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We establish the most general differential equations that are satisfied by the Fourier components of the elec-
tromagnetic field diffracted by an arbitrary periodic anisotropic medium. The equations are derived by use of
the recently published fast-Fourier-factorization (FFF) method, which ensures fast convergence of the Fourier
series of the field. The diffraction by classic isotropic gratings arises as a particular case of the derived equa-
tions; the case of anisotropic classic gratings was published elsewhere. The equations can be resolved either
through classic differential theory or through the modal method for particular groove profiles. The new equa-
tions improve both methods in the same way. Crossed gratings, among which are grids and two-dimensional
arbitrarily shaped periodic surfaces, appear as particular cases of the theory, as do three-dimensional photonic
crystals. The method can be extended to nonperiodic media through the use of a Fourier transform. © 2001
Optical Society of America
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1. INTRODUCTION
For many years the classic differential theory1 of diffrac-
tion gratings has been limited in its range of applicability.
For deep gratings made from highly reflecting metal the
Fourier series of the field showed poor convergence in TM
polarization, so the corresponding numerical results often
turned out to be unreliable; this problem did not occur in
TE polarization. Recently Li2 pointed out that the prob-
lem derives from the way in which the Fourier compo-
nents of the product of two periodic discontinuous func-
tions are calculated and distinguished among three types
of products. Laurent’s rule of factorization2 applies to
functions with no concurrent discontinuities, whereas the
inverse rule2 applies to functions with complementary
jump discontinuities. Laurent’s rule is well known to
any theoretician. It states that the Fourier components
hn of the product h(x) of two arbitrary functions f(x) and
g(x) are simply given by

hn 5 (
m52`

1`

fn2m gm . (1)

Although it is easy to establish the result for infinite se-
ries, this result is not obvious for truncated series. If
2N 1 1 Fourier components (from 2N to 1N) of g(x) are
known, what is the best way to obtain 2N 1 1 Fourier
components hn of h(x)? When hn

(N) denotes the Fourier
components obtained through a truncation at order N,
Laurent’s rule assumes that

hn
~N ! 5 (

m52N

1N

fn2m gm .
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A justification of this rule is given in Appendix A.
To further simplify the calculations we introduce ma-

trix notation. We denote by [ g] the column vector con-
structed with the 2N 1 1 Fourier components gm and by
v f b the (2N 1 1) 3 (2N 1 1) Toeplitz matrix whose
(n, m) entry is fn2m . The preceding equation is simply
rewritten as:

@h# 5 v f b@ g#. (2)

We recall that, if f and g have pairwise complementary
jump discontinuities, hn

(N) must be calculated through the
inverse rule2:

@h# 5 v1/f b21@ g#. (3)

Using Eqs. (2) and (3), Li was able to explain the spec-
tacular improvement in the convergence of Fourier series
obtained by the modal method for lamellar gratings.3,4

However, these rules were not directly applicable to arbi-
trary groove shapes, for which the classic differential
theory requires finding the Fourier components of prod-
ucts of periodic functions that have concurrent, but not
complementary, jump discontinuities and for which no
known rule applies. A recent breakthrough was de-
scribed in Ref. 5, which explained how to overcome the
difficulty. By introducing, in the entire cross-section
plane, a suitable continuation of the tangential and nor-
mal components of the field, components that are defined
on the grating profile, we were able to factorize the prod-
ucts mentioned above by using Laurent’s rule and the in-
verse rule. We called that technique the fast-Fourier-
factorization (FFF) method. A variant of the method has
been proposed6 for studying anisotropic gratings. In the
present paper we use the FFF method to establish the dif-
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ferential equations that are satisfied by the Fourier com-
ponents of the field for the most general situation. The
diffracting device is allowed to be one-, two-, or three-
dimensionally periodic. The material is isotropic or an-
isotropic. In the latter case, both electric and magnetic
permittivity are tensors. The material is transparent or
lossy, even in case of anisotropy. Special cases are de-
rived from the general equations, and the particular way
of dealing with them is pointed out.

2. GENERAL, FAST-CONVERGING
PROPAGATION EQUATIONS IN FOURIER
SPACE
We consider a periodic surface described by its Cartesian
equation f(x, y, z) 5 0. This surface is assumed to have
a normal vector N everywhere and separates two media
characterized by their tensors e% and m% , which degenerate
into scalars for isotropic media. Harmonic Maxwell
equations

curl E 5 ivB, (4)

curl H 5 2ivD (5)

lead to partial-derivative equations for the Cartesian co-
ordinates of E or H. As these components are discon-
tinuous through the e% and m% discontinuity surface, we
make use of continuous components in Fourier analysis.
In the plane tangent to the periodic surface at any point
M, we introduce two orthogonal unit vectors T1 and T2
such that T2 3 T1 5 N, where T1 is arbitrary but is con-
veniently chosen to be parallel to the xOy plane. The
tangential components of the electrical field are thus
given by

