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Factorization of products of discontinuous
functions applied to Fourier–Bessel basis
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The factorization rules of Li [J. Opt. Soc. Am. A 13, 1870 (1996)] are generalized to a cylindrical geometry
requiring the use of a Bessel function basis. A theoretical study confirms the validity of the Laurent rule
when a product of two continuous functions or of one continuous and one discontinuous function is factorized.
The necessity of applying the so-called inverse rule in factorizing a continuous product of two discontinuous
functions in a truncated basis is demonstrated theoretically and numerically. © 2004 Optical Society of
America
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1. INTRODUCTION
Numerical modeling of electromagnetic diffraction re-
quires, in most instances, the factorization of products of
discontinuous functions represented in a given basis.
This is an intrinsic characteristic of the electromagnetic
vectorial problem, which comes from the continuity of the
normal component DN of the vector of electric induction
D 5 eE, which implies a discontinuity of the normal com-
ponent of the electric field vector E across physical inter-
faces characterized by a jump of electric permittivity e.
The classical Laurent rule,1 representing the product eE
as a convolution-type sum, is valid when one is consider-
ing an infinite (and thus complete) set of basic functions.
However, numerical modeling requires truncation of the
basis, owing to obvious memory and computing time limi-
tations. When one is studying periodic structures (hav-
ing one-, two-, or three-dimensional periodicity), the natu-
ral basis consists of exponential functions involving the
corresponding Cartesian coordinates. Cylindrical geom-
etry requires a Fourier–Bessel basis because of the obvi-
ous periodicity with respect to a 2p rotation about the z
axis. The aim of this paper is to analyze theoretically
and numerically the factorization rules when applied in
Bessel function basis. The study could be useful in ap-
plication of the differential method or rigorous-coupled-
wave analysis, which are well-developed for gratings, to
cylindrical or elliptical geometries. If the electric vector
direction is parallel to the cylinder axis, all the field com-
ponents are continuous functions of the radial coordinate,
so that the Laurent rule suffices.2 However, any other
case of polarization and, in particular, the fiber-
propagation problem, involves nonaxial electric field com-
ponents, which are discontinuous across the fiber surface,
and thus require special analysis of the factorization
rules.1,3
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2. FACTORIZATION RULES
Let us consider three functions f, g, and h of a given vari-
able x, the third function being the product of the first
two:

h~x ! 5 g~x !f~x !. (1)

We consider a set of basic continuous functions $ wm(x)%
chosen to form a complete basis so that the functions f
and h can be represented as a linear combination of the
basic functions:

f~x ! 5 (
m51

`

fmwm~x !. (2)

The subscript m could be a discrete or a continuous vari-
able, depending on the basis. When m is continuous, the
sum over m in Eq. (2) is replaced by an integral.

Numerical treatment requires truncation of the sum to
a limited number of terms, say, M, which introduces some
approximation to f(x). Its approximate value will be

f ~M !~x ! 5 (
m51

M

fmwm~x !. (3)

The mth component of f(x) represents the projection of f
on the mth basic function,

fm 5 ^ f~x !u wm~x !&, (4)

where ^ u & represents the scalar product in the space of
the considered functions. We assume orthonormality of
the basis:

^ wn~x !u wm~x !& 5 dnm . (5)

In addition to the continuity of the basis functions, we as-
sume the linearity of the scalar product in Eq. (4):
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^af~x ! 1 bg~x !u wm~x !& 5 a^ f~x !u wm~x !&

1 b^ g~x !u wm~x !&. (6)

As an example, in the space of pseudoperiodic functions
with period d, such that

f~x 1 d ! 5 f~x !exp~ia0d !, (7)

the basis is discrete and is given by

wm~x ! 5 exp~iamx ! [ expF iS a0 1 m
2p

d D xG , (8)

and the scalar product is defined as an integral over the
period:

^ fu wm& 5
1

d
E

0

d

f~x !w̄m~x !dx, (9)

where the overbar stands for complex conjugation.
A great variety of numerical studies in science require

an answer to the following question: How can we better
express the components of a product h of two functions f
and g as a function of their components in the basis trun-
cated to M basic functions?

