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Corrugated waveguides as resonance optical
filters—advantages and limitations
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The role of the excitation of guided waves propagating in a corrugated dielectric waveguide is discussed in view
of the resonance anomalies in reflectivity. Narrow-wavelength filtering properties that are due to these sharp
anomalies have been a topic of interest for some time, but a proper understanding of device performances re-
quires an analysis of tolerances with respect to the incident-beam collimation and to waveguide losses. Such
an analysis is proposed in this paper, and the conclusion is that the incident-beam divergence plays a critical
role in reducing the maximum reflectivity for narrow-band filters. © 2001 Optical Society of America
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1. HISTORICAL REVIEW
The first observation of sharp changes in the diffraction
efficiency of diffraction gratings was made by Wood1 in
1902. To him is due the credit for the name ‘‘anomaly’’
that was given to this phenomenon. Much later, in 1950,
Fano2 was the first to distinguish between resonant and
nonresonant anomalies, the former because of the excita-
tion of guided waves and the latter appearing when some
diffraction order is being passed off. In 1964, Hessel and
Oliner3 proposed a phenomenological approach to reso-
nant anomalies that introduces the poles and the zeros of
the diffraction efficiency. The pole appears because of
guided-wave excitation. In brief, it is the result of the so-
lution of the homogeneous problem when a guided wave
exists without an incident wave. This solution requires
that the scattering matrix that links the diffracted- and
the incident-field amplitudes has a zero determinant. In
so far as the diffracted amplitudes are inversely propor-
tional to this determinant, they have a singularity, i.e., a
complex pole. In general, the pole is equal to the guided-
wave propagation constant. Because of energy-balance
and continuity requirements, this pole must be accompa-
nied by a zero of the amplitudes of the propagating dif-
fraction orders. The values of the poles and the zeros are
complex, and their positions in the complex plane depend
on grating parameters but not on the angle of incidence.

The phenomenological approach (as well as grating
anomalies, in general) has been the subject of extensive
studies. Several reviews4,5 can be found that describe
this approach and show how to use its results for predict-
ing the behavior of anomalies. An extension of the
formalism6 shows that the poles and the zeros exist in
nonlinear second-harmonic generation by diffraction grat-
ings. Recently the subject was again revived7,8 in con-
nection with dielectric-grating anomalies when such grat-
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ings are used as narrow-band optical filters. In brief,
when a waveguide mode is excited in a dielectric grating
(usually a corrugated waveguide) the pole leads to a peak
and the zero to a dip in the diffraction efficiency and, in
particular, in the reflectivity and the transmittivity of the
device. When the overall (nonresonant) reflectivity is
low the high (theoretically 100%) and narrow peak in the
reflectivity can be used for wavelength filtering. In so far
as the propagation constants of the guided wave of differ-
ent polarizations are different, the position of the peak de-
pends strongly on the polarization; thus the filtering
properties are polarization selective.

However, experiments have shown that the maximum
is quite far from the desired 100%.8,9 Recently, Magnus-
son et al.10 achieved a maximum value of 94% but by us-
ing a wider-band resonance filter with an angular full
width of 12°. The role of losses was treated in detail in
Ref. 8 in which a qualitative estimation of the finite-
beam-size influence was given, too.

The aim of this paper is to show quantitatively the in-
fluence of several observed deviations from the theoretical
model on device performance. These deviations include
the finite incident-beam width and its divergence and the
waveguide losses. We also discuss the influence of the
symmetry of the device on its performance, briefly sum-
marizing theoretical research done 15 years ago.11

2. MULTILAYER DIELECTRIC-GRATING
ANOMALIES
We consider a multilayer dielectric grating that is capable
of supporting one or more guided waves. This can be a
single-layer corrugated optical waveguide or a multilayer
diffraction grating that consists of several corrugated and
plane layers. As a result of diffraction by the grating, the
2001 Optical Society of America
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guided wave is radiated into the cladding, the substrate,
or both, which introduces radiation losses. Thus its
propagation constant becomes complex, and the guided
wave is transformed into a leaky one. If a plane wave is
incident from the cladding at an angle of incidence u i it
can excite a guided wave under specific conditions, called
the phase-matching or the Bragg condition, given by

nc sin u i 5
bg

k0
1 m

l

d
, (1)

where nc is the cladding refractive index, l is the wave-
length, d is the grating period, bg is the guided-wave
propagation constant, k0 5 2p/l (so that bg /k0 is the
mode effective index), and m is the diffraction order re-
sponsible for the excitation (usually equal to 21).