ET1
5 T1 d E, (6)

ET2
5 T2 d E. (7)

Here the dot product is the well-known scalar product of
two vectors, but we use special notation (large dots) to in-
troduce the more-general dot product between matrices
that represent tensors and vectors of different ranks.
The generalized dot product means contraction of one of
the indices, i.e., a summation with respect to one of the
indices. With that notation, the normal component of D
is given in the form

DN 5 N d D 5 N d e% d E. (8)

From the laws of electromagnetism, vector
Fe 5 (ET1

, Dn , ET2
) is continuous through the periodic

surface. The first step is to relate it to E to link the Fou-
rier components of D with those of E.

Ae 5 F T1x

Nxexx 1 Nyeyx

T2x
A. Relationship between [D] and [E]
In as much as [ g] denotes a vector constructed with the
Fourier components of g(x), [D] will denote a vector made
with the three blocks @Dx#, @Dy#, and @Dz#. Each of
these blocks will have 2N 1 1 Fourier components for a
one-dimensional periodic medium, (2N 1 1)2 compo-
nents for a bidimensional medium that has two periods of
the same order of magnitude, etc.

Expressing Eqs. (6)–(8) leads to

ETi 5 TixEx 1 TiyEy 1 TizEz , i 5 1, 2, (9)

DN 5 Nx~exxEx 1 exyEy 1 exzEz!

1 Ny~eyxEx 1 eyyEy 1 eyzEz!

1 Nz~ezxEx 1 ezyEy 1 ezzEz!. (10)

If we introduce a matrix Ae , defined by

Fe 5 Ae d E [ AeE, (11)

Eqs. (9) and (10) immediately show that

Because ETi and DN are defined only on the surface of
discontinuity of e% and m% , Eqs. (9)–(11) are valid only on
this surface, defined by the equation f(x, y, z) 5 0.
However, as was previously done,5 we extend the validity
of Eqs. (9)–(11), ;x, y, z, through a suitable continuation
of Ti and N outside the surface. The continuation must
ensure that these vectors are continuous on the surface;
they may be discontinuous at points where e% and m% are
continuous.

Let us thus introduce a vector denoted (N d e% ), where
the dot product stands for a summation over one of the
indices of e% , as has already been discussed above. Then
DN 5 (N d e% ) d E, and matrix Ae can be expressed simply
as

Ae 5 F T1x T1y T1z

~N d e% !x ~N d e% !y ~N d e% !z

T2x T2y T2z

G . (12)

Because e% never vanishes, the determinant of Ae is of a
quadratic positive or negative form; thus Ae has an in-
verse Ce , so E 5 CeFe . As a result, the equation
D 5 e% d E can be written as D 5 e% d CeFe 5 e% d CeAeE.
In this way, D is represented as the product of a discon-
tinuous quantity e% d Ce and a continuous quantity Fe (or
AeE). Its Fourier components can then be obtained
through Laurent’s rule: @D# 5 ve% d Ceb@Fe#. Of course,
because both [D] and @Fe# are vectors formed by blocks,
the Toeplitz matrix that relates them will be made from
blocks that are the Toeplitz matrices of the various ele-
ments of matrix e% d Ce . Using the inverse rule to find
the Fourier components of the continuous product AeE,
we obtain

T1y T1z

zezx Nxexy 1 Nyeyy 1 Nzezy Nxexz 1 Nyeyz 1 Nzezz

T2y T2z

G .
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@D# 5 ve% d CebvCeb21@E#. (13)

This is a key point of the theory. Tedious, but elemen-
tary, calculations show that the inverse of Ae is given by

Ce 5
1

je
F @~N d e% ! 3 T2#x Nx 2@~N d e% ! 3 T1#x

@~N d e% ! 3 T2#y Ny 2@~N d e% ! 3 T1#y

@~N d e% ! 3 T2#z Nz 2@~N d e% ! 3 T1#z

G ,

(14)

where je is the determinant of Ae and is equal to
N d e% d N. Thus Eq. (13) can be written in compact form:

@D# 5 Qe@E#, (15)

where Qe 5 ve% d CebvCeb21 is a known matrix.

B. Relationship between [B] and [H]
For the most general problem, the relationships between
[B] and [H] and between [D] and [E] are completely sym-
metric. We thus introduce a vector Fm , given by Fm

5 (HT1 , BN , HT2), and a matrix Am , defined by Fm

5 AmH. We derive the expressions for Am and its in-
verse Cm , respectively, from Eqs. (12) and (14) by replac-
ing e% with m% . As a result, we obtain

@B# 5 Qm@H#, (16)

where Qm 5 vm% d CmbvCmb21.