We shall denote these components of h as hm
(M) . Here

‘‘better’’ is used in the sense of more rapidly converging
with respect to M, i.e., minimizing the error introduced by
truncation in Eq. (3) in comparison with Eq. (2), both
equations applied to the function h(x). One of the com-
mon tools for such a factorization consists of representing
the components hm of the product as a sum (or integral) of
products of the components of the two functions,

hm 5 (
p

gmpfp , (10)

where

gmp 5 ^ g~x !wp~x !u wm~x !&. (11)

In an exponential basis, Eq. (8), the sum in Eq. (10) is a
convolution-type sum, called the Laurent rule, with gnm
the elements of a Toeplitz matrix formed by the Fourier
components of g:

gmp 5
1

d
E

0

d

g~x !expF i~ p 2 m !
2p

d
xG . (12)

The proof of the Laurent rule is straightforward from the
given definitions and the linearity of Eq. (4):

hm 5 ^ g~x !f~x !u wm~x !&

5 K g~x !(
p51

`

fpwp~x ! Uwm~x !L
5 (

p51

`

fp^ g~x !wp~x !u wm~x !& 5 (
p51

`

gmpfp .

(13)

In 1996 Li1 found that the Laurent rule is questionable
when used in a truncated space of basic functions and
that its validity (in the sense of better or worse conver-
gence) depends on the continuity of the functions on
which it is applied. More specifically, Li established
three rules of factorization in the truncated Fourier
space:

1. If the functions f(x) and g(x) have no concurrent
jumps, i.e., if f(x) is continuous at the points of disconti-
nuity of g(x) and vice versa, the Laurent rule, Eqs. (10)
and (11), can be applied in the truncated basis. Thus we
have

hm
~M ! 5 (

p51

M

gmpfp , m, p 5 1:M, (14)

and the components gmp are given by Eq. (11) for m,
p 5 1:M. Equation (14) will be called the direct rule.

2. If f(x) and g(x) are discontinuous at the same
points but their product h(x) is continuous at these
points, it is better (more rapidly convergent) to apply the
so-called inverse rule, replacing Eqs. (14) and (11) by the
following expressions:

hm
~M ! 5 (

p51

M

~ g inv
~M !!mp

21 fp , (15)

where (21) stands for matrix inversion and g inv
(M) is an M

3 M matrix with the elements

g inv,mp 5 K 1

g~x !
wp~x !U wm~x !L , m, p 5 1:M.

(16)

The inverse rule thus requires the existence of 1/g(x) and
the possibility of inverting the matrix g inv

(M) .
3. In any other case [simultaneous discontinuity of

f(x), g(x), and h(x)], neither the direct nor the inverse
rule gives a satisfactory convergence with respect to M.

Li established these rules for a truncated Fourier basis,
explaining the empirical results obtained independently
by Lalanne and Morris4 and Granet and Guizal.5 It is
straightforward to demonstrate the validity of the direct
and the inverse rules for any truncated basis of continu-
ous functions, assuming the validity of a single hypoth-
esis: Provided a complete basis consisting of an ordered
infinite number of continuous functions and a given func-
tion f(x), if a truncated set containing a finite number M
of these functions is considered, the convergence of the
approximate value f (M)(x) given in Eq. (3) converges to
f(x) when M tends to infinity. The hypothesis states that
the convergence is more rapid [i.e., the error *dxu f(x)
2 f (M)(x)u2 is smaller for a given M] when f(x) is a con-
tinuous function than when f(x) is a discontinuous func-
tion. Stated briefly, this means the following: Continu-
ous functions are better represented than discontinuous
functions in a basis formed by continuous functions.

Here again, ‘‘better’’ means more rapidly converging
with respect to the number of components. The validity
of this hypothesis is almost self-evident, taking into ac-
count that a discontinuous function includes Dirac distri-
butions in its derivative, which cannot be represented by
a finite number of continuous functions6 and that its re-
construction from its Fourier series gives rise to the Gibbs
phenomenon. The demonstration of this property re-
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mains beyond the scope of this paper. Of more immedi-
ate interest are its consequences.

