subscript,
1
&Eny, = - Dyy,- (99)
q YYp,qg

Inversing this relation, we obtain an equation identical to
the inverse rule in Eq. (64) that we established for scalar
functions:
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1

1
Dyy, = > l (_) } Exvygs (100)
q pg

&/yy

which is to be expected, since Dyy, depend only on Eyy,
and thus behave like scalars. Equation (100) provides the
first block in {e™)}:

-1
{e@}=(<l> ) : (101)
€/yy

Things are a bit more complicated for the other blocks,
since both [Dyx] and [Dyz] depend on [Exx] and [Enz].
But, following the same lines, we obtain

1
EOENXnmzz (;) DNXV,LL"'E (
XXnm,vu

v, v,

1
- DNZV/L’

€ XZnm,vu

(102)

1 1

<_) = <Xnm|_xv;¢> P (103)
& XXnm,vu €
1 1

(—) = <xnm—zm>. (104)
€ XZnm,vu €

Put in matrix form, Eq. (102) reads as

where

1 1
€[Enx] = (‘) [Dnx] + (‘) [Dnzl, (105)
€/ xx €/ xz
which, with the help of Eq. (95), gives
1 1
€[Enz] = - (_) [Dnx] + (‘) [Dnzl. (106)
€/ xz €/ xx

Inverting Eqgs. (105) and (106) leads to

{[DNX]]zéo (l)xx (E)XZ l{wm]],

[Dnz] ~ (1) (1) [Exz] (167)
€/xz \®/xx
and Eq. (95) reads as
syt 0 0
(™= 0 {5} {e%)}
0 —{ef)} (e
1 -1
(() ) 0 0
€/yy,
. CLY
= 0 & XX & Xz
), (0
€/xz \®/xx
0
(108)

Equations (94) and (108), together with Eqs. (97), (103),
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and (104), state the inverse rule that applies to the vecto-
rial functions D and E represented on the basis of VSHs.

The determination of the various blocks of {¢™} and
{e™N)} requires computing integrals involving scalar prod-
ucts of two VSHs, as shown in Egs. (82) and (83), for ex-
ample. The introduction of the Gaunt coefficients® devel-
oped by theoreticians working in quantum mechanics
gives analytic expressions for these integrals. This is ex-
plained in Appendix D.

C. Total Field Representation: Fast Numerical
Factorization Applied to Spherical Harmonic Basis

The concept of normal and tangential components of E or
D is defined only on a surface S, whereas the direct and
inverse rules have to be applied into the entire modulated
region in order to calculate the D components on the
VSHs. The basic idea of what was first called the fast Fou-
rier factorization (FFF) in grating ‘cheoryw’20 consisted of

extending the definition of N stated by Eq. (26) toward
the entire modulated area by simply stating that

. grad f
Vre [RI’RZ]’ N(T‘, 0’ ¢) = N a4 . (109)
lgrad ] | .,

Equation (109) allows one to derive a normal compo-
nent Ey of the field E via

=N(N-E), (110)
and its tangential component, Er, is given by
E;=E-Ey=E-N©N-E); (111)

these definitions hold in the entire modulated area. Deal-
ing with an isotropic medium then leads to

D = ¢)sE = ys(Eq + Ey) = ¢(E - N(N - E)) + £,eN(N - E).

(112)
Expressing the components of Dyp=eys(E-N(N-E)) im-
plies the direct rule that requires {7}, whereas the com-

ponents of Dy =€, sN(N-E) requires the inverse rule and

thus requires {¢™}. Introducing the matrix {NN}, with
nine blocks {N;N;}, with i and j equal to Y, X, and Z,
which relates [E] to [Ey], we thus have

1
_IDb]= {e ™} Er] +{sV}[Ex]
0

= (fe™}01 - {NN}) + {e VHNND[E].  (113)
As a result, matrix @, defined in Eq. (44) reads
Q.={s™}+ (=™} - {eMH{NN},
an equation that has to be interpreted in block form as

Quij=1el} + 2 (e}~ el DINGN ). (114)

In order to state explicitly the various blocks, we first in-
troduce the matrix A={e™}—{eM}, with blocks A;
—{S(N)} {s(T)} which reads
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Ayy O 0
A= 0 Axx Axy|. (115)

Thus, finally, @, has the following blocks:
Q,yy = AyyiNyNy}t +{eyy}, Qoyx=Ayy{NyNxi,

Q.yz = AyyiNyNz},
Q:oxy = Axx{NxNy} + Axz{NzNy},
Quoxx = Axx{NxNx} + AxAN Ny} +{exxt,
Q.xz = Axx{NxNz} + Axz{NzN 7} +{exz},
Qezy = Axx{NzNy} — Axz{NxNy},
Qezx = AxxiNzNx}t — Axz{NxNx} - {exz},

Q.27 = AxxANZN 7} — Ax ANXN 1} + {exx}- (116)

The differential set written in Eqgs. (55) and (56) with
matrix @, given by Eqgs. (116) is the fast converging for-
mulation of the Maxwell equations projected onto a trun-
cated spherical harmonic basis, and the way of deriving
them is the fast numerical factorization (FNF) in spheri-
cal coordinates.

