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Differential theory: application to highly
conducting gratings
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The recently developed fast Fourier factorization method, which has greatly improved the application range of
the differential theory of gratings, suffers from numerical instability when applied to metallic gratings with
very low losses. This occurs when the real part of the refractive index is small, in particular, smaller than
0.1–0.2, for example, when silver and gold gratings are analyzed in the infrared region. This failure can be
attributed to Li’s ‘‘inverse rule’’ [L. Li, J. Opt. Soc. Am. A 13, 1870 (1996)] as shown by studying the condition
number of matrices that have to be inverted. Two ways of overcoming the difficulty are explored: first, an
additional truncation of the matrices containing the coefficients of the differential system, which reduces the
numerical problems in some cases, and second, an introduction of lossier material inside the bulk, thus leaving
only a thin layer of the highly conducting metal. If the layer is sufficiently thick, this does not change the
optical properties of the system but significantly improves the convergence of the differential theory, including
the rigorous coupled-wave method, for various types of grating profiles. © 2004 Optical Society of America
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1. INTRODUCTION
The differential theory of gratings,1–4 which was devel-
oped in the 1970s, experienced two important break-
throughs during the 1990s. The first consisted of the in-
troduction of the S-matrix propagation algorithm,5,6

which eliminated the numerical contamination during
the integration process that was related to the presence of
growing exponential functions. The second was the de-
velopment of the fast Fourier factorization (FFF)
method,6–8 which greatly increased the speed of conver-
gence of the truncated Fourier series of the field diffracted
under arbitrary polarization conditions. The FFF
method relies on factorization rules that were stated by
Li.9 The ‘‘direct rule’’ allows computation of the Fourier
components of the product of a discontinuous function by
a continuous one, and the ‘‘inverse rule’’ applies to the
product of complementary discontinuous functions, i.e.,
functions whose product is continuous.

Numerical results6,7 have shown the FFF method to be
efficient with highly reflecting metals used in the visible.
However, problems have recently been discovered with
use of silver and gold gratings in the near-infrared region.
A low rate of convergence of the series of the field was
found when the refractive index n1 of the grating mate-
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rial reached the value 0.1 1 i10. This is not an academic
problem, since metallic gratings in the near infrared re-
gion have great potential for use in dense wavelength de-
multiplexing.

To illustrate this, in Fig. 1 we present the convergence
of a sinusoidal metallic grating with period d equal to the
groove depth h 5 0.5 mm, used in TM polarization at 45°
incidence from air, with wavelength equal to 0.6328 mm.
The convergence parameter N determines the number of
Fourier components (equal to 2N 1 1) of the field, kept in
the calculations. The real part of the refractive index of
the material is progressively lowered from 0.3 to 0 start-
ing with n1 5 0.3 1 i9 (thin solid curve in Fig. 1), then
n1 5 0.1 1 i10 (thick solid curve), and finishing with a
metal having an artificially chosen index n1 5 0 1 i10
(dashed curve). We recall that the electromagnetic losses
are proportional to the imaginary part of the permittivity
e [ e0er 5 e0n2, equal to the product of the vacuum per-
mitivity e0 and the relative permittivity er of the sub-
stance. In the last example the metal is lossless. As can
be observed, even in the first example, presenting a rela-
tively rapid convergence at N 5 13, the results start to
deteriorate for N . 20. The case then worsens with a
decrease of Re(n1).
2004 Optical Society of America
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In contrast, no such problems exist in TE polarization.
Together with the fact that the numerical problems in-
crease with a decrease of the real part of the grating ma-
terial and are the worst when Re(n1) 5 0, this suggests
that the reason for the problem could lie in the validity of
the inverse rule9 applied to a value of permittivity er that
goes across the grating surface from the value of 1 in air
to an almost real negative value in the metal. As shown
by Li, this may cause the corresponding Toeplitz matrix to
become almost singular.

