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An electromagnetic study of the staircase approximation of arbitrary shaped gratings is conducted with three
different grating theories. Numerical results on a deep aluminum sinusoidal grating show that the staircase
approximation introduces sharp maxima in the local field map close to the edges of the profile. These maxima
are especially pronounced in TM polarization and do not exist with the original sinusoidal profile. Their ex-
istence is not an algorithmic artifact, since they are found with different grating theories and numerical imple-
mentations. Since the number of the maxima increases with the number of the slices, a greater number of
Fourier components is required to correctly represent the electromagnetic field, and thus a worsening of the
convergence rate is observed. The study of the local field map provides an understanding of why methods that
do not use the staircase approximation (e.g., the differential theory) converge faster than methods that use it.
As a consequence, a 1% accuracy in the efficiencies of a deep sinusoidal metallic grating is obtained 30 times
faster when the differential theory is used in comparison with the use of the rigorous coupled-wave theory. A
theoretical analysis is proposed in the limit when the number of slices tends to infinity, which shows that even
in that case the staircase approximation is not well suited to describe the real profile. © 2002 Optical Society
of America
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1. INTRODUCTION
When almost 25 years ago Moharam and Gaylord pub-
lished their first work1 on a method for modeling diffrac-
tion gratings, a method later called the ‘‘rigorous coupled-
wave (RCW) method,’’ they could probably hardly imagine
how long would be the history of this method. A year
later2 they proposed to use the method for surface relief
gratings. Although the method was initially designated
for lamellar gratings, the idea that each grating profile
could be represented as a staircase approximation of sev-
eral or more layers of lamellar gratings naturally came to
mind to extend the universality of the method. However,
as happened sooner or later with all the methods, prob-
lems arose in dealing with deeper gratings. The first rea-
son was that the growing exponential terms3,4 eliminated
using an approach derived from chemistry5,6 known as
the R-matrix propagation algorithm, which was soon re-
placed by the much simpler S-matrix propagation
algorithm.7,8 This, however, did not help when highly
conducting gratings were used in TM polarization, with
the magnetic-field vector parallel to the grooves. Re-
cently Lalanne et al.9 found an empirical solution for this
problem, which was put on a strong mathematical basis
by Li.10 The rules pointed out by Li were used by Popov
and Nevière11,12 to propose a fast converging formulation
of the differential theory for arbitrary-shaped gratings,
which gave spectacular results in TM polarization.

The current situation is that the RCW theory is very
suitable for lamellar metallic and dielectric gratings be-
cause it gives rapidly converging results. The question
that remains is whether the method can have the same
success when applied to arbitrary profiles. Despite the
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long history of its development, there are only a few nu-
merical results published in the literature that address
the question. Moreover, these studies concern either di-
electric gratings or metallic gratings in TE polarization
only. The few published studies on deep metallic grat-
ings with profile different from the lamellar one13 do not
present sufficient accuracy, because the staircase approxi-
mation only contains only a few ‘‘levels’’ (or ‘‘slices’’).14

The aim of this paper is to present a comparative study
of three different methods based on the differential
theory. These are the classical differential method, re-
cently improved by using the fast Fourier factorization
(FFF) technique,11,12 the RCW method, and the modal
method.15–18 The choice is linked to the fact that the
three methods are similar: The solution of Maxwell dif-
ferential equations is sought by projecting the solution on
some basis of functions of x (see Fig. 1), which are periodic
along the grating surface. Then the field dependence in
the vertical ( y) direction along the groove height is found
by using different techniques:

1. The classical differential method uses Fourier basis
in x with numerical integration of a finite set of ordinary
differential equations in y.

2. The RCW method also uses Fourier basis in x, but
the grating is lamellar. Thus the coefficients of the dif-
ferential system are constant along y, and the method
avoids numerical integration by using an eigenvalue/
eigenvector technique to find the solution of the set of dif-
ferential equations.

3. The modal method projects the field components on a
basis of functions of x, which are rigorous solutions of the
Maxwell equations, and boundary conditions along x
2002 Optical Society of America
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(modes), assuming infinite height of the grooves along y.
The solution of the diffraction problem is found in this ba-
sis by matching a superposition of the modes (with un-
known coefficients) with the Rayleigh expansion in the
substrate and the cladding.