7. FIELD EXPANSIONS OUTSIDE THE
MODULATED REGION

Inside a homogeneous isotropic medium characterized by
the relative electric and magnetic permitivities, ; and u;,
the two Maxwell curl equations result in a second-order
propagation equation involving the electric field:

curl(curl E) - (w/c)2aj,u,jE =0. (117)

In a source-free medium, div E=0, and Eq. (117) leads to
the vector Helmholtz equation:

AE +£’E=0, (118)
where
= (w/c)zsj,uj. (119)

Classical textbooks® explain how to construct the gen-
eral solution of Eq. (117). Searching for a general vectorial
solution of the form M« curl(ry) and expressing the La-
placian operator in spherical coordinates, we find that ¢ is
a solution of the scalar Helmholtz equation:

[w 1 0 ap 1 Py )
— + 5| sin 60— Ttk
r2or (9r rsin 096 a6 r sin“ A d¢

=0. (120)

Expressing ¢ on the basis of scalar spherical harmonics,

Wr,6,4) = 2, R(NY,(6,9), (121)

n,m

we find that R(r) verifies
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d

—<r2E) +[E2r?-n(n+1)]R(r) =0 (122)
dr\ dr ’ .

Introducing the dimensionless variable p=k;r and the
function R=R\p we find that Eq. (122) leads to

(n+3)’
7'L+2
2

p

:|é(p) =0. (123)

Equation (123) is the Bessel equation with half-integer or-
der n+1/2; its independent solutions are thus the half-

n+1/2(p) or Han-

kel functions R=H?,,(p) and H;, ,(p). Consequently,
linearly independent solutions of Eq. (122) are called
spherical Bessel functions and are defined by

[ ar
R(r) =j,(kjr) = %Jmm(kﬂ‘),

J

a
R(r) =y,(kjr) = \/ %Ynu/z(kj’”),

J

integer Bessel functions R = =dJ,.12(p) and Y,

(124)

where the factor \7/2 is introduced for convenience.
Any combination of j,(p) and y,(p) is also a solution to
Eq. (122). Two such combinations deserve special atten-
tion, which are called spherical Bessel functions of the
third and fourth kind, or spherical Hankel functions:

hi(p) =jn(p) + iy,(p),

hy(p) =jn(p) = iy,(p). (125)

It will be useful to designate one of the four spherical
Bessel functions by the generic notation z,(k;r). Following
Eqgs. (121)—(125), ¢ can be expressed as a series of elemen-
tary functions ¢,,,, with

l/fnm(r, 07 QD) = zn(kJr)Ynm(07 ¢) . (126)

Each ¢, can be used to generate a solution to Eq. (117)
(frequently called a vector spherical wave function):
curl(ri,,,,)
Mnm = (127)
yn(n+1)

From Mnm, a second solution to Eq. (117) can be

constructed by taking N,,=curlM,,/k; Classical
textbooks' then establish that one can write
) I
Nnm(p’ 0’ ¢) = ;{\”n(n + l)zn(p)Ynm(a’ ¢)
+[pz,(0)]' Z,, (6, $)}, (129)

where the prime here, and from here on, is a shorthand
for expressing derivatives with respect to the argument of
the Bessel function; i.e., explicitly we have

d
f'xg) = —flx) . (130)
dx

x:xo
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From Eq. (128) and (129), it is established that N,,,,(p)
are orthogonal to M,,,,(p) and are thus linearly indepen-
dent. As a result, the general solution of the propagation
equation inside a homogeneous medium, Eq. (117), can be
written as

A(i)
E(r)= 2 Ajl nm]n(k )Xo + —

n,m kJr

XN (n + 1fn(kir) Yo + (Rjjn (k7)) Loy

BY,,
+ 2 BY k()X + ——
ki

J
X[\n(n + Doy (ki) Yy, + (kjrhsy (ki) 2y

(131)

) ) )

The coefficients AEL’ o Agnm, and Bg e Bgnm, play in the
3D scattering problem the same role as Rayleigh coeffi-
cients in grating theory.?’ The choice made among the
zn(kjr) functions allows one to distinguish the terms that
remain bounded at the coordinate origin (corresponding
to Ag i Ag)nm,) from terms that correspond to outgoing
waves or waves decaying at infinity (corresponding to
BY BU

h,nm’> ~e,nm’ . . . .