To clarify the problem, we first choose to work on a
lamellar grating profile illuminated in TM polarization
for which various methods are available to check the re-
sults, namely, the modal method,10–12 the rigorous
coupled-wave (RCW) method,13–16 and the differential
theory.6 We first show that the value n1 5 0 1 i10 pro-
duces bad condition numbers17 for the matrix, which
must be inverted when the inverse rule has to be used.
Two ways to eliminate the numerical instabilities are
then tried. The first one consists of truncating the ma-
trix of the coefficients of the differential system to be in-
tegrated. The second one represents a physical solution
and consists of replacing the bulk region of the highly con-
ducting material with a not-so-highly-conducting metal.
If an optically thick (typically 20–30 nm) surface layer of
the original metal is preserved, this procedure does not
modify the diffracted field significantly, and it removes

Fig. 1. Convergence with respect to the truncation parameter N
of the 21st-order diffraction efficiency of a metallic sinusoidal
grating with period d equal to the groove depth h 5 0.5 mm in
TM polarized light with wavelength 0.6328 mm, incident from air
at an angle of 45°. Calculations were made for three different
complex refractive indices of the substrate with values shown in
the figure.

Fig. 2. Schematical representation of a lamellar grating.
the (quasi-) singularity of the corresponding Toeplitz ma-
trix, which appears during application of the inverse rule.
The advantage of the second method is that it can be gen-
eralized to an arbitrary profile, in particular for sinu-
soidal and triangular gratings, and can be extended to
crossed gratings and three-dimensional periodic struc-
tures.

2. THE DIFFRACTION PROBLEM
Figure 2 shows a lamellar grating that will be studied in
what follows. Its surface separates the space into two do-
mains, with refractive indices nj ( j 5 1, 2). The super-
strate is air (n2 5 1), and the substrate is a good reflec-
tor (gold, silver, etc.). The groove period d, equal to the
groove depth h, is equal to 0.5 mm. The grating is illu-
minated at angle of incidence u, wavelength l, and circu-
lar frequency v, with an incident wave vector k2 lying in
the cross-section plane xOy. The incident magnetic field
is parallel to the z axis (TM polarization). We introduce
the column vector @Ex#, which contains the pseudo-
Fourier components of Ex , and similar notation for @Hz#,
and F will denote the column vector containing the two
column vectors @Ex# and @Hz#. The FFF method leads to
the following propagation equations6:

dF

dy
5 MF,

where

M 5 iF 0
a

v
ve b21a 2 vm

2vV 1

e
B 21

0
G . (1)

The double square brackets represent a Toeplitz matrix
formed by the corresponding Fourier components of the
enclosed function, a is a diagonal matrix with elements
an given by an 5 k2 sin u 1 n2p/d, and n is integer.

Matrix M contains four submatrices Mi, j (i, j 5 1, 2),
which are (2N 1 1) 3 (2N 1 1) matrices. For a lamel-
lar profile, M is y independent, and the solution F( y) can
then be expressed in terms of the eigenvalues rm of ma-
trix M, which represents the essence of the RCW method.
If we designate by w( y) the diagonal matrix with ele-
ments exp(rm y)dnm and by V the square matrix made with
the eigenvectors of M put in the same sequence as the se-
quence of eigenvalues on the diagonal of w, it is well-
known6 that

F~ y ! 5 Vw~ y !V21F~0 !. (2)

The eigenvalue equation is

det~M 2 RI! 5 0, (3)

where Rn,m 5 rmdn,m , and I is the unity matrix. To de-
crease the time calculation, it is judicious to resolve the
following system:

M1,2M2,1 2 R2I 5 0. (4)

Introducing the matrix U 5 M1,2M2,1 , we obtain, using
Eq. (1),
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U 5 v2mV 1

e
B 21S I 2

a

v2m
ve b21a D . (5)

Matrix U is a (2N 1 1) 3 (2N 1 1) matrix, and a nu-
merical solution of the eigenvalue problem gives (2N
1 1) eigenvalues tm and (2N 1 1) eigenvectors @Hz#.
Owing to the form of matrix M in Eq. (1), its square ma-
trix has 4N 1 2 eigenvalues, which are 2 3 2 degener-
ated and equal to tm . Since the eigenvalues of M2 are
the square of the eigenvalues of M, the link between tm
and rm is tm 5 rm