Depending on the l/d ratio (and on the angle of inci-
dence), several diffraction orders can propagate in the
cladding and in the substrate; their amplitudes are de-
noted by rm and tm , respectively. As was discussed in
Section 1, in the vicinity of the guided-wave excitation
[Eq. (1)] these amplitudes have a pole and zeros. If we
assume that the resonance is simple, i.e., only a single
mode is excited, the propagating-order amplitudes can be
expressed as

rm 5 r0, m

~a 2 a m
r, z!

~a 2 a p!
, (2a)

tm 5 t0, m

~a 2 a m
t, z!

~a 2 a p!
, (2b)

where a 5 nc sin ui , am
z is the zero of the mth amplitude

(which is different in reflection and transmission), and ap

is the pole (which is common for all the amplitudes be-
cause it is equal to the zero of the determinant of the in-
verse scattering matrix). If several guided waves are ex-
cited several similar terms with poles and zeros exist in
Eqs. (2). The coefficients r0,m and t0,m are slowly varying
functions and are equal to the nonresonant amplitudes of
the diffraction orders. For a lossless dielectric wave-
guide the energy balance requires that

1
b 0

r (
mPU
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t utmu2! 5 1, (3)

where

~b m
r, t!2 5 nc,s

2 2 am
2 , (4)

with ns the refractive index of the substrate and U the
numbers of propagating orders (it is, in general, different
in the cladding than in the substrate).

In experiments scientists are more often interested in
the reflectivity measurements. When looking at Eq. (2a)
it is evident that the efficiency in order m can vanish at
a 5 a m

r,z if the value of am
r,z is real. Moreover, the total

reflectivity, which is a sum of the efficiencies of all the re-
flected orders, will be null, provided the zeros am

r,z of all
the orders are equal and real, which can hardly happen.
If, on the other hand, high reflectivity is required, then
nullifying the transmission is difficult when several dif-
fraction orders are transmitted. Thus it is better to re-
duce to a minimum the number of propagating orders by
a decrease in the groove period. This is why in the rest of
the paper we discuss the case in which only specular or-
ders are reflected and transmitted. Without losses en-
ergy conservation requires that the sum of the
transmitted-order and the reflected-order efficiencies be
equal to unity so that, when one of them has a minimum,
the other must show a maximum. The polarization
throughout the rest of the paper is taken to be TE (or P or
s) polarization with the electric field vector parallel to the
grooves, although the results can be generalized directly
for the TM case.

3. SYMMETRY CONSEQUENCES
If the zero a0

t,z of the specular transmitted order is real
the respective efficiency will be null at an angle of inci-
dence corresponding to this zero:

Fig. 1. Schematic representations of different types of corru-
gated waveguides together with some notation used in the text:
d is the groove period, h is the total groove depth, and t is the
dielectric-layer thickness. (a) The flat lower interface and the
symmetrically corrugated upper interface. (b) Identical corru-
gations of the two interfaces of (a). The corrugations have sym-
metry with respect to a vertical plane. When n1 5 n3 the wave-
guide has an axis of symmetry. (c) The corrugations of (b) but
with a horizontal shift of d/2; the waveguide has a vertical plane
of symmetry. When n1 5 n3 the waveguide has a horizontal
plane of symmetry. (d) A horizontal shift between identical cor-
rugations of d/4; neither type of symmetry exists. (e) An
echelette grating as the upper interface; neither type of symme-
try exists.
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sin u i 5
1

nc
a 0
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If a 0
t,z is complex (as it is, in general) the transmission is

not null and depends on the ratio of the imaginary parts
of the zero and the pole as a consequence of Eq. (2b) when
their real parts are close in value:

min~t0! }
Im~a m

t,z!

Im~ap!
. (6)

Thus if the transmission-order zero is real, the theoretical
maximum of the reflection order reaches 100%, and it re-
mains lower when the transmission-order zero is complex.

The transmission- and the reflection-order zeros are
real or complex depending on the symmetry of the
system.11 Three main cases can be distinguished, as pre-
sented in Fig. 1:

(i) A corrugated waveguide that is symmetrical with
respect to a vertical plane [Figs. 1(a), 1(b), and 1(c)].
This case includes all waveguides with a symmetrical pro-

Fig. 2. Spectral dependence of the reflectivity of three corru-
gated waveguides with identical parameters but with different
corrugations. Parameters: TE polarization, d 5 0.303 mm,
t 5 0.7 mm, h 5 0.12 mm, n1 5 1.5115, n2 5 1.542, n3 5 1, and
u i 5 34.785°. The solid curve with markers represents the
waveguide shown in Fig. 1(a); the dashed curve corresponds to
the geometry presented in Fig. 1(c); the plain solid curve repre-
sents the grating shown in Fig. 1(d).