The general expression for E in Eq. (131) is applicable
to the inner region (r<R;) and the outer region (r>Rj).
For r<R;, in order to obtain a solution that remains

bounded, we impose

B

0 .=0=Bl ~ VYnm. (132)
Let us introduce the Ricatti—Bessel functions, #,(z) and
&,(z), defined in Appendix E, so that Eq. (131) for r<R;

reduces to
(1)

e,nm

E = AL (k)X +

1r
X[Wn(n + 1)), (ki)Y + 4, (k1r) 2y, ] (. (133)

On the other hand, if »> Ry, the field must be the sum
of the diffracted field, expressed by the second summation
in Eq. (131), and the incident field. This means that the
first summation in Eq. (131) must here reduce to the in-
cident field, with coefficients denoted A}L,nm, and A; -
Expressed in terms of the polarization vector, €;, these co-
efficients for an incident plane wave E;=exp(ik; r)é;

. L2624
have analytic expressions®®

}L,nm =4m" Xnm( ¢1) . éi’ (134)
Azlz nm = 47Tin_1Zij(0i’ ¢1) : éi’ (135)

where 6; and ¢; specify the direction of the incident wave,
0;=|(z,kyy)|, with 6; € [0, 7], and ¢;=(%,k;s), where kyy is
the projection of k;; on the xOy plane while z and x are
the unit vectors of the z and x axes. It could be useful to
notice that in order to be able to analyze a circularly po-
larized incident plane wave, we allow €; to be a complex
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unit vector. Defining kj=(w/c)Veyuy, we find that the
field for r=R, reads as

E= E A;L,nmjn(kMr)Xnm + nm
n,m M
(M)
e B [+ 2 Bi s Geagr X+ ==
n,m kMr
X [N+ DS Cepg) Y + € et o] | (136)

8. RESOLUTION OF THE BOUNDARY-
VALUE PROBLEM

The problem is now reduced to the numerical integration
on the [Rq,R5] interval of the first-order differential set
stated by Egs. (55), (56), and (114)—(116) in such a way
that the numerical solution matches the boundary condi-
tions stated by Eqs. (133) and (136), concerning both the
unknown functions and their derivatives. When dealing
with objects far different from a sphere, the distance Ro
—R; can be large enough so that numerical overflows and
instabilities may appear. It is then safer to make a parti-
tion of the modulated region and to use the S-matrix
propagation algorithm.

A. Partition of the Modulated Area and S-Matrix
Propagation Algorithm

We follow a process similar to that performed in grating
theory.?’ As illustrated in Fig. 2 for an example with M
=6, the modulated region with thickness Ry—R; is cut
into M -1 slices with equal thicknesses at radial distances
T'J‘=R1+|:(R2 —Rl)/(M—Z)](]— 1), so that 7'1=R1 and ryp-1
=R,. With this partition, a region labeled by the subscript
J lies between r;_; and r;, region 1 lying between 0 and R;,
while region M extends from ry,_;(=R5) toward infinity.
At each distance r;(j>1), we introduce infinitely thin
slices of a medium Wlth electric and magnetic permittiv-
ity ) and uy. In each of these infinitely thin homoge-
neous regions, the general expansion in Eq. (131) fully de-
fines the field, provided that k; is taken equal to &y, that

layer 6

NAM_ A 1021
Aep—A o

Fig. 2. Example of the partition of the modulated region in
which M=6, and an illustration of the notation for the coeffi-
cients appearing in Eq. (131) used inside the various homoge-
neous regions.
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r=r;, and that we use primed coefficients (see Ref. 20 and
the following paragraph for a discussion of the primed co-
efficients). We thus consider a column matrix V¥ con-
structed with the Z and X components of the impinging
and outgoing waves, defined by

A;,Y;)w;(kMr,»)/(kMrj)

Aj p]n(kM 7;)
(V= , (137)
B¢ (kMr W (kyr)

’(’)h+(kMrJ)

hpn

where p is related to (n,m) through Eq. (23). One should
note that the prime on the coefficients serves as a re-
minder that the field is developed inside one of the infini-
tesimal homogeneous slices within the modulated region
(the prime on the coefficients does not stand for the de-
rivative). Inside the circumscribed sphere, the field is de-
veloped in a truly homogeneous region and

(1 1). (1 1 (1) _ 1). (1 1
ADZAD A AR BB BO-BY,
(138)
while
Aé’(;l/l—l)=A‘(31"Z); A}/L(’?)l—l)=A§11‘§)); B/(M—l) B(M)
(139)

B'(M—l) B(M)

Since we are working in linear optics, there exists a lin-
ear relation between the field at ordinate r;_; and the field
at ordinate ;. We thus have

[V0]=TO[Vi-D], (140)

a relation that defines the transmission matrix, 7V, of the
region (j) (not to be confused with the transfer matrix of
the object).

When the four-block S matrix of the stack including j
regions (not to be confused with the S matrix of the jth
region nor with the S matrix of scattering theory!) is de-
fined by
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B¢, (kMr W (k)
B;;V,)h;(kMrJ)
SUESE
| ] s
Ay i)/ (kiry)
Ai{@(kﬁ
BS;&,’L(kl.rl)/ (kyry)
5;13; n(klr 1)
x - s
Ay (R A.{rj)/(kMrj)
A}l qJn(kM 7})
- | “(141)
the S-matrix propagation algorithml4’20 reads as
S$= (T + THSE )z, (142)
S§ =842V, (143)
where
Z0 = (T + THSY )™ (144)

The recursive evaluation for the S matrices is
started?’ by taking S (112)=0 and S(212)=]l, which means that
when there is no boundary, no reflection occurs, and the
transmission is unity. Each recursive step requires the
corresponding 7V matrix, which is determined through
the following shooting method.