It is clear that the RCW and the modal method are well
adapted to lamellar gratings, while the classical differen-
tial method can be used for arbitrary profiles but pays a
price by using numerical integration. In general, the
modal method requires fewer numbers of basis functions
than the methods based on the Fourier representation.
On the other hand, finding the modes is more difficult for
metallic gratings, but the problem is already solved.15–18

It is important to note that, when applied to a given
grating, consisting of a smooth profile represented with a
fixed number of slices in the staircase approximation, the
differential and the RCW methods give identical results,
even when the number of the Fourier components is not
sufficient to correctly represent the field. This fact shows
that if a problem exists, it is not due to the techniques
used to integrate the set of equations, i.e., it is not an al-
gorithmic artifact. However, the results obtained for the
discretized (staircaselike) and nondiscretized profile may
differ significantly. The aim of this paper is to study this
problem.

2. SINUSOIDAL ALUMINUM GRATING IN
TE POLARIZATION
We begin by studying the staircase approximation in TE
polarization (electric field vector parallel to the grooves).
The grating under investigation is made of aluminum and
has a sinusoidal profile with period d 5 0.5 mm and
groove depth h 5 0.2 mm. This is a typical widely used
grating in lasers and spectroscopy, because it is character-
ized by almost perfect blazing (very-high diffraction effi-
ciency) in TM polarization in a wide spectral range in the
visible.

The grating is illuminated at an angle u i 5 40° with
light of a wavelength l 5 0.6328 mm; thus two diffracted
orders propagate in air. The aluminum complex refrac-
tive index is nAl 5 1.3 1 i7.6. In what follows we are in-
terested mainly in the convergence rate of the different
methods as a function of the so-called truncation param-
eter N, which characterizes the number of Fourier compo-
nents (or modes) used in the field expansion along x, this

Fig. 1. Schematic representation of a sinusoidal profile and a
five-stair approximation of the same profile, together with some
notations used in the text.
number being equal to 2N 1 1 (varying from 2N to N in
the case of Fourier basis). However, to start with, it is
interesting to know the number M of slices that are nec-
essary to correctly represent the sinusoidal profile (Fig.
1). As a rule of thumb, one can expect that the charac-
teristic dimensions of the stairs must be less than l/50.
And, indeed, Fig. 2 points out that a sufficient accuracy
(.1%) is already obtained with approximately 15 slices.
The figure represents the mean error, equal to the sum of
the relative errors in all the propagating orders, divided
by their number. In the calculations, the truncation pa-
rameter N is fixed equal to 90, a value sufficient to pro-
vide convergent results for both the differential and the
RCW method when they are applied to the same dis-
cretized profile. The error decreases monotonically and
becomes close to 1024 for M . 200. The reference values
to calculate the error are calculated by two independent
methods, namely, the integral method19 and the method
of fictitious sources.20

The convergence with respect to the truncation param-
eter N for the three methods is presented in Fig. 3. The
differential method is applied to the smooth sinusoidal

Fig. 2. Mean error in the reflected diffraction orders as a func-
tion of the number of slices in the staircase approximation (Fig.
1) of an aluminum grating with a sinusoidal groove profile, pe-
riod d 5 0.5 mm, groove depth h 5 0.2 mm, aluminum refractive
index nAl 5 1.3 1 i7.6, illuminated at 40° incidence with TE po-
larized light with wavelength l 5 0.6328 mm.

Fig. 3. Convergence of the mean error for the grating with pa-
rameters given in Fig. 2 as a function of the truncation param-
eter N, the number of the Fourier components or modes being
equal to 2N 1 1. The RCW method (heavy solid curve) and the
modal method (thin curve) are used with M 5 200 slices, the dif-
ferential method (curve ‘‘diff.’’) is applied to the smooth sinu-
soidal profile. TE polarization.
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profile, and the modal and the RCW methods are applied
to the staircase profile with M 5 200 slices. The results
of the modal method are not presented for large N, be-
cause the corresponding computer code deals with the
more general case of crossed gratings in conical diffrac-
tion, which needs more computational resources for the
same values of N.

For this polarization we can conclude that the three
methods lead to the same error for a given truncation and
that a relative error of less than 0.1% is obtained with
N 5 10, which is a good indication for short computation
times.