C. Set of Differential Equations in Fourier Space
After they are projected on the coordinate axis, Maxwell
equations (4) and (5) can be written as

]Ez

]y
2

]Ey

]z
5 ivBx , (17)

]Ex

]z
2

]Ez

]x
5 ivBy , (18)

]Ey

]x
2

]Ex

]y
5 ivBz , (19)

]Hz

]y
2

]Hy

]z
5 2ivDx , (20)

]Hx

]z
2

]Hz

]x
5 2ivDy , (21)

]Hy

]x
2

]Hx

]y
5 2ivDz . (22)

The resolution of these equations will now depend on the
problem, in the sense that, depending on the kind of pe-
riodicity and invariance of the device, some derivative
will vanish. For example, for a single grating with the
direction of its rulings parallel to the Oz axis and illumi-
nated in the cross-section plane, ]/]z 5 0; moreover, if
the grating is periodic with respect to the x direction, the
derivatives with respect to x will be expressed explicitly.
We then obtain the equations published in Ref. 6 for an
anisotropic material and those in Ref. 5 for an isotropic
material. For a three-dimensional periodic photonic
crystal, the periodicity along the three dimensions of
space eliminates all derivatives, and the problem is re-
duced to an eigenvalue problem. However, in most cases
of periodicity in one or two directions only, the modulated
region is limited inside a y interval, let us say from 0 to a,
where a is the groove depth, whereas the x or z periodicity
or both, or invariance, will permit simple expressions of
the x or z derivatives or both. Only the y derivative re-
mains in the set of Eqs. (17)–(22). After one- or two-
dimensional Fourier analysis, the Fourier components of
the field will depend only on y and will be solutions of the
following equations:

]@Ez#

]y
2

]@Ey#

]z
5 iv@Bx#, (178)

]@Ex#

]z
2

]@Ez#

]x
5 iv@By#, (188)

] bEyc
]x

2
]@Ex#

]y
5 iv@Bz#, (198)

]@Hz#

]y
2

] bHyc
]z

5 2iv@Dx#, (208)

]@Hx#

]z
2

]@Hz#

]x
5 2iv@Dy#, (218)

] bHyc
]x

2
]@Hx#

]y
5 2iv@Dz#, (228)

where bDjc and bBjc, with j 5 x, y, z, have to be ex-
pressed through Eqs. (15) and (16); in these equations it
is understood that, for a device that is periodic with pe-
riod dj along the j axis, ]/]j must be replaced with multi-
plication by ia j , where a j is a diagonal matrix with ele-
ments a j,nm 5 (a j,0 1 n2p/dj)dnm and a j,0 is the j
component of the wave vector of the incident wave and
dnm is the Krönecker symbol. We can deal with the par-
ticular case of a j-invariant device by taking dj → `, so
a j,nm 5 a j,0dnm . If, moreover, the incident wave vector
is perpendicular to the j axis, then a j,nm 5 0, which leads
to invariance with respect to the j coordinate, ]/]j 5 0.

The resolution of the set (178)–(228), which is now in-
deed a set of first-order classic differential equations with
respect to y only, is conducted in the following way: We
keep as unknown functions only the vectors @Ex#, @Ez#,
@Hx#, and @Hz#, which are, respectively, solutions of Eqs.
(198), (178), (228), and (208). To that end, we eliminate
@Ey# and @Hy# in the following way: Eq. (15) leads to

@Dy# 5 Qe,yx@Ex# 1 Qe,yy@Ey# 1 Qe,yz@Ez#,

from which we get

@Ey# 5 Qe,yy
21~@Dy# 2 Qe,yx@Ex# 2 Qe,yz@Ez# !.

In this equation @Dy# is expressed in terms of @Hx# and
@Hz# only, as the result of Eq. (218). We then get

@Ey# 5 Qe,yy
21H i

v
S ]

]z
@Hx# 2

]

]x
@Hz# D 2 Qe,yx@Ex#

2 Qe,yz@Ez#J . (23)

Similarly, for Hy ,
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@Hy# 5 Qm,yy
21H 2

i

v
S ]

]z
@Ex# 2

]

]x
@Ez# D 2 Qm,yx@Hx#

2 Qm,yz@Hz#J . (24)

Of course, the convention concerning the interpretation of
the x and z partial derivative as stated above still applies.
We thus obtain a set of first-order differential equations of
the form

d

dy S @Ex#

@Ez#

@Hx#

@Hz#

D 5 MS @Ex#

@Ez#

@Hx#

@Hz#

D , (25)