Let us first assume that f(x) is a continuous function
and g(x) is a discontinuous function of x. Then h(x) is
also a discontinuous function. The hypothesis ensures
the relatively rapid convergence of Eq. (3), the rapidity
depending on the form of f(x). We can then rewrite Eq.
(13) in the truncated space, using M basic functions:

hm
~M ! 5 ^ g~x !f ~M !~x !u wm~x !&

5 K g~x !(
p51

M

fpwp~x !U wm~x !L
5 (

p51

M

fp^ g~x !wp~x !u wm~x !&

5 (
p51

M

gmpfp , 1 < m < M. (138)

Equation (138) represent the direct rule, as expressed in
Eqs. (14) and (11) in the truncated basis of M basic func-
tions, whatever they are, not limited to exponentials of
the form presented in Eq. (8). The only assumption is
the convergence of Eq. (3), i.e., the validity of the hypoth-
esis.

Second, let us consider the case where both f(x) and
g(x) are discontinuous but their product h(x) is a con-
tinuous function. This is a common situation, for ex-
ample, in electromagnetism, where the normal compo-
nent DN of the electric induction vector is continuous
across any physical interface separating two media with
different electrical permittivity. In case of isotropic per-
mittivity, DN 5 eEN and both e and EN are discontinu-
ous. Now we can apply the hypothesis to h(x), which is
continuous. If 1/g(x) exists, we can apply the direct rule
to the product f(x) 5 h(x)/g(x) by using Eq. (13) written
in the truncated basis:

f m
~M ! 5 ^h~x !/g~x !u wm~x !& 5 K 1

g~x !
(
p51

M

hpwp~x !U wm~x !L
5 (

p51

M

hpK 1

g~x !
wp~x !U wm~x !L 5 (

p51

M

g inv,mphp . (17)

Now, it is sufficient to notice that by inverting the matrix
g inv

(M) , Eq. (17) can be solved with respect to hp to obtain
the inverse rule, Eqs. (15) and (16).

It must be pointed out that for an infinite basis, the two
rules give identical results, but numerical applications
cannot use infinite basis.

3. APPLICATION TO BESSEL FUNCTION
BASIS
The basis based on Bessel functions is naturally used in
cylindrical geometry, for example, in the modeling of op-
tical fibers or in diffraction by a single hole or circular
gratings. Owing to the periodicity with respect to the
azimuthal angle u, any function f of r, u, and z can be ex-
pressed in a Fourier-series representation with respect to
u:
f~r, u, z ! 5 (
n52`

1`

fn~r, z !exp~inu!. (18)

The orthogonality of exp(inu) ensures the independence of
the components that have a different subscript n. With
the Hankel transform, the functions fn(r, z) can be devel-
oped in a Bessel function basis:

fn~r, z ! 5 E
0

`

kdkf̃n~k, z !Jn~kr !. (19)

Here k could be considered, for example, as the r compo-
nent of the wave vector. By substituting Eq. (19) into Eq.
(18), we obtain a Fourier–Bessel representation for f:

f~r, u, z ! 5 E
0

`

kdk (
n52`

1`

f̃n~k, z !Jn~kr !exp~inu!.

(20)
In order to use the notation of the preceding section, we
must change Eq. (18) slightly by including k in the com-
ponent f̃n ,

f̂n~k, z ! 5 kf̃n~k, z !, (21)
so that

f~r, u, z ! 5 E
0

`

dk (
n52`

1`

f̂n~k, z !Jn~kr !exp~inu!.

(22)
In what follows, the z dependence will be omitted.