B. Shooting Method: Determination of the TV) Matrices
Considering the jth region, we have to integrate numeri-
cally, from r;_; to r;, the differential set stated by Eqgs.
(55), (56), and (116) in order to construct the matrix TV,
However, Eq. (55) deals with the column [F], while TV
links columns [VY]. The first step is to express the link
between these two columns via a matrix ¥ (r).

Indeed, at any value of r;(j # 1), from Eq. (131) we have

[Ex], = A} D), (kyry) + B (kyr)), (145)
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[EZJP——{A'U)WM ) +BYE Ry} (146)

Equations (38), (54), and (131) yield

_ 1 nn + ) Ops
[HX]P = — 2 epJn(kMr ) + Bep hn kMrJ)]
iopy\eopo | Rut;

1
- —— ALy (kyr)) + BLY & (kyyr))]

kyr? T
4 A0 nlkur) +B'Y &nlkeury)
df‘ e kMrj ep kMrJ-
1

e DAy
Louy €ty M’"

+ B R (kyr )]~ [ALD (kyr) i) (Ragry)
+ B (k) *(hy) (Rpr)]'} (147)

where we have used the relation
) d/1 d )
PP\ =(pza(p)" | + (p2, () = —(p°z,(p)). (148)
dp\p dp

Using now the fact that the spherical Bessel functions
satisfy Eq. (122) shows us that

d
n(n+ 1)z,(p) - —(p*2,(p)) = p’2,(p).
dp
One obtains finally the compact result:
[Hx], = \/ o LA earry) + By (149)

Moreover, with Eqgs. (39), (54), and (131) one finds

[H,], =i —M—{Ah 0 (eagry) + B9, ey}
Mar Ry Ty
(150)
As a result, we obtain
Ay, (kMr W ()
(EY] .
[Eg)] A;’fgfn(kMrj)
Fin=| 7 | =g = Oy,
[FV)] (Y] 50 [(vv]
f (kM )/(kMT‘ j)
[HY)]
’(’)h"(kMr)
) i (151)

which entails
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=
8
Il
|
m
=
S
o

with
pz(rj)qi X e ) qg)q %.q b :
@ | T 6@ |y
(153)
The calculation of the p and q , matrix elements is

simplified by invoking the recurrence relations of the
Ricatti-Bessel functions as shown in Appendix E.

The matrix ¥U=Y (at r;_;) links the column [VU-V] to
the field [F], noted [FU~Y], and, since the columns [VV]
have 4 X (n,4+1)% components, we perform successively
4 X (nax+1)2 numerical integrations with linearly inde-
pendent columns [VUV];, ie[1,4(npma+1)?], by taking
their elements as i .1 =0,;. As a result, these vectors
form a square matrix [V0~ 1)] with

[VU-D]=1. (154)

We thus take, for initiating the integration, columns
[F(i‘l)(r _)];=P0-D[VU-D]. which form a square matrix
[ﬁ'( _)]=w0-D1=w0-D Performing the numerical inte-
gratlon with a standard subroutine leads to numerical

values at r=r;, which form a matrix named [Fin(r)]. In-
verting the matrlx relation of Eq. (151), [FV]= \Ifd)[VU)]
we then deduce

[V =90 r)]  [Finelr)], (155)
which, thanks to Eq. (154), results in
[V = (WO [Fe ) VIV, (156)
Comparison with Eq. (140) shows that
T = [WO(r) ] [Fing(r)]. (157)

Thus the shooting method provides the transmission ma-
trix at the end of the integration process.

C. Determination of the Diffracted Field

Once the TV matrices for each region have been calcu-
lated, the S-matrix propagation algorithm given by Eqgs.
(142)—(144) is performed in order to find the S matrix of
the total modulated area SM-V. Using a block notation
that includes the various Bessel and Ricatti functions, we
thus obtain
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ey .
-i\|—1q" 0 , (152)
Mt
&
0 —in] g0
My

[B,M1] [BM]
1(M-1) (1)
[B;M] _ g [BY] 158
[A] (A, M1
[A] [A;M1]

and, from Eq. (139), we obtain

(B [B."]
Syp| S\ ™Y

B [T [B] 159
€52 M) |-

[Ae ] Szl 822 [Ae ]

(A1) [A;Y]

Recalling that inside the sphere S; the field must re-
main bounded, especially at r=0, we must state B(l)—O
_B(I)Vq Thus Eq. (159) gives the diffracted field through

[[BEM)]} —S(M-l)[[ gM)]} (160)

;7 I §V: Vi T

where B(];l) B(A;) will be called the scattermg coefficients

and the union of the two (np.c+1)%? column matrices

[B(M)] [B(M)] will henceforth simply be denoted [B®)].
The A", A™) are provided by the incident field:

ep’
A(M) Al AM)_

e,p’ hp’ (161)

which for an incident plane wave are given by Egs. (134)
and (135). It may be useful in some problems to determine
the field inside sphere S;. Equation (159) indeed leads to

(1) (M)
AT) o[ 1427] 169

[AR"] [A;"]
From the coefficients A(l) and A;Ll) , the field everywhere
inside the modulated area could be computed if necessary.