where M is a known matrix with elements given by

M11 5 2iaxQe,yy
21Qe,yx 2 iQm,zyQm,yy

21az ,

M12 5 2iaxQe,yy
21Qe,yz 1 iQm,zyQm,yy

21ax ,

M13 5 ivQm,zyQm,yy
21Qm,yx 2 i

ax

v
Qe,yy

21az 2 ivQm,zx ,

M14 5 ivQm,zyQm,yy
21Qm,yz 1 i

ax

v
Qe,yy

21ax 2 ivQm,zz ,

M21 5 2iazQe,yy
21Qe,yx 1 iQm,xyQm,yy

21az ,

M22 5 2iazQe,yy
21Qe,yz 2 iQm,xyQm,yy

21ax ,

M23 5 2ivQm,xyQm,yy
21Qm,yx 2 i

az

v
Qe,yy

21az

1 ivQm,xx ,

M24 5 2ivQm,xyQm,yy
21Qm,yz 1 i

az

v
Qe,yy

21ax

1 ivQm,xz ,

M31 5 2ivQe,zyQe,yy
21Qe,yx 1 i

ax

v
Qm,yy

21az 1 ivQe,zx ,

M32 5 2ivQe,zyQe,yy
21Qe,yz 2 i

ax

v
Qm,yy

21ax 1 ivQe,zz ,

M33 5 2iaxQm,yy
21Qm,yx 2 iQe,zyQe,yy

21az ,

M34 5 2iaxQm,yy
21Qm,yz 1 iQe,zyQe,yy

21ax ,

M41 5 ivQe,xyQe,yy
21Qe,yx 1 i

az

v
Qm,yy

21az 2 ivQe,xx ,

M42 5 ivQe,xyQe,yy
21Qe,yz 2 i

az

v
Qm,yy

21ax 2 ivQe,xz ,

M43 5 2iazQm,yy
21Qm,yx 1 iQe,xyQe,yy

21az ,

M44 5 2iazQm,yy
21Qm,yz 2 iQe,xyQe,yy

21ax . (258)

At the boundaries of the modulated region, the field can
be expressed by Rayleigh expansions. Thus the most
general diffraction problem is reduced to the numerical
integration of a set of differential equations, with the
boundary conditions taken into account. This boundary-
value problem is turned into an initial-value problem by
use of the classic shooting method.7 The numerical inte-
gration is then done with the help of a suitable
algorithm.1 Numerical problems may arise, however, if
the integration process is conducted over a long interval,
i.e., if groove depth a is large enough. This kind of prob-
lem is well known in other domains of science, among
which are meteorology and the theory of deterministic
chaos. It comes from the extreme sensitivity of the
searched-for solution to the initial values. In as much as
computers work with finite accuracy, an error of 10216 at
the beginning of the integration will introduce a small
amount of undesirable growing exponential functions as-
sociated with evanescent orders during the integration
process. Because the arguments of these exponential
functions increase with the permittivity of the material,
the more conducting the metal, the sooner the contamina-
tion will appear. The best way to avoid contamination is
to use the so-called S-matrix propagation algorithm,8

which was specially adapted9 to be coupled to the differ-
ential theory.

The conclusion is that Eqs. (25) and (258) constitute a
new, fast-converging formulation of the Maxwell equa-
tions in Fourier space that has to be used to produce nu-
merical results (with truncated series) for diffraction by
periodic objects.

3. SOME PARTICULAR SITUATIONS
As it is well known that the most-general theory is not al-
ways the best suited for analyzing much simpler situa-
tions, we consider here some particular cases of interest.

A. Classic Gratings Made from Isotropic, Nonmagnetic
Materials
The diffractive device considered here is periodic with pe-
riod d along the x direction and is illuminated by an inci-
dent plane wave propagating in the cross-section plane
(az,0 5 0). The grating material is isotropic, so e ij
5 e(x, y)d ij ; we assume that m ij 5 m0d ij , where m0 is
the vacuum magnetic permittivity. Because the direction
of the rulings is the z axis, we choose in the tangential
plane T2 5 ẑ, where ẑ is the unit vector of the z axis.
The normal vector is given by N 5 (Nx , Ny , 0), and its
components are proportional to gradW f(x, y), where
f(x, y) 5 0 is the equation for the groove profile. From
the equation T2 3 T1 5 N or T1 5 N 3 T2 , we obtain
T1 5 (Ny , 2Nx , 0). Determination of matrix Ce re-
quires the calculation of N d e% d N, (N d e% ) 3 T2 , and
(N d e% ) 3 T1 . At first, N d e% d N 5 e(x, y)N d 1I d N,
where 1I is the unit square matrix. Thus N d e% d N
5 e(x, y); next, (N d e% ) 3 T2 5 e(x, y)(Ny , 2Nx , 0)
and (N d e% ) 3 T1 5 e(x, y)(0, 0, 21).