3. TM CONVERGENCE
In TM polarization, the zeroth-order efficiency is very
close to zero, so that the relative error is an unreliable
characteristic, and thus in what follows we present the
convergence rates of the 21st order efficiency. Figure 4
presents the calculated efficiency as a function of N for
the different methods and the different numbers of slices
M. Again, the differential method is applied to the real
smooth sinusoidal profile. Its numerical implementation
is described in Refs. 11 and 12; i.e., a set of first-order dif-
ferential equations is integrated taking as unknown func-
tions the Fourier components of both electric and mag-
netic fields; the FFF is used to ameliorate the
convergence. Again we find that when applied to the
staircase profile, the differential method gives the same
results as the RCW method. This proves that the results
do not depend on the algorithm used for the integration:
when implementing the differential method, we indepen-
dently applied the Runge–Kutta and Adams–Moulton
techniques; in addition, two codes developed indepen-
dently by two authors have been used to confirm the
results.

For the smooth profile (curve ‘‘diff.’’ in Fig. 4), the
asymptotic value approaches 1% as soon as N 5 11 (23
Fourier components). Using thirteen layers in the
S-matrix propagation algorithm and four steps of integra-
tion per layer, the calculation time is 1 s on a PC Pentium
III (800 MHz).

When M 5 1, the sinusoidal grating is replaced by a
lamellar one; Fig. 4(a) shows that the RCW and the modal
method give results having the same convergence rate as
a function of N. The convergence rate for the discretized
profile is the same as for the smooth sinusoidal profile
(curve ‘‘diff.’’), although the asymptotic efficiency differs
significantly for the two profiles, which is not surprising.
This shows that the single-step approximation is rather
poor and that the number of slices M must be increased.
When M is increased to ;20 [Fig. 4(b)], the asymptotic
value of the efficiency approaches to within 1% of the ef-
ficiency of the smooth profile (almost in the same way as
in the TE polarization, where M 5 15 was sufficient).
However, the number of Fourier coefficients (or modes, for
the modal method) required to approach the asymptotic
value increases for both the RCW and the modal methods.
To obtain the same accuracy (error ,1%), it is necessary
to increase N up to 20 for the modal method and up to
50 for the RCW method (i.e., 101 Fourier spatial harmon-
ics), requiring 30 s calculation time, which has to be com-
pared with 1 s necessary for the differential method when
modeling the smooth sinusoidal profile with the same
accuracy.

The situation becomes worse for M 5 200, Fig. 4(c).
Even N 5 100 is not sufficient for the RCW method to

Fig. 4. Convergence of the 21st order efficiency in TM polariza-
tion of the RCW and modal methods (indicated in the figure) (a)
for a single-step (M 5 1) lamellar grating, (b) for a staircase
grating with M 5 20, (c) M 5 200, compared with the conver-
gence of the differential method for a smooth sinusoidal profile
(curve ‘‘diff.’’). The grating parameters are given in Fig. 2.
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converge (we stress again that the same results are ob-
tained when the differential method is applied to the
staircase profile). To explain this surprising deteriora-
tion of the convergence rate, it is necessary to study the
field map inside the grooves.

4. NEAR-FIELD MAPS:
TM POLARIZATION
In order to understand the poor convergence of all the
methods for staircase profiles in TM polarization, we ana-
lyzed the near-field maps for two discretized profiles, with
five and twenty slices, as well as the field map of the
smooth sinusoidal profile. In TM polarization the
magnetic-field vector is parallel to the grooves (i.e., to the
z axis) and is a continuous function even across the grat-
ing surface. The electric field has x and y components, Ex
and Ey , respectively. For five slices, Fig. 5 shows the
surface of uExu2 as a function of x and y inside the groove,
characterized by a smoothly varying background with
sharp peaks close to the profile ridges. The field maps for
a staircase profile were obtained with the RCW method,
while the differential method was used for the sinusoidal
profile (see Fig. 8 below). For a better analysis, Figs. 6(a)
and 6(b) represent gray-scale maps of the two components
uExu2 and uEyu2, respectively. Strong maxima near the
step ridges are observed, which could be expected for a
metallic grating having sharp ridges, owing to the charge
accumulation at the ridges. However, the maxima of
uExu2 and uEyu2 do not occur at the same location. This is
due to the fact that the two components of the electric-
field vector are discontinuous across the different seg-
ments of the profile: uExu2 is continuous across the hori-
zontal part (parallel to the x axis). Its jump across the
vertical segments (which are due to the large jump of the
refractive index) allows for the existence of the sharps
peaks on the vertical segments, while the continuity