9. EXTRACTION OF PHYSICAL
QUANTITIES

One should remark that the Sg;[_l) and S(g_l) block ma-
trices obtained by our method are rather complicated ob-
jects owing to the fact they contain a great deal of physi-
cal information in both near and far fields. This detailed
information is essential if we wish to use these matrices
as the basic building blocks for multiple-scattering
codes.2? For a given single-scattering situation, however,
one is typically interested in studying more limited, but
more physical accessible, quantities such as cross sec-
tions. This extraction of physical quantities has been ex-
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tensively studied elsewhere,?* 2" and we content our-

selves here with a few illustrative formulas.

Physical quantities of interest can usually be obtained
directly from analytical formulas of the coefficients of the
incident and scattered fields. We recall that for a given in-
cident field, with expansion coefficients placed in a [A]
column vector and multiplied by suitable Bessel and Ri-
catti functions to obtain the vector [A™)], Eq. (160) allows
us to obtain the scattering vector [B™)] via

[B)]=S{DIAM], (163)

from which a vector [BﬁM)] containing only the scattering
coefficients can be derived. We shall define the Hermitian
conjugate or adjoint vector [B.]f, which takes the form of
a row matrix of the complex conjugates of the [B(CM)] ele-
ments:

[BMT =[.... B, ..|...B",..]. (164)

The T-matrix, denoted here by ¢, familiar to the 3D
scattering community is defined by the equation

[BYD] = t[AT], (165)

and a comparison with Eqgs. (141), (160), and (163) shows
that the elements of ¢ can be obtained from the elements
of S(g_l) through the multiplication by appropriate ratios
of Ricatti-Bessel functions.

With [B(CM)], one can readily express the total scatter-
ing, extinction, and absorption cross sections, respec-
tively, given by?*?

|
oy = %[Bc]'[Bc],

1 ‘
o.=Re _Q[Bc]T[Al] s
ki

0y=0,— 0. (166)

For a number of applications, however, total cross sec-
tions provide too-crude information, and one is interested
in the angular distribution of the scattered radiation in
the far field. For such situations, it is frequently useful to
define an amplitude scattering matrix,>® F' [not to be con-
fused with the F' column used in propagation equations
(53) and (55) nor with the S matrix of Eqs. (141) and
(159)]. The scattering matrix is defined in the context of
an incident plane wave, which we express as E;
=FE exp(iky-r)(e 9A01+e¢;bi), where 6, and ¢, are the spheri-
cal unit vectors associated with the incident wave vector,
kjs. The scalar E has the dimensions of an electric field.
We are in the habit of normalizing the polarization factors
ey and ey such that |ey?+|ey/*=1, in which case E is sim-
ply the electric field amplitude ||E;|=E. In the far-field
limit, the scattered field at r— o will have the form
exp(ikr)

lim E (r) = (E 00+ E, ), (167)

r—o 12

where 6 and ¢ are the spherical unit vectors associated
with the vector r. The scattered field factors Eg , and E; 4
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can be calculated in terms of the 2 X2 scattering matrix

F:
E, exp(ikr) (F, F e
e o T
Eg, ikr  \Fyy Fyy)\ey

where each of the F' elements is a function of the incident
field direction 6;, ¢; and the observation angle of the scat-
tered field 6, ¢. They can be calculated by defining the

scattering dyadic F:
= S
F=4nX'®),Z @)t P (169)
Z(k;
where we call X and Z the phase-modified VSH?*:
X,,#) =i"X,, (#), Z,,0)=i""Z (). (170)

The F elements of Eq. (168) can then be readily expressed
as

m)

=
¥
;q
qTII
<
=S
:%)

Feozé‘;“éb Foy=

Fys=&-F- &, (171)

The scattering matrix can subsequently be invoked to
derive other angularly dependent physical quantities
such as the Stokes matrix.”*>“" Here we simply remark
that a quantity of frequent interest is the differential
cross section do/d(), which in our notation can be com-

6,24,27
puted from

dO'(0 516,99 =1i ZHES(r)IIZ |Es o + |Eg 4
0,90, ¢;) = 1lim r =
dQ oo E? k2
~ [Fogeq+ Fogeg* +|Fygeq+ Fyge,f
- v )

(172)

10. CONCLUSION

This achieves the detailed presentation of the differential
theory of light diffraction by a 3D object. Although the
theory makes use of the basis of vector spherical harmon-
ics, which is much more complicated to manipulate than
the Fourier basis used in Cartesian coordinates, the final
result looks quite simple in the sense that it is not more
complicated than analyzing crossed gratings,zo for which
the propagation equations are quite similar.