Thus matrix Ce reads as

Ce 5 F Ny Nx /e 0

2Nx Ny /e 0

0 0 1
G , eCe 5 F eNy Nx 0

2eNx Ny 0

0 0 e
G .
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Because Nx and Ny will be defined outside the grating
surface in a continuous way, as was previously explained
in Ref. 5, the corresponding Toeplitz matrices are

vCeb 5 F vNyb v1/e bvNxb 0

v2Nxb v1/e bvNyb 0

0 0 1I
G , (26)

veCeb 5 F ve bvNyb vNxb 0

2ve bvNxb vNyb 0

0 0 ve b
G . (27)

Inverting matrix vCeb of Eq. (26) gives

vCeb21 5 F vNyb 2 vNxb 0

v1/e b21vNxb v1/e b21vNyb 0

0 0 1I
G ,

so

The derivation of this equation has assumed the commu-
tativity of some Toeplitz matrices, as will be justified in
Appendix B.

Because m 5 m0 everywhere, matrix Qm reduces to a
scalar m0 . With the grating illuminated in the cross-
section plane (az,0 5 0) and the null elements of Qe taken
into account, most of the elements of matrix M given by
Eq. (258) vanish:

which leads to the basic propagation equations for classic
gratings with in-plane illumination for both TE and TM
polarization. However, in this simple case there is a sim-
pler way to derive the equations, which is presented be-
low.

For TE polarization, Ex 5 Ey 5 0 5 Hz . Because m
5 m0 everywhere, Eq. (178) leads to d@Ez#/dy
5 ivm0@Hx#; Eqs. (228) and (15) give d@Hx#/dy
5 ivQe,zz@Ez# 1 iax@Hy#, where @Hy# is given by Eq.
(24), which reduces to @Hy# 5 2(ax /vm0)@Ez#. We thus
obtain

Qe 5 veCeb d vCeb21 5 F ve bvNy
2b 1 v1/e b21vNx

2b 2 ~ ve b

2~ ve b 2 v1/e b21!vNxNyb ve bvNx
2

0

M 5 3
2iaxQe,yy

21Qe,yx 0

0 0 i

0 ivQe,zz 2
iax

2

vm0

2iv~Qe,xx 2 Qe,xyQe,yy
21Qe,yx! 0
d2@Ez#

dy2 5 ivm0H ivve b@Ez# 2
iax

2

vm0
@Ez#J

5 2m0v2ve b@Ez# 1 ax
2@Ez#. (28)

This is the original propagation equation that was used in
Ref. 1.

For TM polarization, Hx 5 Hy 5 0 5 Ez . Equations
(208) and (15) lead to

d@Hz#

dy
5 2iv$Qe,xx@Ex# 1 Qe,xy@Ey#%, (29)

in which @Ey# is derived from Eq. (23):

@Ey# 5 Qe,yy
21H ax

v
@Hz# 2 Qe,yx@Ex#J . (30)

Equation (198), however, leads to

d@Ex#

dy
5 2ivm0@Hz# 1 iax@Ey#. (31)

Substituting the expression for @Ey# given by Eq. (30) into

Eqs. (29) and (31) leads, after some algebraic calculations,
to Eqs. (19) and (20) of Ref. 5. Thus our general equa-
tions reduce to the basic equations, which lead to the fast
convergence that has already been derived for isotropic
gratings.

B. Anisotropic Gratings
Anisotropic gratings are of great interest for information

processing. Thus a special study has been devoted to
them and will be published elsewhere.6 The research
submitted for publication in Ref. 6 concerns both types of
electric and magnetic anisotropy and includes the case of
lossy materials. It concerns in-plane diffraction, i.e., it
assumes that the incident wave vector is in the cross-
section plane of the grating. We have verified that the
present method leads to the same equations in that par-
ticular case. However, it also includes conical diffraction,
i.e., an incident wave vector outside the cross-section
plane; moreover, it is able to deal with crossed anisotropic

1/e b21!vNxNyb 0

v1/e b21vNyb2 0

0 ve b
G .

2 ivm0 1
iax

2

v
Qe,yy

21

0 0

0

2 iaxQe,xyQe,yy
21

4 ,
2 v

b 1
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gratings with surfaces periodic in both the x and the z di-
rections, whereas both e% and m% tensors exhibit arbitrarily
valued components.

C. Special Groove Geometry: Modal Theory
It is well known that for some special geometries the nu-
merical integration of Eq. (25) can be avoided. This oc-
curs, for example, for lamellar gratings, for which, inside
the grooves, the Fourier components of e and m (and also
of N) do not depend on ordinate y. The result is that, in
Eq. (25), matrix M has constant elements, and the solu-
tion can be expressed in terms of eigenvalues and eigen-
vectors. This method of solving the problem is known as
the modal method10 or the rigorous coupled-wave
theory.11 The convergence rate of the Fourier series of
the field was recently much improved by the heuristic
changes in the propagation equations suggested in Refs. 3
and 4. The present theory includes those equations,
which are valid in the particular case of lamellar grat-
ings, because it includes Eqs. (19) and (20) of Ref. 5 which
have proved to include the basic equations of Refs. 3 and
4. The situation is somehow different for slanted lamel-
lar gratings. In that situation, e depends on y through a
phase factor only. Although the modal method is not di-
rectly applicable, an adaptation by the use of suitable co-
ordinates can be made.12 A separate paper13 will explain
how the idea developed in Ref. 5 and in the present paper

has been used to improve the modal method in both clas-
sic and conical diffraction and will show the fast converg-
ing results obtained with deep, slanted gold lamellar grat-
ings.