Fig. 3. Spectral dependence of the reflectivity of a corrugated
waveguide with a plane as the lower boundary and an echelette
as the upper boundary [Fig. 1(e)]. Parameters: TE polariza-
tion, d 5 0.303 mm, t 5 0.65 mm, h 5 0.12 mm, wB 5 25°,
n1 5 1.5115, n2 5 1.542, n3 5 1, and u i 5 34.785°.
file. The transmission zero is always real; thus the re-
flection maximum is equal to 100% in the lossless case,
whereas the reflection minimum is not necessarily null.

(ii) There is symmetry with respect to a horizontal
plane [Fig. 1(c)]. This case requires that the waveguide
be symmetrical, i.e., the optical indices of the cladding
and the substrate are equal. In addition, the corrugation
must be made with opposite phases on the two boundaries
and is difficult to realize. Both transmission and reflec-
tion zeros are real, and the reflectivity exhibits a 100%
maximum and a 0% minimum.

(iii) There is symmetry with respect to an axis, which
acts as a center of inversion in the waveguide cross sec-

Fig. 4. Spectral dependence of the reflectivity of a multilayer di-
electric mirror that consists of 17 layers of dielectrics with alter-
nating higher (n 5 1.7) and lower (n 5 1.5) refractive indices.
Each layer has a l/4 thickness at l 5 0.63 mm. There is normal
incidence and TE polarization. The thick solid curve represents
a plane as the upper interface; the thin solid curve represents
an upper interface that has a sinusoidal modulation with a
period of d 5 0.4117 mm and a modulation depth of h/d 5 0.2;
the dashed curve represents a case with a 23 modulation rate
of h/d 5 0.4. Shown are (a) the general view, (b) the zoom
around the region l 5 0.645 mm, and (c) the zoom around
l 5 0.655 mm.
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tion [Fig. 1(b)]. The corrugations must be identical and
in phase at the two boundaries, and the substrate and the
cladding must have the same indices. The reflection zero
is real, which ensures a 100% transmission maximum but
does not guarantee 100% reflectivity, as the transmission
zero could be complex.

As can be observed, for practical purposes it is the first
type of symmetry that has the greatest importance. It
means, in particular, that, for all waveguides with sym-
metrical corrugation on only one of the interfaces, the ex-
citation of a guided wave will lead to a resonance anomaly
with a 100% reflectivity maximum, provided there are
only specular orders propagating in the cladding and the
substrate.

Several numerical examples are presented in Figs. 2
and 3 and point out that, even for waveguides with an-
other type of symmetry, the imaginary part of the trans-
mission zero remains small. Thus the reflectivity maxi-
mum is only slightly reduced from 100%.

Another interesting example concerns a diffraction
grating placed on a multilayer stack of quarter-
wavelength layers with alternating high and low indices
to increase the reflectivity. It is well known that such
layers form a reflection bandwidth filter, recently called a
photonic bandgap in transmission [Fig. 4(a), the thick
curve]. Imposing a diffraction grating on such a flat pla-
nar structure could result in the formation of defects in
the bandgap [Fig. 4(a), the thin curve]. From the point of
view taken in this paper such defects are nothing but the
resonance anomalies that are due to the excitation of
guided waves in the multilayer structure.12 Because
such a thick structure supports many modes, three
anomalies, each consisting of a peak and a dip, are visible
that are due to the excitation of three different waveguide
modes. Contrary to the cases presented in Fig. 2, here
the enhanced transmission rather than the enhanced re-
flection matters. In the gap the nonresonant reflectivity
of the system is high, as is expected, so that the resonance
anomaly has more-pronounced dips in the reflectivity that

Fig. 5. Spectral dependence of the reflectivity of the corrugated
waveguide shown in Fig. 1(b) with TE polarization,
d 5 0.303 mm, t 5 0.7 mm, h 5 0.12 mm, n1 5 1.5115,
n2 5 1.542 1 ig, n3 5 1, and u i 5 34.785°. The three curves
are calculated for different losses in the middle guiding
layer that correspond to different values of the extinction coeffi-
cient g. The thick solid curve represents g 5 5 3 1026; the thin
solid curve represents g 5 1025; the dashed curve represents
g 5 5 3 1025.
are due to the zero of the reflection order. The system
symmetry (with respect to a vertical plane) ensures that
the transmission zeros are real; thus the maxima of the
reflectivity reach the theoretical value of 100%. How-
ever, this symmetry does not require that the reflectivity
zeros be real and, as can be concluded from Fig. 3, they
are not except for the one in the region farthest to the
right [Fig. 4(c)]. However, in this case the minimum re-
flectivity also increases when the groove depth of the
overcoating grating is doubled, as can be observed from
Fig. 4(c).

