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Electromagnetic resonances in linear and nonlinear optics:
phenomenological study of grating behavior
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The poles and zeros of the scattering operator of a corrugated waveguide and of a bare grating are studied
mathematically and numerically. An initial tutorial section recalls how their use can explain grating anoma-
lies and other curious phenomena in linear optics. This approach is then used in nonlinear optics to
understand and predict curious efficiency-curve shapes observed in the study of second-harmonic generation
and optical bistability enhanced by a corrugated surface.
1. INTRODUCTION
When Wood discovered grating anomalies in 1902,1 they
were so named because they appeared as a strange and
unexplained phenomenon. Wood was indeed astounded
to see that under special illumination conditions the grat-
ing efficiency in a given order dropped from maximum to
minimum illumination, the ratio being approximately 10
to 1, within a wavelength range not greater than the dis-
tance between the sodium lines. Lord Rayleigh2 was the
first to try to explain these abrupt variations by connect-
ing them to the passing off of higher orders. Although
a historical review of all the experimental and theoret-
ical studies that were devoted to the understanding of
Wood’s anomalies is beyond the scope of this paper, we
point out that Fano3 was the first to suggest that anom-
alies could be associated with the excitation of a surface
wave along the grating. The development4 of the elec-
tromagnetic theory of gratings in the 1970’s, which per-
mitted accurate computation of grating efficiencies and
of the scattering operator, has fully confirmed this expla-
nation. After the research of Maystre and Nevière5 and
Nevière et al.,6 it has been established that Wood’s anom-
alies can be predicted and studied from the knowledge of
the complex poles and zeros of the scattering (S) matrix,
the poles being equal to the propagation constants of the
leaky surface waves that may exist in the vicinity of the
grating surface. Other strange phenomena can be stud-
ied along the same lines; examples are total absorption
of light by a metallic grating and coupling of an incident
laser beam into a waveguide,7 and, in addition, perfect
blazing of a corrugated waveguide near a second-order
stop band.8 Thus this technique is becoming more and
more popular among grating theoreticians9 and is termed
polology. Indeed, simply the knowledge of the complex
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poles of the determinant of the S matrix, and eventually
of the complex zeros of some of its elements, allows one to
account for complicated shapes of grating anomalies and
brings physical insight into the various above-mentioned
strange phenomena, which a mere numerical computa-
tion does not bring.

In addition to the physical insight brought by such a
phenomenological study, another important point is that
the resonant excitation of a leaky surface wave near a
grating, which occurs when a suitable phase matching
between the incident plane wave and the guided wave is
achieved, leads to a strong enhancement of the field near
the grating surface.10 This effect, which is already in-
teresting in the linear optics domain for topics such as
near-field microscopies,11 can become even more inter-
esting in nonlinear optics when the field enhancement
acts with a power $2. Thus nonlinear effects, which
are usually weak, can be increased by several orders of
magnitude12 and can become important; among them are
Raman scattering, second-harmonic generation, lumines-
cence, the Kerr effect, and optical bistability. It is the
aim of this paper to show that polology contributes signif-
icantly to the understanding of complicated behaviors of
some of these nonlinear phenomena. In order to demon-
strate that, we first present the basic principles of polol-
ogy in linear optics.

2. POLOLOGY IN LINEAR OPTICS
Figure 1 shows the notation used in grating theory. The
grating surface, y ­ gsxd, divides space into regions s1
and s2 with refractive indices n1 and n2. When an in-
cident plane wave with circular frequency v, TE or TM
polarized, falls upon the grating under incidence u, it pro-
duces a field usx, yd that, outside the modulated region de-
1995 Optical Society of America
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Fig. 1. Schematic representation of a grating, with notation.

fined by 0 # y # h, can be represented by superpositions
of plane waves, called Rayleigh expansions4:

If y . h,

usx, yd ­ A0 expfisg0x 2 b0ydg

1
1P̀

n­2`

Bn expfisgnx 1 bnydg . (1)

If y , 0,

usx, yd ­
1P̀

n­2`

Tn expfisgnx 2 b0
nydg , (2)

where

gn ­ k1 sin u 1 nK , (3)

K ­
2p

d
,

bn ­
q

k0
2n1

2 2 gn
2 or i

q
gn

2 2 k0
2n1

2 , (4)

b0
n ­

q
k0

2n2
2 2 gn

2 , Resb0
nd 1 Imsb0

nd . 0 , (5)

k0 ­ vyc ,

where d denotes groove spacing.