Fig. 5. Three-dimensional view of the distribution of the x com-
ponent of the field squared inside the groove for a five-step stair-
case approximation in TM polarization.
along the y axis and the fact that the electric field is weak
inside the metal limits uExu2 in the vicinity of the horizon-
tal segments. The opposite is true for uEyu2, which ex-
plains why its maxima occur on the horizontal segments.
In any case, the maxima of the two components occur
close to the ridge, as already discussed.

It must be stressed that the existence of these sharp
peaks is not due to Gibbs phenomena arising from the
representation of the discontinuous functions Ex and Ey
by truncated Fourier series. The convergence of the field
maps was checked and no visible difference was found
when going from 161 to 321 Fourier components.

A greater number of stairs introduces a larger number
of edges and smaller features of the profile segments. A
three-dimensional view of uExu2 and uEyu2 as a function of
x and y for M 5 20 is shown in Fig. 7 with a zoom inside
the groove region where the field is stronger. Well-
pronounced peaks of uExu2 and uEyu2 are observed close to
the edges in the same manner as for M 5 5, and again
the peaks of uExu2 and uEyu2 are spatially separated. The
shorter length of the profile segments leads to narrower
peaks.

The fact that close to the ridges of the staircase profile
one observes regions with field enhancement explains the
deterioration of the convergence rate of the methods with
increasing number of slices: The greater the number of
stairs, the closer and thinner the maxima and the greater
their number and thus the greater the number of Fourier
components required to correctly represent the field in
the form of truncated series. In the modal method, this
leads to the increase in the number of modes inside the
grooves, although not to as great an extent as for the
RCW method, probably because the modes are not equi-
distant spectrally, as the Fourier harmonics are.

The field enhancement close to the ridges occurs when
any of the three methods are used, and it is a real physi-
cal effect because the smooth profile is replaced with a
staircaselike profile having ridges. To observe the differ-
ence, it is sufficient to compare the previous figures with
the field map of the sinusoidal (nondiscretized) grating,
presented in Fig. 8(a), obtained by use of the differential
theory. A closer view [Fig. 8(b)] of the same region as
was presented in Fig. 7(a) shows no peaks close to the pro-
file, and the field inside the groove [on the left part of Fig.
8(b)] is the same as the background field (outside the peak
region) inside the grooves in Fig. 7(a) (approximately
equal to 0.30). The weak variations of the field in Fig. 8
come from the Gibbs phenomena, as the calculations were
made using 201 Fourier components. The absence of
sharp and narrow peaks of the field for the smooth profile
explains the fast convergence of the differential method
with respect to the number of Fourier components. As
discussed in Section 3, 23 Fourier components are
sufficient.

5. NEAR-FIELD MAP: TE POLARIZATION
It is now necessary to explain the fast convergence of the
three methods in TE polarization that are independent of
the number of slices used in the staircase approximation.
For that reason, it is worth studying the field maps.
Only the region of the groove where the field is the stron-
gest will be shown.
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Fig. 6. Field map inside the groove of a five-step staircase grating in TM polarization. (a) uExu2, (b) uEyu2.
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In TE polarization, both electric and magnetic fields
are continuous across the grating surface, because we
consider nonmagnetic media. For M 5 5, Figs. 9(a) and
9(b) show, respectively, the field maps of uHxu2 and uHyu2

for the same grating, studied in the previous sections, but
in TE polarization. Peaks are found in the maps, but
they rise to a lesser height from the smooth background
than in the TM case. This is because the two components
of the magnetic field (as well as the only component,
the transverse one, of the electric field) are continuous
functions when crossing the profile. As can be observed,
the field ‘‘enters’’ the metal inside the stairs, and its varia-
tions are not so rapid as in the TM case. This fact

Fig. 7. Spatial field distribution in the vicinity of several steps
inside the groove of a 20-step staircase profile, used to approxi-
mate the sinusoidal grating under study. TM polarization, (a)
uExu2, (b) uEyu2.
permits averaging the peaks when the number of slices is
increased so that the step dimensions decrease. The ef-
fect could be observed for the 20-stairs approximation, as
shown in Fig. 10, where the height of the peaks is further
reduced, compared with five slices. Thus when M is in-
creased in the TE case, it is not necessary to increase the
number of Fourier harmonics in the field representation,
which explains the better convergence rate, already ob-
served in Fig. 3.