2. Thus the 4N 1 2 eigenvalues rm of
M are divided into couples having opposite signs and ob-
tained from the 2N 1 1 eigenvalues tm through the rela-
tion rm1,2

5 6Atm.
In conical incidence, matrix M contains 16 submatrices

(half of which are null) and thus is a 4(2N 1 1)
3 4(2N 1 1) matrix.6 For gratings slanted by an angle
d, the blocks of the new matrix M̃ are simply related to
those of matrix M by6

M̃i, j 5 Mi, j 1 L, (6)

where L is a diagonal matrix with elements equal to
2in(2p/d)tan d.

To demonstrate the numerical problems that arise, we
choose as a good reflector gold, with refractive index 0
1 i10, and study the dependence of the 21st-order effi-
ciency as a function of the groove width c. Figure 3(a)
shows that strong fluctuations still remain when the field
is described by 31 Fourier components (N 5 15). It
must be pointed out that these anomalies have no physi-
cal character; they are just numerical errors, and their
position as a function of the aspect ratio c varies when the
truncation parameter N is changed. This behavior
should be compared with the results obtained by using

Fig. 3. 21st-order efficiency of a lamellar grating with optical
index of the material n1 5 0 1 i10 as function of the groove
width c for N 5 15. d 5 h 5 0.5 mm, l 5 0.6328 mm, u
5 30 deg. (a) RCW method, (b) rigorous modal method.
the rigorous modal method,10,11 which does not use Fou-
rier decomposition of the field and thus of e [Fig. 3(b)] and
gives a smooth dependence except for two values of c
where real anomalies occur.

Let us recall that veb is the Toeplitz matrix constructed
with the Fourier components of e; i.e., the (n, m) entry of
veb is en2m . When n1 5 0 1 i10, the relative permittiv-
ity of the metal becomes real negative: e1,r 5 n1

2

5 2100. As a result, the Toeplitz matrix veb that ap-
pears in Eq. (1) involves the Fourier components of a real
periodic function oscillating between e0 and 2100e0 , and
its inverse oscillates between 1/e0 and 2 1(100e0).
This behavior violates the condition that ensures the va-
lidity of the inverse rule9 that was used to get Eqs. (1) and
(5). The study of the condition number of veb and v1/eb
shows that it becomes less than 1023 for many values of
the groove width and can sometimes go as low as 1025, as
presented in Fig. 4. The results are that this matrix is
quasi-singular and that its inversion produces errors in
the integration process of Eq. (1); this causes the appear-
ance of many thin anomalies in Fig. 3(a), which are
merely numerical artifacts. The aim of the study is to
get rid of these artifacts.

3. ADDITIONAL TRUNCATION OF THE
BLOCK MATRICES APPEARING IN
THE DIFFERENTIAL SET OF EQUATIONS
A. Description of the Numerical Procedure
In the limit of infinite number of Fourier components (N
→ `), the difference between the matrices veb and v1/e b21

vanishes. However, for a limited N, the two truncated
matrices differ from each other. As mentioned by Li,9 the
difference is more noticeable close to the two extremities
of the main diagonals of the matrices. This fact led to the
idea of supplementary truncation of the two matrices
ve b21 and v1/e b21 that exist in Eq. (1) after their calcula-
tion for a given truncation parameter by eliminating the
regions lying close to the extremities of their main diago-
nals.

To this end, it was necessary to introduce a two-step
truncation process. First, we used a larger-than-N trun-
cation order M 5 N 1 D when calculating the matrices
veb, v1/eb, ve b21, v1/e b21, and all submatrices in matrices M
and U. Then we made a supplementary truncation of all
submatrices, reducing their size to the order (2N 1 1)
3 (2N 1 1). This process is schematically presented in
Figs. 5–7. For submatrices formed by multiplication of
two matrices, this process results in the multiplication of

Fig. 4. Condition number of veb as a function of the groove width
c. All the parameters are the same as in Fig. 3.
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two rectangular matrices with orders (2N 1 1) 3 (2M
1 1) and (2M 1 1) 3 (2N 1 1) (Fig. 6). For submatri-
ces formed by multiplication of three matrices, this pro-
cess is equivalent to multiplication matrices of orders
(2N 1 1) 3 (2M 1 1), (2M 1 1) 3 (2M 1 1), and
(2M 1 1) 3 (2N 1 1) (Fig. 7). In some cases, this kind
of truncation may cause a smoothing effect. For ex-
ample, following Ref. 9, we choose two functions f(x) and
g(x), periodic with period 2p, given by

Fig. 5. Matrix truncation parameters M, D, and N.