A. Definition of the Scattering Matrix
Let P be the number of diffracted propagating plane
waves for a given angle u and U sud be the set of cor-
responding values of n. Let us then consider the gen-
eral case in which a set of P incident plane waves of the
form An exps2ibnydexpsignxd, with n [ U sud, fall upon
the grating. For y . h, they generate P diffracted plane
waves of the form Bnsudexpsibnydexpsignxd and an infin-
ity of evanescent waves. In linear optics, if we are given
An, the Rayleigh coefficients Bnsud of the diffracted waves
are determined in a unique manner and depend on An

linearly.
There are several ways to define a scattering matrix

that links the incident field to the diffracted one. The
simplest way is to write

Bnsud ­
1P̀

m­2`

SnmsudAm (6)

for any value of n and m from 2` to 1`. Equation (6)
defines what will be called the large scattering matrix,
Ssud, which permits determination of both propagating
and evanescent orders from the given incident field. For
those who are not interested in evanescent orders, Eq. (6)
can be replaced by

Bnsud ­
P

m[U sud
snmsudAm , (60)

which defines the small-scattering matrix, ssud. For loss-
less media such as perfectly conducting metals, it is some-
times useful to change Eq. (60) into

Bnsudb1/2
n ­

P
m[U sud

s0
nmsudAmb1/2

m . (600)

This definition of another small scattering matrix, s0sud,
has the advantage of leading to a matrix that has sym-
metry properties13 and unitarity, because it operates on
vectors whose squared norms are diffracted energy.
However, for many questions studied in this paper, the
definition given by Eq. (6) will be the simplest one and
will suffice.

B. Resonance Phenomenon
When we study the response of a grating to an incident
plane wave, u, sin u, and the product d ­ n1 sin u are
real numbers. Thus the S matrix is, for the physicist,
a function of a real variable (u or d). However, it is in-
structive to try to answer the purely mathematical prob-
lem: If we allow d to be a complex variable, does the S
matrix present complex poles andyor complex zeros in the
complex-d plane? This question may seem distasteful to
experimentalists, which are concerned only with the Resdd
axis, but existence of complex poles not far from this real
axis may explain interesting phenomena when d is var-
ied in its physical range of interest. Rewriting Eq. (6) in
matrix form with d dependences of the various matrices,
we obtain

fBsddg ­ fSsddgfAg , (7)

where fBsddg is a column vector with elements Bnsdd and a
similar definition applies to fAg. Inverting Eq. (7) gives

fAg ­ fMsddgfBsddg , (8)

with fMg ­ fS21g, which, when no incident wave falls upon
the grating, reduces to

fMgfBg ­ 0 . (9)

We then get what is usually called the homogeneous
problem,7 which may lead to a nonzero solution only if

detfMsddg ­ 0 . (10)

Equation (10) may have complex solutions, and, for such
a complex value of d, Eq. (1) leads to a field that, for
y . h, propagates along a direction close to the x axis
and is attenuated in a direction perpendicular to it. A
similar situation is found for y , 0; hence the solution of
the homogeneous problem is called a leaky surface wave.
The important point is to remember that propagation
constants d of such surface waves are complex numbers
that are the zeros of detfMg. Inverting matrix fMg leads



Nevière et al. Vol. 12, No. 3 /March 1995/J. Opt. Soc. Am. A 515
to Snm ­ kMmnkydetfMg, where kMmnk denotes the matrix
formed from the minors of fMg.