D. Crossed Gratings
Crossed gratings have x and z directions of periodicity.
They can be made from isotropic or anisotropic materials.
In the isotropic situation, grids have interesting polariz-
ing properties. Grids are crossed gratings made with pe-
riodic holes inside a film of dielectric or metal, such that
the groove profile does not depend on the y coordinate,
and their diffracting capabilities may be analyzed
through the modal method. A recent paper14 brought ex-
perimental evidence of extraordinary transmission. Al-
though much theoretical effort was made to explain the
unexpected effect, all authors worked on unidimensional
models and thus were unable to produce the correct ex-
planation, which turns out to be specific to two-
dimensional periodic arrays. Using the ideas presented
here, we developed a computer code that is able to ana-
lyze a grid made with highly conducting metal such as
gold, based on the modal theory.15 We were thus able to
show that the two-dimensional structure of the device in-
troduces a new channel for light transmission, which does
not exist for one-dimensional grids. The success of these

Qe 5 F ve b 2 ~ ve b 2 v1/e b21!vN

2~ ve b 2 v1/e b21!vNxN

2~ ve b 2 v1/e b21!vNxN
computations, which were impossible to perform with any
other existing grating theory, illustrates the capabilities
of the present method.

For two-dimensional modulated surfaces, which re-
quire numerical integration along the y coordinate in the
groove region, the present theory reduces to a formalism
that is similar to the one developed in Subsection 3.A for
classic gratings, except that matrix az is not zero. The
main difference lies in the fact that the Fourier compo-
nents of the field components are (2N 1 1) 3 (2N 1 1)
matrices, but they may be turned into vectors with (2N
1 1)2 components through a suitable subroutine. Also,
in that case the diffraction problem does not reduce to TE
and TM cases, so four coupled differential equations on
@Ex#, @Ez#, @Hx#, and @Hz# have to be integrated simulta-
neously, as stated in Eq. (25). But the boundary-value
problem is not more difficult to handle than for the classic
grating used in conical diffraction, which has been ana-
lyzed with success13 with the the eigenvalue technique.

If the grating is made from isotropic materials, the
form of matrices Ce and eCe is similar to those of classic
gratings, Eqs. (26) and (27); however, the normal vector
has three nonnull components, so inverting vCeb analyti-
cally by blocks is more difficult to do. Fortunately, in the
isotropic case, one can use a more straightforward ap-
proach to find matrix Qe , which is described in Appendix
B. The result is written in the form

which differs from the classic grating case (Subsection
3.A) because of the three components of N, which are, in
general, nonnull. These components depend on the pro-
file. For example, a double-sinusoidal profile is defined
by the equation

y 5 ~H/2!sin~Kxx !sin~Kzz !,

i.e.,

f~x, y, z ! [ ~H/2!sin~Kxx !sin~Kzz ! 2 y 5 0.

Here H is the total groove depth and Kx and Ky are linked
with the grating periods dx and dy in the x and z direc-
tions: Kx 5 2p/dx and Kz 5 2p/dz . Then it is possible
to define N independently of ordinate y, so the Fourier
transform of its components is made once before numeri-
cal integration along y. N is proportional to
gradW f (x, y, z):

N 5
1

ugradW f u
FHKx

2
cos~Kxx !sin~Kzz !, 21,

HKz

2
sin~Kxx !cos~Kzz !G ,

with

2 ~ ve b 2 v1/e b21!vNxNyb 2 ~ ve b 2 v1/e b21!vNxNzb

ve b 2 ~ ve b 2 v1/e b21!vNy
2b 2 ~ ve b 2 v1/e b21!vNyNzb

2 ~ ve b 2 v1/e b21!vNyNzb ve b 2 ~ ve b 2 v1/e b21!vNz
2b
G ,
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ugradW f u 5 F1 1 S HKx

2 D 2

cos2(Kxx)sin2(Kzz)

1 S HKz

2 D 2

sin2(Kxx)cos2(Kzz)G1/2

.

E. Three-Dimensional Photonic Crystals
Three-dimensional photonic crystals are made with an ar-
bitrary object periodically repeated in the three Cartesian
coordinate directions. In that case, in addition to the x
and z periodicities that are found in crossed gratings, the
additional y periodicity allows the d/dy derivatives to be
expressed analytically. The result is that the differential
set [Eq. (25)] reduces to an eigenvalue–eigenvector prob-
lem, which can be resolved by means of standards subrou-
tines. In another paper,16 both theory and numerical re-
sults obtained in this particular case for isotropic
materials will be presented.