Fig. 8. Spatial distribution of uExu2 calculated for a nondis-
cretized sinusoidal profile in TM polarization. (a) The entire
groove region as in Fig. 5, (b) the same region as presented in
Fig. 7.
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6. LIMIT FOR AN INFINITE NUMBER OF
STAIRS
The effect of field ‘‘homogenization,’’ i.e., the averaging of
the peaks when the number of slices is increased in the
TE case (as shown in Figs. 9 and 10), raises the question
of the possibility of such a homogenization in TM polar-
ization, when the number of slices becomes so large that
the adjacent maxima on the consecutive ridges start to
overlap. Unfortunately, numerical requirements put a

Fig. 9. Spatial field distribution inside the groove region of a
five-step staircase grating, presented in Fig. 1, in TE polariza-
tion. (a) uHxu2, (b) uHyu2.
limit on the numerical investigations, so that no analysis
of the near-field map for, say, M 5 200 or 1000 is possible,
because this would require at least ten times more Fou-
rier components to distinguish between Gibbs phenomena
and the real-field fluctuations close to the ridges.

In any case, Fig. 4(c) already gives an answer about the
effect when going to M 5 200; the convergence is poor.
Some unreported results have been obtained for M
5 500; the convergence rate is not better. This means
that no homogenization appears in the TM case, whatever
the number of slices may be. In order to model this phe-
nomenon, instead of increasing M (and thus N), we may
choose an alternative approach that consists of keeping M
and N unchanged but increasing the wavelength. In
fact, increasing the wavelength while preserving the
number of slices (and thus their dimensions) is equivalent
in the homogenization study to reducing the slice thick-
ness and keeping the wavelength unchanged. The field
maps inside the same groove region as shown in Fig. 7 are
represented in Fig. 11 when the wavelength l is increased
20 times, so that the dimensions of each step in the stair-
case profile with M 5 20 are of the order of l/1300. As
observed, no homogenization occurs, and sharp peaks are
still present close to the step ridges. It is important to
note that the three numerical methods use the same
equations [see Eqs. (5)–(6) below] and the same boundary
conditions along the vertical and the horizontal segments
of the steps. Thus the physically strange result that no
homogenization of the near field occurs may be linked to
that fact; i.e., it may be a numerical artifact. The next
part of this section deals with this problem.

In order to clarify whether these sharp peaks exist in
the limit when M → ` and why they continue to play an
important role in the far-field (efficiency) properties, al-
though their width decreases with increasing the number
of slices M, it is necessary to consider the limits of the
Maxwell equations and of the boundary conditions for the
electromagnetic field.

Fig. 10. Distribution of uHxu2 inside the groove for a 20-step
staircase approximation of the sinusoidal grating in TE polariza-
tion. Same groove region as in Fig. 7(a).
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Recent studies,10–12 already mentioned in the introduc-
tion, have shown that correctly writing the Maxwell equa-
tions in the infinite Fourier basis does not guarantee that
correct and stable numerical results will be obtained after
truncation. The properties of truncated Fourier series of
discontinuous functions require that the projection of the
Maxwell equations on a truncated Fourier basis must de-
pend on the direction of the vector normal to the grating
surface, where the field and permittivity are discontinu-
ous. Thus different forms of the equations have to be in-
tegrated for the smooth sinusoidal profile and for the
staircaselike profile, whatever the number M of the stairs
may be, including the case M → `.