The result is that the zero of detfMg is a pole of all the
elements of the S matrix and thus of detfSg. Hence it will
be called dP in what follows. Equation (6) or (7) shows
that all elements Bn of vector fBg present the same com-
plex pole dP , regardless of whether their index n belongs
to U sud, i.e., regardless of whether they have a propagat-
ing or an evanescent nature when an incident plane wave
falls upon the grating.

Let us now go back to the situation in which a plane
wave strikes the grating under incidence u. Of course
d ­ n1 sin u, which is real, cannot be equal to dp. But if,
as happens for metallic gratings, Imsdpd ,, 1, d becomes
close to dp if the incidence is chosen in such a way that
d ­ Resdpd. Then Snm are, of course, not infinite but
culminate to a value inversely proportional to Imsdpd.
Near this particular incidence, Eq. (6) or (7) leads to

Bnsdd ­
1X̀

m­2`

Cnmsdd
d 2 dp

Am , (11)

where Cnmsdd are slowly varying functions without pole, if
we assume the nonmultiplicity of dp. Equation (11) can
be approximated in a narrow range of incidence whose
extension is of the order Imsdpd by

Bnsdd ø
C

d 2 dp
; (12)

introducing dp ­ d0p 1 id00p, we get

jBnsddj2 ø
jCj2

sd 2 d0pd2 1 sd00pd2
. (13)

Hence the moduli of all Rayleigh coefficients present a
resonance phenomenon, governed by a Lorentzian curve
centered around d0p, with half-width at half-maximum
equal to d00p. Of course, this resonant behavior may be
completely hidden if, in addition to a pole, Snmsdd presents
a zero, as may occur for propagating orders whose energy
is bounded by a conservation law. But evanescent or-
ders that are not affected by this argument all present
resonance lines simultaneously when u is varied in such
a way that n1 sin u ø d0p.

As soon as we have at our disposal efficient grating
theories that permit computation of the S or the M matrix,
the determination of dp can be done along the following
lines. First, as soon as d, and thus g, is allowed to be
complex, the definition given by Eq. (4) does not define bn

in a unique way. As shown in Ref. 7, it has to be replaced
by an equation similar to Eq. (5), which includes a cut in
the complex plane:

bn ­
q

k0
2n1

2 2 gn
2 , Res bnd 1 Ims bnd . 0 .

Second, the periodicity of the grating surface results in the
multiplicity of poles dp, each of them having been derived
from the central one by addition or subtraction of l0yd
(Ref. 7). But, when groove depth h tends toward zero,
all the determinations vanish except the one that tends to
the propagation constant of the surface wave supported by
the plane interface (surface plasmon–polariton or guided
wave). Since the latter value can be determined in a
straightforward or at least a simple way, it may be used
as the starting point of an iterative process that looks for
the different values of dp when h is increased from zero
to its final value. Thus the loci of dp in the complex-d
plane can be obtained when an arbitrary grating param-
eter (e.g., h) is varied. Of course, this process requires a
continuity hypothesis, which is broken when some of the
cuts are crossed by the loci of dp.

C. Existence of Complex Zeros of BnsddBnsddBnsdd
Since dP is common to all elements of the S matrix,
relation (12) can be rewritten, including the groove-depth
dependence, as

Bnsd, hd ­
usd, hd

d 2 dpshd
, ufdpshd, hg fi 0 .

In the limit case of a plane surface, all the amplitudes
Bn vanish, except B0, which tends toward the Fresnel
reflection coefficient r; thus we get

B0sd, 0d ­ rsdd ­
usd, 0d

d 2 dps0d
,

from which we derive

usd, 0d ­ fd 2 dps0dgrsdd .