4. CONCLUSION
Although Maxwell equations have been known for more
than a century, the best way to write them in Fourier
space was not clear until now. The beautiful research of
Li warned the community of grating theoreticians of the
convergence problem linked to the usual way of factoriz-
ing Fourier series, so we were able to propose a fast-
Fourier-factorization (FFF) method5 that surmounted the
difficulties encountered in analyzing metallic gratings in
TM polarization. Here we have enlarged the FFF
method to the most general case of a diffraction problem.
The important point appears in Eq. (13), which relates
the Fourier components of [E] and [D], namely,

@D# 5 ve% d CebvCeb21@E#, (32)

and which does not reduce to

@D# 5 ve% b@E#. (33)

A similar equation is valid for [H] and [B]. Figure 1 pre-
sents a comparison of the convergence rates when the two
factorization rules, Eqs. (32) and (33), are used for a

Fig. 1. Convergence rates for two rules of factorization, Eq. (32),
represented by squares, and Eq. (33), represented by circles.
The 21st diffracted order efficiency as a function of truncation
parameter N for a gold grating (refractive index, 0.2 1 i6.71)
consisting of lamellae slanted at 45° with filling ratio 0.5, period
1 mm, and height 0.5 mm, is shown as used in TM polarization at
0.8-mm wavelength and 30° incidence. The rigorous value was
calculated with the integral formalism found in Ref. 17.
slanted lamellar gold grating used in TM polarization.
The improvement of the convergence is spectacular.

Here we give in compact form the elements of the ma-
trices Ce and e% Ce for any kind of geometry and material
and explain how to reduce the diffraction problem to a
simple boundary-value problem. It can then be analyzed
through differential or modal theory when some special
geometries are involved. Several numerical results for
particular cases have already been obtained through this
method of solving the convergence problem. Although
the method was derived with periodic diffracting devices
in mind, one can analyze nonperiodic elements by replac-
ing Fourier series by Fourier transforms. For isolated
two- or three-dimensional objects, the 2p periodicity with
respect to the angular cylindrical or spherical coordinates
can be used, so the present theory is applicable to objects
without evident periodicity.

APPENDIX A: LAURENT’S RULE OF
FACTORIZATION OF FOURIER SERIES
Let us denote by fc and fd , respectively, two periodic func-
tions of the variable x, with period dx , that are, respec-
tively, continuous and discontinuous. If we consider the
corresponding infinite Fourier series, Laurent’s rule
states that one can obtain the Fourier series of the prod-
uct fdfc by factorizing the Fourier series of fd and fc
through the convolution product, known as ‘‘Laurent’s
rule’’:

~ fdfc!n 5 (
m52`

1`

fd,n2mfc,m ,

@ fdfc# 5 vfdb@ fc# 5 vfcb@ fd#. (A1)

The question now is: What is the best way to calculate
the truncated Fourier series of fdfc , limited to 2N 1 1
terms (from 2N to 1N). The truncation implies that
this product, as well as fd , is correctly approximated by
the sum of its 2N 1 1 components on the Fourier basis
exp(inKx), with K 5 2p/dx . The very concept of factor-
izing Fourier series states that @ fdfc# will be an appropri-
ate product of two operators, F1 and F2 :

@ f1f2# 5 F1~ f1!F2~ f2!, (A2)

where ]F1 /]f2 5 0 5 ]F2 /]f1 ; we want to establish
what kinds of operators and products have to be used. In
the truncated Fourier basis of exp(inKx) functions, these
operators will be represented by matrices. To obtain a
vector after we find their product, we represent F1( f1) by
a (2N 1 1) 3 (2N 1 1) square matrix, denoted FJ 1( f1),
whereas F2( f2) will be represented by a vector, denoted
F2( f2), with 2N 1 1 components. Thus Eq. (A2) will
read as

@ f1f2# 5 FJ 1~ f1! d F2~ f2!. (A3)

In a first step, we choose for f2 one of the 2N 1 1 func-
tions of the Fourier basis: f2 5 exp(inKx), with
n P (2N, 1N). We obviously have ;n, F2( f2) 5 In ,



E. Popov and M. Nevière Vol. 18, No. 11 /November 2001 /J. Opt. Soc. Am. A 2893
where In is a vector with 2N elements equal to zero and
the nth element equal to 1. The mth Fourier component
of f1 exp(inKx) is

@ f1 exp~inKx !#m 5 @ f1#m2n . (A4)

However, because F2( f2) 5 In , Eq. (A3) leads to

@ f1 exp~inKx !#m 5 @FJ ~ f1!In#m 5 @FJ 1~ f1!#m,n . (A5)

Equations (A4) and (A5) show that @FJ 1( f1)#m,n5 vf1bm,n ,
i.e.,

FJ 1~ f1! 5 vf1b. (A6)

As ]F1 /]f2 5 0, Eq. (A6) is established, whatever the
choice of f2 may be.