Fig. 6. Two-step truncation method applied to the multiplica-
tion of two matrices.

Fig. 7. Two-step truncation method applied to the multiplica-
tion of three matrices.

Fig. 8. Effect of the truncation type on the reconstruction of a
continuous function obtained by the product of two discontinuous
ones. In this example, N 5 50 and M 5 150.
f~x ! 5 5 a, uxu ,
p

2

a

2
,

p

2
, uxu < p

, (7)

and g(x) 5 1/f(x). It is obvious that the discontinuities
of f(x) and g(x) are pairwise complementary in the sense
that their product h(x) is continuous, since h(x)
5 f(x)g(x) 5 1, ;x.

Figure 8 shows, in the neighborhood of the point of dis-
continuity x 5 p/2, the partial sums h (MM)(x), h (MN)(x),
and h (NN)(x), defined below in Eqs. (8)–(11). The par-
tial sums represent the function h(x) 5 1 reconstructed
by summing the function’s truncated Fourier series (i.e.,
by a truncated inverse Fourier transform) and using the
Fourier components hn

(M) obtained as a truncated factor-
ized product of fn and gn . This product is computed by
using the truncated finite Laurent rule (or direct rule):

hn
~M ! 5 (

m52M

M

fn2m gm . (8)

The reconstructed function (partial sum) h(x) then de-
pends on two truncation parameters: first, the sum lim-
its M in Eq. (8) and second, the number of Fourier com-
ponents in the partial sum, Eqs. (9)–(11). We thus can
define three different partial sums:

h ~MM !~x ! 5 (
n52M

M

hn
~M ! exp~inx !, (9)

h ~MN !~x ! 5 (
n52N

N

hn
~M ! exp~inx !, (10)

h ~NN !~x ! 5 (
n52N

N

hn
~N ! exp~inx !. (11)

As can be observed in Fig. 8 with N 5 50 and M 5 150,
the Gibbs phenomenon due to the truncation and the dis-
continuity of f(x) and g(x) is partially smoothed out when
the combination (MN) is used, i.e., when the reconstruc-
tion is made with N components in the sum of Eq. (10), a
number significantly smaller than the number M in the
factorization rule of Eq. (8).

B. Numerical Results for a Slanted Grating in Conical
Mounting
First, we consider an arbitrarily chosen lamellar grating
etched on a substrate with complex refractive index 0.01
1 i10. The geometry of the grating diffraction problem
in conical mountings is depicted in Fig. 9 for the particu-
lar case of a surface-relief slanted lamellar diffraction
grating. A linearly polarized plane wave is incident at
angle of incidence u 5 30° and at azimuthal angle d8
5 30°. The incident medium is air. The electric-field
vector is in the plane of incidence, so that angle c 5 0.
The grooves of the lamellar grating are slanted at angle
d 5 245°, and the fill-in ratio (the duty cycle) of the grat-
ing is 0.5. The grating has a thickness (i.e., the entire
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groove depth) h 5 0.3 mm. The incident (vacuum) wave-
length is l 5 0.8 mm, and the grating period is d
5 1 mm (L 5 0.7071 mm).

Figures 10 and 11 show the convergence of the diffrac-
tion efficiencies as N is increased. Figure 10 compares
the convergence of the 21st-order diffraction efficiencies
computed by the RCW method on the basis of the FFF for-
mulation with D 5 0 (circles) and D 5 3 (triangles), and
on the basis of the conventional formulation (without
FFF) and with D 5 0 (diamonds) when N is increased
from 2 to 100. The results of the conventional formula-
tion oscillate and converge very slowly. The efficiencies
computed with the FFF-based formulation converge re-
markably quickly as N increases. However, when D
5 0, there are several strong fluctuations close to N
5 37 and N 5 52. Use of the preliminary truncation
with D 5 3 helps to eliminate these fluctuations. The
preliminary truncation method does not work for the con-
ventional formulation of the eigenvalue problem of Eq.