The result is that, at the limit h ! 0, dps0d not is only a
pole for B0sd, 0d but is also a zero. When h increases
from zero, of course things are changed. But conti-
nuity arguments imply that, at least for low grating
modulation, a complex zero associated with the complex
pole exists; it will be denoted dzshd. Its existence can
easily be established for a perfectly conducting grating
supporting only the zero diffracted order. For a dif-
fracted efficiency equal to unity, whatever the incidence
may be, to be found, a complex zero dzshd equal to dpshd
must be associated with the pole dpshd, if it exists. Here
too, when losses are introduced into the metal, continuity
arguments show that for good reflectors a complex zero
dzshd, no longer equal to but close to dpshd, still exists.

If the grating supports several diffracted orders,
B0sd, hd near the resonance anomaly can be described
intuitively by the sum of two terms, the first of which
tends to the Fresnel reflection coefficient when h ! 0
and the resonant one of which is associated with the
excitation of a surface wave:

B0sd, hd ­ Cshd 1
Dshd

d 2 dpshd
, (14)

where

lim
h!0

Cshd ­ rsdd , lim
h!0

Dshd ­ 0 .

From Eq. (14) we deduce that

B0sd, hd ­ Cshd
d 2 dpshd 1 DshdyCshd

d 2 dpshd

or

B0sd, hd ­ Cshd
d 2 dzshd
d 2 dpshd

, (15)

with

dzshd ­ dpshd 2 DshdyCshd . (16)
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The conclusion is that any Rayleigh coefficient that corre-
sponds to an order that does not vanish when the groove
depth vanishes fCs0d fi 0g must present a complex zero
dzshd associated with dpshd.

It it important to note that the above-mentioned argu-
ment does not apply to the minus-first order for which
Cshd ­ 0. However, following a suggestion of Maystre
(Université de Saint-Jérome, Marseille, France), we can
demonstrate at least in one particular case that B21 must
also present a zero. To that end, we choose a perfectly
conducting grating that supports two diffracted orders,
and we consider the fs0 g scattering matrix defined by
Eq. (600). The poles dpshd of detfSg that also are poles of
all Snm elements are thus poles of s0

nm and of detfs0 g. But
the unitarity of this matrix implies that detfs0 g also has
zeros that are equal to dp. Thus detfs0g can be written as

detfs0 g ­ Cdsd 2 dpd ,

where Cd depends on d. Moreover, from Eqs. (600) and
(15) we derive

s0
0,0 ­ C0,0sd 2 dz

0,0d ,

and the same reasoning when A0 ­ 0 and A21 fi 0 leads to

s0
21,21 ­ C21,21sd 2 dz

21,21d .

Recalling that detfs0 g ­ s0
21,21s0

0,0 2 s0
0,21s0

21,0, we obtain

C21,21sd 2 dz
21,21dC0,0sd 2 dz

0,0d 2 Cdsd 2 dpd ­ s0
0,21s0

21,0 .

This shows that the product s0
0,21s0

21,0 is a second-degree
polynomial of d. Thus it has two zeros d

z
z and dz

h and
can be put into the form s0

0,21s0
21,0 ­ qsd 2 d

z
z dsd 2 dz

hd.
Reciprocity and unitarity13 show that s0

0,21 and s0
21,0 play

similar roles, and thus each of them has a complex zero.
Since B21 ­ s0

21,0A0, the zero of s0
21,0 is also a zero of B21.

We end this section by pointing out that the definition
of the scattering matrix can be extended to transmission
gratings14 and that existence of poles and zeros of the
transmitted Rayleigh coefficients can be understood along
the same lines.