The current theory can also be extended to treat the
diffraction from anisotropic materials. A forthcoming pa-
per will present numerical results concerning prolate and
oblate spheroids and will include comparisons with re-
sults given by approximate methods in view of studying
their domain of validity.
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APPENDIX A: CALCULATION OF Enpo

In the case of an axisymmetric object, in the modulated
region the permittivity (r,6) is a piecewise constant
function with step discontinuities. With c=cos 0, (r, 0) is
transformed into &(r,c), and Eq. (34) reads as g,

=27f 31§(r,c)1_)2(c)dc, where I_’S are the normalized Leg-
endre polynomials:
2n+1

41

1/2
I_’g(cos 0) = ( ) Pg(cos 0). (A1)

We can evaluate this integral by invoking the recur-
rence relation

d d
(n+ l)Pg(c) = —P2+1(c) - c—Pg(c). (A2)
dc de

Using the relation

d d
—(ch(c)) = c—P?L(c) + Pg(c) s (A3)
de de
we find
d d
¢—P(c)=—(cP}(c)) - Pa(c), (A4)
de de

and the recurrence relation becomes

1d 1d
P(c)=—=—P2,1(c) - ——(cPi(c)). (A5)
ndc ndc

We have then

1 1(d 1(1d
Pg(c)dc =— —P?Hl(c)dc -= —(cP(,)L(c))dc,
. nJ, dc nJ, dc

2 2 2

(A6)

and the piecewise integral is then

‘1 1 1
J P)(c)de = ;[Pg-q(cl) - Pp(co)]+ ;[CZPZ(C2)

2

- c1Ppley)]. (A7)

An example of the determination of the ¢, o coefficients
is illustrated on a spheroid with half large and small axes
a and b, respectively; Oz is the symmetry axis, and, in the

yOz plane, its Cartesian equation is
2 42 R
—+—5=1. 8

Since z=r cos # and y=r sin 6, this equation in spherical
coordinates reads as

ab

\,'/a2 + (b2 =a?)cos? 6

r(0) = (A9)
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Inversing this relation leads to

(a r2-b? )
0(r) = arccos| — (A10)
r

a®-b?

Vrelb,al]; Eq. (A10) defines a value 6;(r), with 0;(r)
€[0,n/2]. Defining 65(r)=m—6,(r), we have

e(r,0) =g, if 0 €[0,6,(r)]U[6y(r), ],

e(r,0) =gy if 0 [0,(r), 65(r)]. (A11)

The limits ¢; and ¢y that appear in Eq. (A7) are cos 6;(r)
and cos 6y(r).

APPENDIX B: VANISHING OF SOME
ELEMENTS OF THE Q. MATRIX

Expanding D and E on the basis of VSH, the equation
D=¢ycE gives

2 (DYn'm’Yn’m’ +DXn/manrmr +Danm/anm/)

n',m’

= €s(r,0,4) > By, Y, + Ex,, X+ Ez,, 7).

v,

(B1)

Performing an ordinary scalar product of both sides of Eq.
(B1) with Y., , we obtain

nm>
Y., . > Dy Y +Dxnim X + Dz Zogr?)
n',m’
= 608(7', 07 ¢)Yzm : 2 (EYV/LYV/.L + EXV;LXV;A. + EZV,u,ZV,u,)-
v,p

(B2)

Using the fact as one can see from Egs. (7), (16), and (17)
that Y, Xym =Y, Zyim =Y, X,,=Y,, - Z,=0, we
find

E DYan:m . Yn’m’ = 608(7‘, 0, ¢)E EYVMszm ) YVP-'

’ ’
n';m v,p

(B3)

This equation establishes a linear relation between Dy,
and Ey,, only; thus @,yx and @,yz must be null.

Now, performing a scalar product on both sides of Eq.
(B1) with X, we find that

nm’

X0 > Dynm Y + Dxnim Xorm: + Dz L)
= 508(7', 0: ¢)X:m : E (EYV,U,YV/L + EXV;LXV;L + EZV/.I.ZV/.I,)'

[

(B4)

Using the fact that X:m-anch;m-szo, we obtain
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1 .
- E (DXn’m’X::m : Xn’m’ +DZn’m’X;m : Zn’m’)

E(]n/ m'

=e(r,0,0)X, - > (Ex,, X, +Ez,,Z,,). (B5)

v,

Integrating over the solid angles (), we obtain, taking into
account Eq. (11),

4
DXnm = EOE f dQS(", 0’ (f))X:r,m : (EXV,LLXV,LL + EZV/LZV/L) .
v, v 0

(B6)

Since Dy, does not depend on Ey,,, we deduce that
Qoxy=0.

A similar calculation starting from multiplying both
sides of Eq. (B1) by Z,,, leads to @,zy=0.