The orthogonality relations between the Bessel func-
tions can be represented in the form

E
0

`

rdrJn~kr !Jn~k8r ! 5
d ~k 2 k8!

k
, (23)

where d is the Dirac delta function. The projection f̃n(k)
of fn(r) over Jn(kr) is given by the integral

f̃n~k ! 5 E
0

`

rdrfn~r !Jn~kr !, (24)

so that

f̂n~k ! 5 kf̃n~k ! 5 kE
0

`

rdrfn~r !Jn~kr !. (25)

From Eqs. (19), (21), and (25) it is easy to derive the sca-
lar product in the Bessel function space:

^ fn~r !uJn~kr !& 5 kE
0

`

rdrfn~r !Jn~kr !. (26)

Numerical applications usually require discretization, so
the continuous variable k has to be replaced by a discrete
set of values km 5 (m 2 1)Dk , with Dk the distance be-
tween two consecutive values km of k. The integral in
Eq. (19) is replaced by a sum on m, and Eq. (19) takes the
form of Eq. (2):

fn~r ! 5 E
0

`

kdkf̃n~k, z !Jn~kr ! →

fn~r ! 5 (
m51

`

kmDkf̃n,mJn~kmr !

5 (
m51

`

fn,mJn~kmr !, (27)

where, following Eq. (24),
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f̃n,m 5 E
0

`

rdrfn~r !Jn~kmr !,

fn,m 5 Dkkmf̃n,m . (28)

The expression for gmp comes from Eqs. (11), (26), and
(28):

gn,mp 5 DkkmE
0

`

rgn~r !Jn~kpr !Jn~kmr !dr. (29)

4. NUMERICAL EXAMPLES
We now apply the direct and the inverse rules to several
different functions in the following examples to illustrate
the validity of the rules for different cases of discontinu-
ous functions.

A. Example 1
In this example, the function g is defined as a piecewise
constant,

g~r ! 5 H 1, r . R

Q, r , R
, (30)

whereas the function hn is continuous and equal to the
corresponding Bessel function:

hn~r ! 5 Jn~kpr !. (31)

This choice permits analytical determination of the com-
ponents:

hn,m [ DkkmE
0

`

hn~r !Jn~kmr !rdr

5 km

d ~km 2 kp!

km
Dk ——→

Dk→0
dmp . (32)

The last limit is due to the discretization and can be un-
derstood when one considers the application of the Dirac
delta function to an arbitrary function F:

E d ~km 2 kp!F~km!dkm 5 F~kp! ——→
discretization

(
m

dmpFm 5 Fp , F~kp! → Fp .

Similar considerations apply for g:

gn,mq [ DkkmE
0

`

gn~r !Jn~kqr !Jn~kmr !rdr

5 DkkmE
0

`

Jn~kqr !Jn~kmr !rdr

1 ~Q 2 1 !DkkmE
0

R

Jn~kqr !Jn~kmr !rdr

5 dmq 1 ~Q 2 1 !In,mq , (33)

where
In,mq 5 DkkmE
0

R

Jn~kqr !Jn~kmr !rdr

and

g inv,n,mq [ DkkmE
0

` 1

gn~r !
Jn~kqr !Jn~kmr !rdr

5 DkkmE
0

`

Jn~kqr !Jn~kmr !rdr

1 S 1

Q
2 1 DDkkmE

0

R

Jn~kqr !Jn~kmr !rdr

5 dmq 1 S 1

Q
2 1 D In,mq . (34)

We define a function fn(r) 5 1/g(r)hn(r) such that its
Bessel components are equal to

fn,m 5
1

Q
E

0

R

Jn~kmr !Jn~kpr !rdrDkkm

1 E
R

`

Jn~kmr !Jn~kpr !rdrDkkm

5 dmp 1 S 1

Q
2 1 D In,mp [ g inv,n,mp . (35)

Having established the analytical expression for all the
components of the three functions, we can now compare
the direct and the inverse rules when they are applied to
the continuous product hn(r) of the two discontinuous
functions g and fn . However, before that, it is worth not-
ing that the expression for fn,m can be obtained from Eqs.
(32) and (34) by use of the direct rule, independently of
the truncation, provided that M > kp /Dk .

The direct rule for hn,m
(M) is written as

hn,m
~M,direct! 5 (

q51

M

gn,mq
~M ! fn,q

~M !