D. Loci of dpshddpshddpshd and dzshddzshddzshd in the Complex-ddd plane
Having established the existence of poles and zeros of
the S-matrix determinant or elements, we show in Fig. 2
an example of their evolution in the complex-d plane
when groove depth h increases from zero. Starting from
a common value near the real axis equal to dps0d [with
Im dps0d . 0], which is the propagation constant of the
plane air–silver-interface plasmon, the pole and the zero
separate and go toward parts of the complex plane when
h increases. As soon as silver presents losses, dz and
dp cannot be complex conjugates. But since these losses
are small at 0.5-mm wavelength, the trajectories of poles
and zeros are almost symmetrical. The diffracted energy
remaining bounded, dp can never be real; i.e., its tra-
jectory cannot cross the Resdd axis, and it goes toward
the positive imaginary part of the complex-d plane. On
the other hand, dz goes toward the opposite direction,
i.e., it crosses the real axis for a critical value hc of h
equal to 0.021 mm. For that particular groove depth, the
grating of Fig. 2, if illuminated under incidence given by
sin u ­ Resdzd, which has a wavelength-to-groove-spacing
ratio large enough to diffract only the zeroth order, will
absorb in totality the incident power.

Figure 3 shows the same trajectories for a dielectric
coated grating used in TE polarization, when the dielectric
film thickness e is increased. This time the curves start

Fig. 2. Loci of the pole dp and the zero dz of B0sd, hd in
the complex plane when h (in micrometers) is varied, for a
2400-grooveymm sinusoidal silver grating used in TM polariza-
tion. l ­ 0.5 mm. Long-dashed curve, dp; short-dashed curve,
dz.

Fig. 3. Loci of the pole dp (upper curve) and the zero dz

(lower curve) in the complex plane for a 2400-grooveymm,
10±220 blaze angle aluminum grating used in TE polarization, at
l ­ 0.492 mm. The grating is coated with a layer of MgF2 with
thickness e chosen as the parameter (in mm).
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from the propagation constant of a lossy guided wave and
again go toward opposite halves of the complex-d plane.
A total absorption phenomenon occurs for a suitable di-
electric thickness.15

As soon as the existence of a pole and a zero has been
established, including the slow dependence of Cshd on d

in Eq. (15), the function B0sd, hd may be written as

B0sd, hd ­ wsd, hd
d 2 dzshd
d 2 dpshd

, (17)

where wsd, hd is a complex regular function near dz and
dp and does not present any zero in their vicinity. The
study of the asymptotic behavior of the two terms of
Eq. (17) shows that limh!0 wsd, hd ­ rsdd. Since wsd, hd
is a slowly varying function, Eq. (17) may be approxi-
mated by

B0sd, hd ø rsdd
d 2 dzshd
d 2 dpshd

. (170)

Hence the following phenomenological formula is obtained
for the zeroth order efficiency E0:

E0sd, hd ­ jB0j2 ­ Rsdd
jd 2 dzshdj2

jd 2 dpshdj2
, (18)

where Rsdd is the reflection factor of the energy. As
soon as dz and dp are known, E0sd, hd can be obtained
immediately. It is worth noticing that, on the curves of
Figs. 2 and 3, when the parameter h or e is increased,
the pole and the zero move while their real parts are
kept almost equal. It follows that when d ­ Resdpd, E0

presents a minimum value close to RsddfImsdzdyImsdpdg2

derived from Eq. (18).
Figure 4 shows the efficiency curves derived, through

Eq. (18), from the values of the poles and zeros plotted
in Fig. 2. It is clear that for the critical value hc ­
0.021 mm a phenomenon of total absorption is found.
This has been thoroughly confirmed by experiments.15,16

On other periodic structures such as corrugated wave-
guides, the pole and the zero may have real parts that sig-
nificantly differ. The zeroth-order efficiency curve then
presents a more complicated shape with both a minimum
[corresponding to Resdzd] and a maximum [correspond-
ing to Resdpd] (Fig. 5). Here, too, phenomenological for-
mula (18) fully accounts for this complicated shape and
gives predictions in agreement with rigorous calculations.
Under special circumstances, e.g., if the groove spacing
is chosen in such a way that a surface wave is excited
under near-normal incidence, or for a dielectric coated
grating that supports both a guided wave and a plas-
mon, two complex poles and two complex zeros may be
located at neighboring positions in the complex-d plane.
It is then straightforward17 to extend phenomenological
formula (18) by including all poles and zeros, and it has
been verified17 by rigorous calculations that the extended
formula still gives an excellent prediction of the grating
behavior.