4. INFLUENCE OF LOSSES
Unfortunately, all the results given in Section 3, as well
as the theoretical considerations11 that led to conclusions
(i)–(iii), are valid only if the waveguide material and the
substrate are lossless and the incident wave is a plane
wave. However, in practice, neither is the incident beam
infinitely wide, nor is it absolutely collimated, nor is the
waveguide material lossless. How these factors affect ex-
perimentally the reflectivity maximum can be observed in
Fig. 9 (below) as well as from Ref. 9. Although the posi-
tion and the form of the anomaly in the angular and the
spectral dependencies of the reflectivity correspond to
theoretical predictions, the results are quite far from the
theoretically expected 100% maximum.

Figure 5 presents theoretical results showing the influ-
ence of losses in the guiding layer. It must be pointed
out that the extinction coefficient of g 5 1025 means that
the waveguide-mode intensity will attenuate 10 times
along a propagation distance of 11 mm because the inten-
sity varies in the x direction as exp(22k0g x). Such
strong attenuation is not typical of most waveguides and,
moreover, is not enough to explain the reduction of the
maximum to as low as 75% or 35%, as was reported ex-
perimentally.

5. INFLUENCE OF BEAM DIVERGENCE
AND LIMITED SIZE
The reason for the influence of deviations from the inci-
dent plane wave on the maximum value of the reflectivity
lies in the resonant nature of the anomaly, as expressed
by Eq. (1). The narrower the anomaly, the greater the
influence of the fact that the incident field contains an in-
terval of angles of incidence because each one of its com-
ponents will generate a response with a spectral maxi-
mum situated at different wavelengths, as given by Eq.
(1). As a rule of thumb the incident-beam divergence
must be much less than the angular width of the
resonance.8 Figure 6 illustrates the effects of these con-
siderations on the example of Sections 2 and 3. Three
very close incidence angles (a difference of 0.6 mrad) yield
spectral responses in which the maxima overlap only par-
tially so that, when the beam divergence is greater, one
can expect a large deterioration in performance, as is
shown below.

There is a direct link between the limited beam size
and its divergence. Thus, in this section, we investigate
only the influence of the incident-beam divergence. In-
deed, the incident-beam field Ez

i can be represented as a
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Fourier transform containing a set of incident plane
waves that have some angular distribution p(d)

Ez
i ~x, y ! 5 E

2`

1`

p~d!exp@i~ax 2 bry !#dd, (7)

where d is equal to a/k0 and br is given in Eq. (4). An
incident plane wave has an angular distribution that is
equal to the Dirac delta function. In what follows, we as-
sume a Gaussian beam profile with a center at some angle
of incidence u i such that d0 5 sin ui :

p~d! 5 expF2S d 2 d0

D D 2G . (8)

Here, D is a dimensionless parameter representing the
beam divergence. The smaller D is, the less divergent is
the incident beam. Typical values for commercial He–Ne
lasers vary largely from 0.1 mrad (rarely) to as high as 1
mrad, although laboratory investigations show large de-
viations from the specified data, usually in the undesired
direction.

The linearity of the problem leads to a system response
that is a linear combination of responses to each of the
incident-field components. Thus the z component of the
reflected electric field Ez

r is given by

Ez
r~x, y ! 5 E

2`

1`

r~d!p~d!exp@i~a x 1 bry !#dd, (9)

where r(d) is the reflection coefficient (with regard to the
field amplitude) of the system at an incident angle u such
that d 5 sin u.

The diffraction efficiency in the zeroth reflected order
(i.e., system reflectivity) is defined as the energy flow in
the reflected beam through a plane parallel to the x –z
plane and divided by the energy flow of the incident beam
through the same surface. Considerations, given in Ap-
pendix A, show that the efficiency (reflectivity) h0 is given
by

h0 5

E
2`

1`

ur~d!p~d!u2br~d!dd

E
2`

1`

up~d!u2br~d!dd

. (10)

Fig. 6. Spectral dependence of the reflectivity of a lossless wave-
guide with the parameters of Fig. 5 for three different angles of
incidence: u i 5 34.806° (triangles), u i 5 34.785° (plain curve),
and u i 5 34.771° (squares).
The reflectivity of the corrugated waveguide that is ex-
pected to ensure a 100% maximum with an incident plane
wave (or a beam collimated to better than 0.01 mrad in
this specific case) when the beam divergence D takes
three values between 0.1 and 1 mrad is presented in Fig.
7. A spectacular reduction of the maximum value
(shown in Fig. 8) and a broadening of the curves are ob-
served. It must be repeated that the critical beam-
divergence value shown in Fig. 8 depends on the anomaly
width, as discussed in Ref. 8. On the other hand, the
anomaly width is, in general, proportional to the groove
depth squared11; thus the shallower the grating, the
smaller the anomaly width, and the greater the influence
of the incident-beam divergence.