Without going into details, which can be found
elsewhere,21 the equations in the truncated Fourier space
in TM polarization are

Fig. 11. Same as in Fig. 7, except for the wavelength l
5 13 mm.
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e
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Nx and Ny are the components of the unit vector locally
normal to the profile, square brackets denote a column
vector symmetrically filled with Fourier components,
double-straight-line brackets denote the truncated
Toeplitz matrix composed of the Fourier components of
the corresponding quantity:

i fimn 5 @ f#m2n . (4)

e is the permittivity, which depends on x and y, m0 is the
vacuum magnetic permeability, v is the circular fre-
quency, and a is a diagonal matrix with elements equal to
amn 5 (2p/l)dmn@sin ui 1 m(l/d)#. Although the compo-
nents of the normal vector are defined on the profile only,
it is necessary to continue them everywhere in space in an
appropriate way,11,12 in order to obtain their Fourier coef-
ficients.

The lamellar profile (or any of the vertical segments of
the staircase profile) is characterized by Nx 5 1 and Ny
5 0. Then Eqs. (1)–(3) are reduced to

d@Hz#

dy
5 2ivI 1

e
I21

@Ex#, (5)

d@Ex#

dy
5 2ivm0@Hz# 1 iaiei21

a

v
@Hz#. (6)

The classical differential method without the FFF im-
provement uses a similar set of equations derived from
Eqs. (1)–(3) with Nx 5 0 and Ny 5 1:

d@Hz#

dy
5 2iviei@Ex#, (7)

d@Ex#

dy
5 2ivm0@Hz# 1 iaI 1

e
I a

v
@Hz#. (8)

Without truncation, i.e., when an infinite number of
Fourier components is considered, iei 5 i1/ei21 and the
three formulations are equivalent. However, this is not
possible numerically, and they give quite different results
for a finite N.

It is important to note that whatever the value of M, in
the case of the staircase profile both the differential and
the RCW method use Eqs. (5) and (6), whereas for the
smooth profile one has to use the system of Eqs. (1)–(3).
This means that in the limit of M → `, the sets of equa-
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tions to integrate are different if N is finite. It is thus
inappropriate to expect identical results for the smooth
and the staircase profiles. Moreover, if we now consider
the different field components on the grating profile,
whatever the value of M is, Ex is continuous across the
horizontal segments (where Ey is discontinuous) and dis-
continuous along the vertical parts (where Ey is continu-
ous). None of the two situations is valid for a continuous
sinusoidal profile, for which the continuous (tangential)
and discontinuous (normal) components are neither hori-
zontal nor vertical (except at the bottom and top of the
grooves). Thus neither the equations nor the field com-
ponents of the staircase approximation tend toward the
equations, or the field components for a smooth (sinusoid-
al) profile, however finite the truncation N is.

One of the possibilities for improving the convergence
of the staircase approximation when the number of slices
is large, in order to optionally avoid the numerical inte-
gration, is to use the set of Eqs. (1)–(3) with the vector
normal to the sinusoidal profile (or the other nonstaircase
profile to which the staircase approximation is applied)
instead of Eqs. (5) and (6). This will not be correct for a
smaller number of slices, because the set of Eqs. (1)–(3)
must be used only for the true profile, whereas Eqs. (5)
and (6) are valid for the multilamellar profile. But com-
putations have shown that when M → `, Eqs. (1)–(3) are

Fig. 12. Convergence rates of the RCW method compared when
using the three different sets of equations as marked on the fig-
ure [Eqs. (1)–(3), (5) and (6), and (7) and (8)], compared with the
differential method used for the sinusoidal profile. (a) l
5 0.6328 mm, M 5 20, and M 5 200; (b) l 5 13 mm and M
5 20. The convergence of the differential method for a sinu-
soidal profile is shown by a solid curve marked ‘‘diff.’’
better suited to describe the fact that Ex or Ey is, in gen-
eral, not continuous on the surface of an arbitrary shaped
grating.