Fig. 9. Schematic representation of a slanted grating illumi-
nated in conical mounting.

Fig. 10. Improvement of convergence as a function of truncation
parameter with the use of the FFF method compared with the
conventional formulation. Shown is the effect of the truncation
parameter D on the fluctuations with the FFF method.
(3), because there is no inversion of the Toeplitz matrices
in the conventional formulation, in contrast to Eq. (1).
However, the conventional formulation already suffers
from slow convergence, as is obvious from Fig. 10.

Figure 11 illustrates the effect of a preliminary trunca-
tion for two values of D 5 3 and 5. As can be observed, a
further increase of D does not influence the convergence
rate. We also tried other values of D, but increasing D
further did not give as good results.

C. Numerical Results for an Unslanted Grating
To investigate the effect of the double truncation on fluc-
tuations of the calculated diffraction efficiency for un-
slanted (in Fig. 9, d 5 0) metallic lamellar gratings, we
consider a lamellar grating etched on substrate with com-
plex refractive index 0 1 i10. A linearly polarized plane
wave is incident at angle of incidence u 5 30° and at azi-
muthal angle d8 5 0 (nonconical mounting). As before,
the incident medium is air. The electric-field vector is in
the plane of incidence ( c 5 0, TM polarization). The
fill-in ratio of the grating is 0.5. The grating has a groove
depth of 0.5 mm. The incident (vacuum) wavelength is
l 5 0.6328 mm, and the grating period is 0.5 mm. This
case is interesting, because it permits the use of two for-
mulations of the eigenvalue problem, Eq. (3) or Eq. (4).

The general formulation requires a matrix M with di-
mensions 2(2N 1 1) 3 2(2N 1 1), and the formulation
in Eq. (4) requires a (2N 1 1) 3 (2N 1 1) U matrix.
For ordinary one-step truncation (D 5 0) the two formu-
lations give identical numerical results; however, the
computer code for solving Eq. (4) works much faster.

Figure 12 shows the convergence of the 21st-order dif-
fraction efficiencies and illustrates the effect of prelimi-
nary truncation for D 5 3. Without preliminary trunca-
tion, D 5 0, there are two strong fluctuations for N
5 13 and N 5 29. Using preliminary truncation (D
5 3) eliminates these fluctuations but reduces the con-
vergence rate. This reduction is much more pronounced
when Eq. (4) is used instead of Eq. (3), although the latter
requires longer computation times for the same value of
N.

All results presented in Figs. 10–12 correspond to the
gratings with fill-in ratio 0.5. Attempts to extend the

Fig. 11. Influence of the D parameter on the elimination of the
fluctuations when the truncation number N is increased.
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preliminary truncation method on gratings with arbitrary
fill-in ratio have not given satisfactory results. Figure 13
shows the dependence of diffraction efficiency on fill-in ra-
tio at N 5 15, the remaining parameters being the same
as in Fig. 3. Figure 13 shows that the preliminary trun-
cation method with D 5 3 eliminates some of fluctuations
that appear when D 5 0, in particular in the neighbor-
hood of c/d 5 0.5. However, many other oscillations still
remain, in comparison with the curve in Fig. 3(b).

4. PHYSICAL SOLUTION
Since the problem seems to be due to the poor behavior of
e and 1/e, which jump from real positive to almost real
negative values across the grating surface, we can intro-
duce inside the grating material an artificial region in
which n1 is a complex number far from a pure imaginary
one. This means that we introduce a bulk region with a
much greater real part, typically nm 5 2 1 i10. On the
surface of this bulk, a layer of the original grating mate-
rial with refractive index n1 will remain (see Fig. 14,
which presents an example of a lamellar grating). When
n1 5 0.1 1 i10, the attenuation depth is typically less

Fig. 12. Performance of the two-step truncation method when it
is applied to the eigenvalue problems stated by Eqs. (3) and (4).