3. POLOLOGY IN NONLINEAR OPTICS

A. Second-Harmonic Generation
When a high-power laser beam with circular frequency
v falls upon a grating, in addition to the diffraction
phenomenon at v, it generates, through a nonlinear inter-
action, a nonlinear polarization PPP NLs2vd inside the grat-
ing material. This dipole collection radiates a field at
2v circular frequency, which is itself diffracted by the
grating. Since nonlinear effects are usually weak, it is
generally assumed that the 2v field does not interact
with the field at v. We thus make the usual undepleted-
pump approximation, which allows us to study the second-
harmonic generation by a grating through a three-step
theory.18,19 As a first step we determine the v-diffracted
field EEE svd by computing the corresponding scattering
matrix Ssvd. Second, we determine PPP NLs2vd, which de-
pends on the grating material as well as on the polar-
ization of light. In the case of a nonlinear dielectric, for
example, we have

PPP NLs2vd ­ xs2vd
... EEE svdEEE svd , (19)

where x is the third-order nonlinear susceptibility tensor.
In the third step Maxwell equations plus boundary condi-
tions at 2v circular frequency lead to a linear diffraction

Fig. 4. Zeroth-order efficiency curves for several groove depths
of a 2400-grooveymm sinusoidal silver grating as function of d.
l ­ 0.5 mm, TM polarization.

Fig. 5. Zeroth-order efficiency of a sinusoidal corrugated wave-
guide with thickness 0.19 mm sn1 ­ 1, n2 ­ 2.3, n3 ­ 1d and
d ­ 0.37 mm, illuminated at l ­ 0.6328 mm, in TE polarization,
as a function of incidence. The values of groove depths are given
in micrometers.
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problem in which PPP NLs2vd acts as source term. It is then
possible to define a scattering matrix at 2v that links the
diffracted field EEE s2vd to the source term PPP NLs2vd:

B̃ ­ S̃s2vdÃ . (20)

As in the linear part, B̃ is a vector whose components
are the Rayleigh coefficients B̃n of the field (this time
at 2v frequency). Concerning the link between Ã and
PPP NL, its particular form depends on the method used to
resolve the 2v boundary value problem. It may include
a numerical18 or an analytical19 integration with respect
to the y coordinate inside the nonlinear region. But, in
any case, this link is linear as far as the undepleted-pump
approximation can be assumed.

The obvious consequence of linear equation (20) is that
if PPP NLs2vd has a pole, so does Ã and, from Eq. (20), B̃,
as well. If the v field has a pole dp, called d

p
1 in what

follows, Eq. (19) then shows that d
p
1 is a double pole of

Ã and B̃. Moreover, S̃s2vd defined in Eq. (20) may also
present a pole called d

p
2 . The result is that any compo-

nent B̃ns2vd of B̃ will present three poles, a double one
equal to the pole d

p
1 of Ssvd and a single one sdp

2 d coming
from S̃s2vd.

As is true in the linear regime, intuitive reasons can be
found to predict the existence of associated complex ze-
ros that come from unitarity in the case of lossless media
and continuity arguments. Moreover, the argument de-
veloped in Subsection 2.C [see Eqs. (14) and (15)] allows
us to predict the existence of three different zeros associ-
ated with the zeroth diffracted order at 2v.

Indeed, the associated plane device that we obtained
by letting h tend toward zero already presents a nonzero
nonlinear Fresnel reflection coefficient rNL. Then, for
h fi 0, B̃0sd, hd can be written as a nonresonant term
plus the resonant one:

B̃0sd, hd ­ C̃shd 1
D̃shd

fd 2 d
p
1 shdg2fd 2 d

p
2 shdg

, (21)

where

lim
h!0

C̃shd ­ rNLsdd , lim
h!0

D̃shd ­ 0 .