To that end, Fig. 12 presents the convergence rates of
the different sets of Equations (1)–(3), (5) and (6), and (7)
and (8) for a 20-step staircase profile. The numerical
procedure is the following: Along the vertical y coordi-
nate inside each slice (step), the coefficients in the differ-
ential set of equations to be integrated are taken constant
(to permit use of the RCW method); however, these coef-
ficients are calculated in three different manners [Eqs.
(1)–(3), (5) and (6), and (7) and (8)]. As can be observed
[Fig. 12(a)], the results are not satisfactory: While Eqs.
(5) and (6) converge slowly but monotonically, Eqs. (7) and
(8) converge more slowly; applying Eqs. (1)–(3) to the
staircase profile gives better results for smaller N, but the
improvement is not preserved for larger N. This shows
that the number of slices M 5 20 is not sufficient to rep-
resent the ‘‘smooth’’ profile with the ‘‘smooth’’ set of Eqs.
(1)–(3). However, if the wavelength is again increased to
13 mm [Fig. 12(b)], as is already done in Fig. 11, the con-
vergence rate of Eqs. (1)–(3) is quite rapid and the results
are more stable (but still less stable than those obtained
with the differential method). Note the zoom of the ordi-
nate to reveal the differences between the different meth-
ods. The same conclusion is valid when the number of
slices is increased to 200 slices with l 5 0.6328 mm; the
results obtained with Eqs. (1)–(3) and M 5 200 nearly co-
incide with the results of the differential method [always
Eqs. (1)–(3)] applied to the sinusoidal profile [curve ‘‘diff.’’
in Fig. 4(a)]. Moreover, as already observed in Fig. 8, in
that case the field is homogenized and no sharp peaks oc-
cur.

The conclusion is that if one is interested in the study
of a true staircase profile having a comparatively low
number of slices, so that the slice height is comparable
with the wavelength, it is correct to use Eqs. (5) and (6),
because they correctly describe the field discontinuities
and the edge effects (sharp field peaks close to the ridges).
When the methods are applied to the staircase approxi-
mation of a smooth arbitrary profile with a very large
number of slices (theoretically, in the limit when M → `),
it is much better to use the set of Eqs. (1)–(3), which bet-
ter describe the effect of homogenization. However, this
approach is equivalent to using the differential method
(improved by the FFF technique) with the worse algo-
rithm of integrating the differential equations: the rect-
angular rule. And indeed, when the number of slices is
large and the coefficients of the system to be integrated
are taken to be constant within each slice, whatever the
method of integration may be, this is equivalent to inte-
grating the system by using the rectangular rule with
equidistant and fixed points of integration. It is well
known that standard integration algorithms (e.g.,
Runge–Kutta or Adams–Moulton techniques) do much
better.

Our conclusion, that when the slice height tends to-
ward zero it is better to use Eqs. (1)–(3) than Eqs. (5) and
(6), explains the observation made by Lalanne.22 He con-
sidered a lamellar (M 5 1) grating in the low-modulation
limit (h/d → 0). He found that the classical Eqs. (7) and
(8) worked better than Eqs. (5) and (6), contrary to what
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happened for a finite-depth lamellar grating, for which
Eqs. (7) and (8) failed to converge rapidly. As concluded
here, when the slice height (equal to h/d for a single-step
profile) tends toward zero, it is better to use Eqs. (1)–(3).
However, in the case of a single-step lamella with h/d
→ 0, Eqs. (1)–(3) tend toward Eqs. (7) and (8), because
Nx → 0 and Ny → 1 everywhere along the profile. Thus
it is better to use Eqs. (7) and (8) instead of Eqs. (5) and
(6) when h/d → 0. To repeat, the three approaches
would become equivalent only without truncation.

7. CONCLUSION
The validity of the staircase approximation used to de-
scribe arbitrary-shaped gratings in the RCW and the
modal methods is studied numerically. Although the ap-
proximation leads to reliable results in TE polarization,
we show that for metallic gratings used in TM polariza-
tion, the profile ridges introduced by the staircase ap-
proximation cause sharp maxima in the local field.
These maxima are independent of the method of modeling
and are due to the replacement of the smooth profile by a
staircaselike one. The maxima do not exist for the
smooth profile. The number of maxima increase with the
number of steps, which requires a greater number of basis
functions (Fourier components or modes) to represent the
field. No homogenization is observed when the number
of the slices and/or the wavelength are increased, even
when the number of steps exceeds 500 (with the step di-
mensions as small as wavelength/1300). This results
from the choice of the way in which Maxwell equations
are projected onto a truncated Fourier basis. When the
correct projection is used by applying the rules for Fourier
factorization of the products of discontinuous functions,
as is done with the differential method, the convergence is
much more rapid.

The conclusion is that although the RCW and the
modal method are well suited for lamellar profiles or for
gratings consisting of a stack of rectangular rods, because
they lead to a short computation time they cannot com-
pete with the differential method in the study of
arbitrary-shaped metallic gratings in TM polarization.
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