Fig. 13. Performance of the two-step truncation method as a
function of the fill-in-ratio grating parameter.
than 10 nm, so provided that the layer thickness is
;30–40 nm (or less), the field inside the artificial bulk
will be close to zero; i.e., the incident wave will not expe-
rience the existence of the bulk material. It means that
inside the artificial domain we should be allowed to put
any material we want without modifying the diffraction
problem significantly. However, the functions e and 1/e
will not so strongly violate the condition that ensures the
validity of the inverse rule, so the corresponding Toeplitz
matrices are expected to behave much better. On the
other hand, although the incident wave could not experi-
ence the change in the bulk index, it is important not to
change its index too much in comparison with the metal
layer index, because the Fourier components of e and 1/e
must not differ too much from those in the initial diffrac-
tion problem; otherwise, a large value of N would be re-
quired for a proper description of e and 1/e and would af-
fect the convergence rate.

A. Lamellar Profile
To prove that it is the jump of e and 1/e from positive to
negative values that is at the origin of the problem, we
choose the worst case from a numerical point of view with
n1 5 0 1 i10, i.e., zeroing the real part of the refractive
index. The groove and incident angle parameters are the
same as in Fig. 3. The thickness e of the layer is equal to
20 nm. Figure 15 shows the 21st-order efficiency as a
function of c. Two cases are shown: (a) with nm 5 n1
5 0 1 i10 and (b) nm 5 2 1 i10. As can be observed,
artifacts similar to those in Fig. 3(a) appear in case (a),
the difference being due to the change in N, whereas the
curve in Fig. 15(b) is free of them. Moreover, for case (b),
changing N to 15 instead of 20 led to a curve practically
unchanged, a result not shown here. Figure 16 presents
the convergence of the sum of efficiencies (order 0 plus or-
der 21) as a function of N for several cases. Case (a) is
identical to case (a) in Fig. 15, with nm 5 n1 5 0 1 i10,
and to case (b), too, with n1 5 0 1 i10 and nm 5 2
1 i10, whereas for case (c) it is assumed that the entire
grating is lossy with nm 5 n1 5 2 1 i10. One can ob-
serve that introducing a lossy bulk material [case (b)] re-
moves the numerical fluctuations and that the conver-
gence rate in that case is identical to the convergence rate
when the grating material is overall equal to 2 1 i10
[case (c)], the latter being characterized by absorption
losses (total diffracted efficiency smaller than 100%).

Case (d) treats a metallic grating with dielectric bulk
material, i.e., n1 5 0 1 i10 and nm 5 2 1 i0, and illus-

Fig. 14. Schematical representation of the lamellar grating
with artificially changed bulk material.
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Fig. 15. (a) same as in Fig. 3(a), but with N 5 20 instead of 15;
(b) same as (a) but with a bulk material with losses.
trates the discussion at the end of the previous paragraph
that problems of convergence will exist when the bulk in-
dex is quite different from the layer index.

From Figs. 15 and 16, it is established that the physical
solution that avoids the jumps of e and 1/e from negative
to positive real values produces stable results as soon as
the layer thickness is twice the attenuation length, what-
ever the aspect ratio may be.

B. Sinusoidal Profile
In contrast to lamellar profiles, sinusoidal gratings can be
seen as having an aspect ratio that varies with the ordi-
nate. Having suppressed the numerical artifacts for any
aspect ratio of lamellar gratings, we are tempted to try
the physical solution on arbitrary profiles. Figure 17
shows the results for the grating with a sinusoidal profile
with parameters given in Fig. 1 (dashed curve). Again,
we take the most difficult case with n1 5 0 1 i10, which
exhibits the greatest oscillations in Fig. 1. If we change
the index of the volume material to nm 5 3 1 i10 and
preserve only a 40-nm-thick layer with index n1 5 0
1 i10, the convergence is drastically improved. Here it
was necessary to increase the layer thickness, measured
in the vertical direction; otherwise, the layer becomes too
thin at the steep slopes (the modulation depth h/d
5 100%), and absorption losses due to the bulk material
manifest themselves.