APPENDIX C: TWO RELATIONS BETWEEN
VECTOR SPHERICAL HARMONICS

In order to derive two relations between VSHs that are
necessary to construct the theory, it is useful to invoke an-
other set of VSHs, denoted Y}, .1, Y}, and Y, _;, as in-
troduced by quantum-mechanic theoreticians who worked
on the angular-momentum coupling formalism.?® We first
recall the definition of the Cartesian spherical unit

vectors??:

1 1
Xy=- —(k+iy), Xo=2, Xi=—(%-iy),
2 2

(C1

where X, §, Z are the unit vectors of the Cartesian coordi-
nate system. Making use of the Clebsch—Gordan
coefﬁcients,23 we then define the new set of VSHs as

1
ZL’I = 2 (l7m - /L;luu'|n’m)Yl,m—qu’ (02)

u==1

with [=n-1, n, n+1.

Using the conversion from spherical to Cartesian coor-
dinates and the expressions of our Y,,,,,, X,,,,,, Z,,,, VSHs in
a spherical coordinate system of Eqgs. (7), (16), and (17),
we can painstakingly verify that our Y,,,, X,,,,,, and Z,,,
VSHs can be expressed in terms of the Y;', .5, Y)', .1,
Y;', .1 spherical harmonics via the relations

Ym
Xy = —, (C3)
14

n+1 1/2 . n 1/2 .
Zin=\gne1) Yr1*\gnoq) Yomr ©4

n 1/2 . n+1 1/2 .
Y= on+1 Yn,n—l - o+l Yn,n+1' (C5)

With the above equations in place, we first calculate the
following two products.
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1. XVM'Xnm
Using Eq. (C3), we find

X, X, = Y4, (Y7 (C6)

Putting Eq. (C2) in Eq. (C6) and calculating the Clebsch—
Gordan coefficients lead us to

, 1 1/2
XV,u : X;m N
nn+1v(v+1)

1
X{E[(n +m+1D)n-m)v+p+1)(v- w2

XYV,/L+1Y:,,TH,+1 + m/‘LY Y*

v nm

+§[(n+m)(n -m+1)

X(v+w)(v-p+ 1)]1/2Y,,7M_1Y:’m_1}. (C7)

2. X, Zp,

In order to calculate this scalar product, we use the fact
that X,,M-Y;m=0. Thus Eq. (C5) gives

( n+1l )1/2 ( n )1/2
X, Y = ——] XY,
om+1 n n,n+1 om+1 an n,n-1

(C8)

ie.,
no\12
XV,U.'Y:Ln,;Hl: (m) XV/.L.Y:Z;’L.—l' (C9)
Using Eq. (C4), we then obtain

Lym”

n n,n-1

|12 .
+ on+1 Xu,u . Yn,;z+1

(Qn + 1)1’2X g
= n+l Vi n,n-1

(2n+1\¥2 .
=-il—— ) Y, Yi.. (€10

Inserting Eq. (C2) and the expression of the Clebsch—
Gordan coefficients into Eq. (C10) leads to

. 1 2n +1)\2
X, 2y =1
nn+v(r+1)2n-1

YV,,u,—IYz—l,m—l
Xy = ——mMm8M ———
2

X[(m+m)n+m-1)(v+p(v-pu+1)]Y2
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Y,

n-1,m+1

2

Y

v,ut+l
+ul(n?-mAIV2Y, Y, 1, +

X[(n-m)n-m-1D)(v-pw(v+u+ 1)]1’2}.

(C11)

APPENDIX D: USE OF THE GAUNT
COEFFICIENTS

Theoreticians working on the coupling of angular momen-
tum in quantum mechanics have introduced the concepts
of Gaunt coefficients and Wigner 3J coefficients.?>*® With
our definitions, the normalized Gaunt coefficients, @, arise
from solid-angle integration of the product of three scalar
spherical harmonics®:

1

€ v Bk
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2w
(_z({v',,u'},{v,/.t},{n,m}) = f f YV’,u’(e) ¢)YV/I,(0’¢)
0 0

XY,,.(0,)sin 6d6ds.  (D1)

These coefficients can be rapidly calculated through re-
cursion relations.?® They naturally appear if, starting
from Eq. (71), we expand in it the &(r, 0, ¢) function as
stated in Eq. (3):

E (DTYn’m’Yn’m’ +DTXn’m’Xn’m’ +DTZn’m'Zn’m’)

=€ E 2 SV’p,'YV’,u.'(ETYV,uYV,u. + ETXV/LXV/L + ETZV/LZI//,L) .
ATV
(D2)

Multiplying both sides by Y;m(ﬂ, ¢) and integrating over
the angular variables 6, ¢, we obtain