5 dmp 1 ~Q 2 1 !S 1 2
1

Q D
3 S In,mp 2 (

q51

M

In,mqIn,qpD , (36)

taking into account Eqs. (33) and (35).
The term in the last parentheses of Eq. (36) tends to

zero as M grows to infinity, owing to the second set of or-
thogonality relations for the Bessel functions:

rE
0

`

kdkJn~kr1!Jn~kr2! 5 d ~r1 2 r2!, (37)

so that
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(
q51

M

In,mqIn,qp → DkkmE
0

`

kqdkqE
0

R

r1dr1Jn~kmr1!Jn~kqr1!

3 E
0

R

r2dr2Jn~kqr2!Jn~kpr2!

5 DkkmE
0

R

r1dr1Jn~kmr1!E
0

R

r2dr2Jn~kpr2!

3
d ~r1 2 r2!

r2

5 DkkmE
0

R

r1dr1Jn~kmr1!Jn~kpr1!

5 In,mp . (38)
Thus the direct rule, Eq. (36), gives the correct values, Eq.
(32), for hn,m 5 dmp , only in the limit M → `. However,
when M is finite, this relation is not rigorously fulfilled,
and thus

hn,m
~M,direct! Þ dmp 5 hn,m . (39)

The inverse rule is written as

hn,m
~M,inv! 5 (

q51

M

@ g inv,n
~M ! #mq

21 fn,q
~M ! 5

Eq. ~35!

(
q51

M

@ g inv,n
~M ! #mq

21 g inv,n,qp
~M !

5 dmp [ hn,m , (40)
by using the definition of matrix inversion; i.e., the in-
verse rule gives the exact values of hn,m independently of
the truncation parameter M. Of course, there is always
some numerical error, owing to the matrix inversion.

Figure 1 presents the dependence of hn, p
(M) , calculated

numerically by using the direct and the inverse rules for
different number n of the Bessel functions. In all the ex-
amples, we take R 5 1 and Q 5 10. The value of Dk
5 0.1 is kept constant and low enough that its further re-
duction does not significantly influence the results. For a
constant Dk , the increase of M results in increasing the
maximum value of km , denoted on the abscissa axis as
kMax 5 MDk . The value of kp in Eq. (31) is taken equal
to 1.

As can be observed, the inverse rule always gives the
correct value of 1 for hn, p

(M) , whereas the direct rule gives
results that converge more slowly toward the correct re-
sult. Moreover, the convergence is slower for the Bessel
functions that have lower number n.

B. Example 2
Let us consider a more complicated case, in some sense
the opposite of example 1. Here the function hn has an
infinite number of Bessel function components. We
again take discontinuous functions fn and gn that have a
continuous product hn . The function gn(r) is the same
as in the previous example, Eq. (30), whereas hn is chosen
to have components independent of m:

hn~r ! 5
1

r
,

fn~r ! 5
1

gn~r !
hn~r !. (41)
This choice gives constant values for all hn,m , equal to
Dk , whatever n and m are, owing to the fact that

hn,m [ DkkmE
0

` 1

r
Jn~kmr !rdr 5 Dkkm

1

km
5 Dk . (42)

Figure 2 presents the values of h1,1
(M)/Dk and h1,5

(M)/Dk as a
function of kMax 5 MDk for Dk 5 0.1, R 5 1, and Q

Fig. 1. Example 1. Convergence with respect to kMax 5 0.1 M
of the coefficient hn,n of the function hn(r) 5 Jn(r), calculated
with the direct and the inverse rules for several values of n,
shown in the insert.

Fig. 2. Example 2. Convergence with respect to kMax 5 0.1 M
of the coefficients (a) h1,1 and (b) h1,5 of the function hn(r)
5 1/r.
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5 10. As can be observed, even in these difficult condi-
tions (with hn,m /Dk [ 1, ;n, m) the inverse rule ensures
much better convergence than the direct rule.