5. CONCLUSION
The numerical problem encountered by the FFF method
when applied to highly conducting gratings and due to the
limitations of the inverse rule can be overcome in some
cases by a suitable additional truncation of the matrices
involved in the calculations. However, the improvement
is not guaranteed for every aspect ratio of the grating.
Fig. 16. Convergence with respect to N of the total diffracted energy (sum of efficiencies) for the grating presented in Figs. 3 and 15 with
c/d 5 0.5. (a) nm 5 n1 5 0 1 i10; (b) n1 5 0 1 i10 and nm 5 2 1 i10; (c) nm 5 n1 5 2 1 i10; (d) n1 5 0 1 i10 and nm 5 2 1 i0.



206 J. Opt. Soc. Am. A/Vol. 21, No. 2 /February 2004 Popov et al.
The physical solution, which consists of artificially intro-
ducing lossier material into the bulk of the highly con-
ducting metal, leads to a fast convergence of the efficiency
with respect to the number of Fourier components of the
field, without changing the results significantly. This ap-
proach is applicable to most grating materials and pro-
files. Moreover, it can be easily extended to two- and
three-dimensional grating structures, for which the con-
vergence problems are particularly important because of
limitations of memory and computation time.

The e-mail address of E. Popov is e.popov@fresnel.fr.
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Opt. 5, 65–77 (1974).

5. L. Li, ‘‘Formulation and comparison of two recursive matrix
algorithms for modeling layered diffraction gratings,’’ J.
Opt. Soc. Am. A 13, 1024–1035 (1996).

6. M. Nevière and E. Popov, Light Propagation in Periodic Me-
dia: Differential Theory and Design (Marcel Dekker, New
York, 2003).

7. E. Popov and M. Nevière, ‘‘Grating theory: New equa-
tions in Fourier space leading to fast converging results
for TM polarization,’’ J. Opt. Soc. Am. A 17, 1773–1784
(2000).

8. E. Popov and M. Nevière, ‘‘Maxwell equations in Fourier
space: Fast converging formulation for diffraction by arbi-
trary shaped, periodic, anisotropic media,’’ J. Opt. Soc. Am.
A 17, 1773 (2001).

9. L. Li, ‘‘Use of Fourier series in the analysis of discontinuous
periodic structures,’’ J. Opt. Soc. Am. A 13, 1870–1876
(1996).

10. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and
J. R. Andrewartha, ‘‘The dielectric lamellar diffraction grat-
ing,’’ Opt. Acta 28, 413–428 (1981).

11. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and
J. R. Andrewartha, ‘‘The finitely conducting lamellar dif-
fraction grating,’’ Opt. Acta 28, 1087–1102 (1981).

12. J. R. Andrewartha, G. H. Derrick, and R. C. McPhedran, ‘‘A
general modal theory for reflection gratings,’’ Opt. Acta 28,
1501–1516 (1981).

13. S. T. Peng, T. Tamir, and H. Bertoni, ‘‘Theory of periodic di-
electric waveguides,’’ IEEE Trans. Microwave Theory Tech.
MTT-23, 123–133 (1975).

14. M. G. Moharam and T. K. Gaylord, ‘‘Rigorous coupled-wave
analysis of planar-grating diffraction,’’ J. Opt. Soc. Am. 71,
811–818 (1981).

15. M. G. Moharam and T. K. Gaylord, ‘‘Rigorous coupled-wave
analysis of dielectric surface-relief gratings,’’ J. Opt. Soc.
Am. 72, 1385–1392 (1982).

16. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gay-
lord, ‘‘Stable implementation of the rigorous coupled-wave
analysis for surface-relief gratings: enhanced transmis-
sion matrix approach,’’ J. Opt. Soc. Am. A 12, 1077–1086
(1995).

17. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in Fortran: The Art of Scien-
tific Computing, 2nd ed. (Cambridge U. Press, Cambridge,
UK, 1992).