_DTYnm = 2 2 SV’M’ETYV;LH Yv’p,’(a, ¢)YV/J.(05 d’) : YTLm(Q ¢)Sin (9d0d¢

= > D eypBry (- D" ﬂ Y, (6,0)Y,,(6,8) - Y, _.(6,¢)sin 6d6de

vl Bt

= > D ey~ D" ﬂ Y, (6,0)Y,,(60, )Y, _.(6,¢)sin 6d6deb

v Bt

= E E SV'/.L’ETYV,LL(_ l)m(i({v’,,u/},{v,,u},{n,— m}) (D3)

v VR

A useful property of Gaunt coefficients defined in Eq.
(D1) is that they are null except if u'=m-u and V' €[|n
—1|,n+v]. Thus the summation over u’ is eliminated, and
Eq. (D3) reduces to

n+tv N v

DTYnm =€ E E E (_ 1)m(_z({v/,m - ,LL},

' =[n—y| v=0 p=-v

{V,[L},{n,— m})sv’,m—p,ETYV,u" (D4)

A comparison with Eq. (77) shows that

n+v

EYYnm,vu = (_ l)m 2 d({V,am - /L}’{Vuu'}’{ny

v'=[n-v]|
- m})sv’,m—p,(r)’ (D5)

in which the calculation of ¢,/ ,,_,(r) involves computing
the integrals stated in Eq. (6), which implies integrating
single spherical harmonics multiplied by piecewise con-
stant functions, a task that can readily be performed ana-
lytically as described in Appendix A.

We now can derive similar expressions for the other
blocks. Multiplying both sides of Eq. (71) by X;m(ﬂ, @), in-
tegrating over the angular variables 0, ¢, and expanding
¢ as stated by Eq. (3), we obtain

DTXnm =€ E 2 SV’//,’ETXV/J. f YV,M/(H, (ﬁ)XW_L( 0, ¢) . X:m(ﬁ, ¢)sin 0d0d¢

v VR

+ > 2 evuErz, f Y, (0,8)Z,,(6,8) - X,.(6,¢)sin 6d6de. (D6)

v vk

From Eq. (C7) in Appendix C we thus obtain
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n+v
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1 1/2 1
SJQ(nm,u,u,z |:—:| (_ 1)—m E au’,m—p.x __[(n+m+ 1)(n_m)(y+lu+ 1)(1)—M)]l/za({V’,m—M},{V,,LL+ 1}7{”7
nn+1v(v+1) 2

v'=[n-v]|

1
—-m - 1}) + 6({V',m - /‘L}’{V’/’L}’{n7_ m}) - 5[(”’ + m)(n -m+ 1)(V+ /-L)(V_ Mt 1)]1/26/({1)’7”1 - Iu‘}’{vuu' - 1}7{”"_ m

+1})

From Eq. (C11) in Appendix C, we obtain

12 1
€ nm,v, =
Knmok = o\ n(n + Dw(v+1) 2n - 1

V' =[n-1-1

D7)

2n +1\12 nir-l
) D" D ey X[+ m)n+m =D+ @ - p+ DIV%a(y',m

- /L}7{V7M}7{n - 17_ m+ 1}) + 21“’[(n2 - m2):|1/2(_1({1/,,m - ,LL},{V,,LL},{TL - 17_ m}) + [(n - m)(n -m- 1)(V_ lu’)(V"' M

+ 1)]1/2a({vl’m - /.L},{V,,LL + 1}5{"/ - 1’_ m - 1})}

An alternative exists to determine the Gaunt coeffi-
cients. Introducing the Wigner 3 coefficients

ni ng ng
)
m; mgy ms

which are given by standard subroutines, we can calcu-
late the normalized Gaunt coefficients from

2V +1)2rv+1)(2n+1) |2
4

(V' v n)(v’ v n)
X .
0 0 0/\u' um

APPENDIX E: RICATTI-BESSEL
FUNCTIONS

We recall the definition of the Ricatti-Bessel functions
U,(2) and &,(2):

a({yr’/‘u}’{]};ﬂ},{n,m}) = |:

n(2) =2j,(2), &.(2) =zh;(2). (E1)

Their derivatives ¢, (z) and &,(z) can be readily calculated
using the Bessel function recursion relations:

(n+1)
P (2) = N (2) = Y1 (2),
(n+1)
&(2) = Tgn(z) = &n1(2). (E2)

We note, for example, the elements of the p? and ¢V
matrices of Eq. (152) are simply the logarithmic deriva-
tives of the Ricatti—Bessel functions:

@ W (2)
Py = OpPulbyr)) = G54
a(2) ey,

’

(D8)

@ £,(2)
Apg = OpgYnlkyr) = §

i), o ®Y

z=kMrj

which can be rapidly and reliably calculated! from recur-
rence relations derived from Eqgs. (E2),

n 1
P, (z)=———,
n-1(2) z ®,z)+nlz
or
" E
V()= ———— = —, 4
n2) nlz-V,_1(z) =z (E4)

so that Ricatti—Bessel functions simplify the initialization
of the shooting method. Of course, the partition of the
modulated area should be done in such a way that no
value of r; coincides with a zero of a Ricatti ¢,(z) function.
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