Equation (21) can immediately be rewritten as

B̃0sd, hd ­
C̃shdd3 1 ad2 1 bd 1 c
fd 2 d

p
1 shdg2fd 2 d

p
2 shdg

, (22)

where a, b, and c depend on h but are independent of d.
The third-order polynomial at the numerator thus has
three complex zeros, d

z
1 , d

z
2 , and d

z
3 . The conclusion is

that the presence of a nonresonant term in Eq. (21) results
in the existence of three different zeros associated with
the three poles.

It is worth noticing that, in general, the double pole d
p
1

is associated not with a double zero but with two different
ones, namely, d

z
1 and d

z
3 , d

z
2 being the zero associated

with the simple pole d
p
2 . When h ! 0, B̃0sd, hd ! C̃s0d ­

rNLsdd. Then Eq. (22), rewritten as

B̃0sd, hd ­ C̃shd
sd 2 d

z
1dsd 2 d

z
3dsd 2 d

z
2d

sd 2 d
p
1 d2sd 2 d

p
2 d

, (23)

shows that, since there is no resonant behavior for the
plane device, limh!0 D̃shd ­ 0, the numerator must tend
toward the denominator. The result is that two of the
zeros (dz

1 and d
z
3) tend toward the double pole d

p
1 , and the

third zero tends toward d
p
2 :

lim
h!0

dz
1shd ­ d

p
1 ­ lim

h!0
dz

3shd , lim
h!0

dz
2shd ­ d

p
2 .

Another interesting way to obtain the same result is ex-
plained in Appendix A, with the same argument used as
in Subsection 2.C.

A more physical insight can be proposed to prove the
existence of complex zeros. If we generalize to nonlinear
optics the reasoning that led to Eq. (14), we are, indeed,
led to represent B̃0sd, hd by the sum of four different
terms:

B̃0sd, hd ­ a0 1
b0

sd 2 d
p
1 d2

1
c0

d 2 d
p
2

1
d0

sd 2 d
p
1 d2sd 2 d

p
2 d

,

(210)

where a0, b0, c0, and d0 depend on h but not on d.
The first term, a0, is the off-resonant one. The second

term is the resonant term at the pump frequency, the
third term is the resonant term at the signal frequency,
and the last term is the resonant term at both v and
2v frequencies when phase matching occurs. The use
of Eq. (210) instead of Eq. (21) leads to the same Eq. (22)
with different values for coefficients a, b, and c. Thus
the conclusion regarding the existence of three complex
zeros is identical. As soon as the existence of poles and
zeros in nonlinear optics is established, their numerical
values as well as their loci in the complex-d plane when
an arbitrary parameter is varied can be determined along
the same lines as in linear optics with the computer code
based on the three-step theory of Ref. 19.

In what follows, we deal with two types of nonlinear
corrugated system. The first one is a nonlinear corru-
gated waveguide that supports TE waveguide modes. Its
upper boundary is corrugated, and its lower one is flat
[Fig. 6(a)]. The second system consists of a nonlinear
dielectric layer deposited upon a silver grating [Fig. 6(b)],
which supports the surface plasmon. The pump wave-
length is equal to 1.06 mm, and the corrugation is
sinusoidal with period d ­ 0.4 mm in both cases. The
nonlinear properties of the middle layers are charac-
terized by a single nonzero component of the nonlinear
susceptibility tensor:

xxxx ­ ´0 for the 2v TM case ,

xzzz ­ ´0 for the 2v TE case .

The substrate of the dielectric waveguide has refrac-
tive index n3svd ­ 1.7, n3s2vd ­ 1.905. The cladding
is air, and the waveguide nonlinear material has in-
dices with small losses: n2svd ­ 2 1 i0.0005, n2s2vd ­
2.01 1 i0.0005, and thickness e equal to 0.58 mm.