An effort to compare these theoretical results with ex-
perimental data was made by use of a dye laser with a
relatively high beam divergence (greater than 1 mrad).
An ion-exchanged waveguide was prepared9 in an ion-
milled photoresist holographic grating that was trans-
ferred onto a glass substrate. The fitting of the theoret-
ical data (Fig. 9) with the maximum value results in the
choice of D 5 1.2 mrad, although the theoretical curve is
slightly wider than the experimental one. This differ-
ence can be explained by our neglect of the losses in the
theoretical results and by our taking into account that
the experiment involves a gradient-index waveguide,

Fig. 7. Spectral dependence of the reflectivity of a lossless wave-
guide with the parameters of Fig. 5 for three different incident-
beam-divergence values. The principal incidence direction is
u i 5 34.785°.

Fig. 8. Values of the reflectivity maxima plotted as a function of
the angular beam width. The waveguide parameters are the
same as those for Fig. 5.
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whereas the calculations deal with a step-index wave-
guide. However, this difference is of minor importance to
the general conclusion that narrow anomalies, which
could be used for narrow-band reflectivity filtering, are
quite sensitive to beam collimation, which significantly
limits the applications. The role of waveguide losses is
not so pronounced, and they have considerable influence
on only waveguides with heavy losses, which could be
avoided, in practice.

Another measurement was made by use of a second la-
ser with greater beam collimation. A commercial He–Ne
laser with a specified divergence of 0.3 mrad was used to
measure the angular dependence of the reflectivity of the
same corrugated waveguide. A maximum value of 63%
was obtained, as compared with the 37% maximum mea-
sured with the dye laser. Figure 10 presents a compari-
son between the theoretically expected results under the
assumption of plane-wave incidence and the experimental
results obtained with the two lasers. The difference con-
firms the above conclusions. The use of the logarithmic

Fig. 9. Comparison of the theoretical and the experimental re-
flectivities. The theoretical parameters are those given for Fig.
5, and the beam divergence is 1.2 mrad. The experimental val-
ues are given in the text.

Fig. 10. Angular dependence of the reflectivity of the corrugated
waveguide. The thin solid curve represents the theoretical re-
sults under the assumption of plane-wave incidence. The thin
dashed curve represents the reflectivity of the plane waveguide.
The thick dashed curve represents the measurements made with
a He–Ne laser with a 0.3-mrad beam divergence. The thick
solid curve represents measurements made with the dye laser
with a fixed wavelength of 632.8 nm. The logarithmic vertical
scale better reveals the form of the anomaly.
vertical scale better shows the minimum because of the
existence of a zero az in Eq. (2a).

APPENDIX A
Let us start with the expressions of the incident- and the
reflected-field amplitudes, as given in Eqs. (7) and (9).
We are interested in the far-field picture in which these
fields are spatially separated. The energy flow through a
plane that is parallel to the x –z plane is proportional to
the integral along the x axis of the y component Py of the
Poynting vector. For the incident and the reflected
beams the energy flow Ii,r is proportional to

Ii, r } E
2`

1`

Py
i,r~x, y !uy5`dx. (A1)

The corresponding component Py is proportional to

Py~x, y ! } EzH̄x } Ez
]Ēz

dy
, (A2)

where the overbar indicates complex conjugation. Tak-
ing into account representations (7) and (9) shows that

Py
i ~x, y ! } E

2`

1`E dd8dd9p~d8!p̄~d 9!b9

3 exp@i~a8 2 a9!x 2 i~b8 2 b9!x#,

(A3)

Py
r~x, y ! } E

2`

1`E dd8dd 9r~d8!r̄~d 9!p~d8!p̄~d 9!b9

3 exp@i~a8 2 a9!x 2 i~b8 2 b9!x#. (A4)

When expressions (A3) and (A4) are substituted into
expression (A1) one of the integrations is eliminated be-
cause of the relation

E
2`

1`

exp@i~a8 2 a9!x#dx 5 2pd~a8 2 a9!, (A5)

where, contrary to the rest of the text, d indicates the
Dirac d function. Then one immediately arrives at Eq.
(10).
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