Fig. 3. Example 3. (a) Reconstruction of h0(r) with the direct
rule with three different values of kMax , together with the exact
plot, Eq. (46). (b) The same as in (a) but with kMax 5 200.
Gibbs phenomena are still observed. (c) The same as in (a) but
with the inverse rule. The exact values cannot be distinguished
from the curve obtained with kMax 5 20. Gibbs phenomena are
completely absent.
C. Example 3
The final example presents a more realistic situation,
which is found in the modeling of optical fibers. Let us
consider a dielectric cylinder with radius R and refractive
index n (1)r,R 5 AQ. The surrounding medium has index
n (2)r.R 5 1. In that case, a solution for the electromag-
netic field that propagates along the z axis with a con-
stant of propagation kz can be sought in the form

fn~r ! ; Jn~kr~1 !r !, r , R,

fn~r ! ; Jn~kr~2 !r !, r . R, (43)

with kr(1) and kr(2) being the radial components of the
wave vector, determined from

kr~1 !
2 5 k0

2n~1 !
2 2 kz

2,

kr~2 !
2 5 k0

2n~2 !
2 2 kz

2, (44)

where k0 is the vacuum wave number.
If fn represents the nth component of the radial electric

field, it is a discontinuous function of r on the surface r
5 R, but its product with gn(r) 5 n2 [which also satisfies
Eq. (30)] must be continuous. Let us keep the definition
of gn given by Eq. (30). The choice of fn is made to have
the same form as that given by Eq. (43),

fn~r ! 5 Jn~kpr !, r . R,

fn~r ! 5
1

Q

Jn~kpR !

Jn~ksR !
Jn~ksr !, r , R, (45)

in such a way as to ensure that hn(r) 5 gn(r)fn(r) is a
continuous product of discontinuous functions:

hn~r ! 5 Jn~kpr !, r . R,

hn~r ! 5
Jn~kpR !

Jn~ksR !
Jn~ksr !, r , R. (46)

As in the previous two examples, it is possible to deter-
mine analytically the Bessel components of hn , gn , and
fn , which are equal to

gn,mq 5 dmq 1 ~Q 2 1 !In,mq ,

fn,m 5 dmp 2
1

Q
In,mp 1

Jn~kpR !

Jn~ksR !
In,ms ,

hn,m 5 dmp 2 In,mp 1
Jn~kpR !

Jn~ksR !
In,ms . (47)

On the other hand, we can calculate the components hn,m
(M)

numerically, using the direct rule or the inverse rule, and
compare their convergence when M increases, with the
exact values taken from Eq. (47). To better visualize the
difference between the direct rule and the inverse rule, in
this example we prefer to present not the convergence of
hn,m

(M) but the reconstructed function,

hn
~M !~r ! 5 (

m51

M

hn,m
~M ! Jn~kmr !. (48)

Figure 3 presents the r dependence of h0(r) as given by
Eq. (46) with Q 5 10, kp 5 1, ks 5 3, R 5 1, n 5 0, and
Dk 5 0.1. The values obtained by using Eq. (46) are
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called exact values and are compared with the values cal-
culated through Eq. (48) with the direct [Figs. 3(a) and
3(b)], and the inverse [Fig. 3(c)] rules. The direct rule
leads to oscillations in the form of the Gibbs phenomenon,
whose frequency increases as M (kMax [ kM 5 MDk).
However, as is well known for Gibbs phenomena, the am-
plitude of these oscillations does not decrease with M, as
can be observed in Fig. 3(b) when kMax 5 200; close to the
discontinuity point of f and g, the continuous function
h0

(M,direct) reconstructed by using the direct factorization
rule still exhibits oscillatory behavior. On the other
hand, with the inverse rule, Fig. 3(c), such oscillations are
absent, and even quite low values of kMax are sufficient for
accurate reconstruction of the function h(r).

5. CONCLUSION
The factorization rules, developed by Li for functions rep-
resented in a truncated exponential basis and applied
with great success in the differential theory of gratings,7

are extended to any truncated basis of continuous func-
tions. Numerical examples show the usefulness of the
inverse rule in factorizing the continuous product of dis-
continuous functions. This study is devoted to the exten-
sion of the fast Fourier factorization method7 to diffrac-
tion problems described in non-Cartesian coordinates
and, in particular, in cylindrical geometry. Domains of
physics other than electromagnetism could also be consid-
ered.

E. Popov’s e-mail address is e.popov@fresnel.fr.
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