As a second step, we choose f1 5 exp(imKx), with
m P @2N, 1N#, for which vf1bn,p 5 @ f1#n2p 5 dn2p,m
(Krönecker symbol).

In the same way as above, @exp(imKx)f2#n 5 @ f2#n2m ,
whereas, Eqs. (A3) and (A6) lead to @exp(imKx)f2#n
5 $vf1bF2( f2)%n5 (p dm,n2p@F2( f2)#p @F2( f2)#n2m . The
result is that F2( f2) 5 @ f2#. With Eq. (A6) taken into ac-
count, Eq. (A3) reads as @ f1f2# 5 vf1b@ f2#, which estab-
lishes the validity of Laurent’s rule for truncated series.

If one of the two functions, e.g., f1 , is discontinuous at
x, provided that it is piecewise continuous, piecewise
smooth, and bounded, its Fourier series converges at x to
$ f1(x 1 0) 1 f1(x 2 0)%/2. With that point kept in
mind, it is then easy to establish that Laurent’s rule ap-
plied to the product fdfc will yield Fourier components
with the corresponding Fourier series converging to
$ fd(x 1 0) 1 fd(x 2 0)%fc(x)/2. Thus Laurent’s rule,

@ fdfc# 5 vfdb@ fc#, (A7)

is the best way to factorize the product fdfc .
However, if f2 is also discontinuous at x, Laurent’s rule

will give Fourier coefficients that do not lead to a conver-
gence toward the correct value of the functions at
x: $ f1(x 1 0)f2(x 1 0) 1 f1(x 2 0)f2(x 2 0)%/2. In-
stead, it will converge to $ f1(x 1 0) 1 f1(x 2 0)%$ f2(x
1 0) 1 f2(x 2 0)%/4. However, if the two discontinuous
functions f1 and f2 have complementary jump disconti-
nuities, i.e., if f1f2 is continuous at x, the Fourier compo-
nents of the product can be correctly computed by means
of the inverse rule, which can immediately be derived
from Eq. (A7). Let us state that fc 5 f1f2⇒f2
5 (1/f1)fc , where 1/f1 is discontinuous and fc is continu-
ous. Applying Laurent’s rule, we get

@ f2# 5 v1/f1b@ fc#,

from which we derive

@ fc# 5 v1/f1b21@ f2# or @ f1f2# 5 v1/f1b21@ f2#.

This is the inverse rule.

APPENDIX B: ISOTROPIC MATERIALS
In the case of isotropic materials it is possible to obtain
matrix Qe in a simple way because e% reduces to a scalar, e.

Starting from @D# 5 @eE# 5 @eET 1 eEN#, where EN
5 N(N d E) and ET 5 E 2 EN , we first remark that eET
is discontinuous, whereas eEN is continuous. We thus
obtain
@D# 5 ve b@ET# 1 v1/e b21@EN#

5 ve b@E 2 N~N d E!# 1 v1/e b21@N~N d E!#.

We introduce a square matrix denoted (NN) whose ele-
ments are given by (NN) i, j 5 NiNj ; the previous equa-
tion leads to

@D# 5 ve b@E# 2 ~ ve b 2 v1/e b21!vNNb@E#,

where we recognize a matrix D that is equal to

ve b 2 v1/e b21,

which we introduced previously.5 Thus

Qe 5 ve b 2 ~ ve b 2 v1/e b21!vNNb.

This equation has to be interpreted in a block form as

~Qe!mn,ij 5 ve bmnd ij 2 ~ ve b 2 v1/e b21!mnvNiNjb,

i, j 5 x, y, z, m, n 5 2N:N,

which leads to the expression given in the core of this pa-
per and justifies the assumed commutativity of the trun-
cated Toeplitz matrices.

Another way to arrive at the same conclusion is to fol-
low the same procedure as outlined on p. 1776 of our pre-
vious paper,5 i.e., to change the orders of the various
terms in the product before taking the Fourier compo-
nents.

Let us demonstrate the method on the first element of
Qe , for example; for a classic isotropic grating for which
Nz 5 0, we have

Qe,xx 5 v~eCe!xx~Ce
21!xx 1 ~eCe!xy~Ce

21!yx

1 ~eCe!xz~Ce
21!zxb

5 veNyNy 1 Nx~1/e!21Nxb

5 veNy
2 1 ~1/e!21Nx

2b 5 ve bvNy
2b 1 v1/e b21vNx

2b,

which we obtained by assuming the commutativity of the
various matrices.

*E. Popov (e-mail: e.popov@fresnel.fr) is on leave from
the Institute of Solid State Physics, 72 Tzarigradsko
Chaussee Boulevard, Sofia 1784, Bulgaria.
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