Figure 7(a) presents the trajectories of the poles and
the zeros of the zeroth reflected orders at 2v, when the
groove depth of the grating is varied. Without corruga-
tion two of the zeros merge into one of the poles (which is
a double pole). This double pole corresponds to a wave-
guide mode at pumping frequency v. The other couple
of zero and pole corresponds to the waveguide mode at
2v. With increasing groove depth two phenomena can
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(a)

(b)
Fig. 6. Cross-sectional view of the two corrugated systems
with a nonlinear middle layer: (a) modulation of the upper
interface, (b) modulation of the lower interface. NL, nonlinear
polarization.

be observed. At first the poles and the zeros become
separated, so that resonance anomalies appear at both v

and 2v frequencies. Second, the real parts of the poles
get closer, so that at h ­ 0.12 mm the three poles almost
coincide. This means that for h ­ 0.12 mm the phase-
matching condition20 is fulfilled. The zeros are far away:
two of them have quite different real parts, and the third
one has an imaginary part much larger than the imag-
inary parts of the two other poles. A high resonance
peak is observed in the angular dependence of specularly
reflected order at 2v [Fig. 7(b)]. The phenomenological
approach [Eq. (23)] gives the same dependence, provided
that the correct values of the poles and the zeros plotted
in Fig. 7(a) are used. Notice that the right-hand scale is
different from the left-hand one because in the phe-
nomonological approach we have taken C̃ ­ 1. When
the latter is properly normalized, not only the shape of
the phenomonological approach curve but also its abso-
lute values become equal to the values obtained from
rigorous computation. The normalization can be per-
formed in different ways. The best way is to use the
rigorous maximum value. Another possibility is to use
for C̃ the value of the second-harmonic reflectivity of the
corresponding flat surface.

The second example [Fig. 6(b)] has a silver substrate
with refractive index n3svd ­ 0.226 1 i6.9863, n3s2vd ­
0.129 1 i3.25. The upper medium is homogeneous, with
refractive index n1 ; n2 : n1svd ­ 1.534, n1s2vd ­ 1.414.
An artificial layer with thickness e ­ 0.01 mm is as-
sumed to have nonlinear properties. The trajectories of
the poles and the zeros [Fig. 8(a)] have behavior similar
to that in Fig. 7(a), except for two peculiarities:

1. The imaginary parts of the poles differ significantly,
owing to the different values of the losses at v and at 2v.

2. The zeros (except for d
z
1) do not move far from the

poles. This peculiarity determines the behavior of the ef-
ficiency (i.e., second-harmonic reflectivity). Contrary to

(a)

(b)
Fig. 7. (a) Trajectories of the poles (thick curves) and the zeros
(thin curves) of the zeroth reflected order at 2v for the system
of Fig. 6(a), when the groove depth is varied. The values are
given in micrometers. (b) The second-harmonic reflectivity as a
function of angle of incidence in the region of waveguide-mode ex-
citation. Solid curves, rigorous results; diamonds, phenomeno-
logical results from Eq. (23), with C̃ ­ 1, h ­ 0.12 mm.
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(a)

(b)

(c)

Fig. 8. (a) Same as in Fig. 7(a) but for the system of Fig. 6(b);
(b), (c) nonlinear reflectivity as a function of angle of incidence
for (b) h ­ 0.004 mm and (c) h ­ 0.019 mm. Solid curves,
rigorous results; diamonds, phenomenological results from
Eq. (23); crosses, phenomenological results with a single pole
d

p
1 and a single zero d

z
1 .
the case of Fig. 7(b), where the angular dependence has
a typical Lorentzian shape, now, in Fig. 8(b), the zeros
that stay in the vicinity of the poles deform the shape of
the resonance curve. When the grating is very shallow
(h ­ 4 nm) two of the zeros almost coincide with two of
the poles (dz

2 ø d
p
2 and d

z
3 ø d

p
1 ), and the angular depen-

dence is almost completely determined by a single pole
sdp

1 d–zero sdz
1d couple and Eq. (15) [crosses in Fig. 8(b)].

When h ­ 0.019 mm, the imaginary parts of two of the
zeros (dz

1 and d
z
3) are smaller than the distances between

zeros and poles, and zeros can be localized in the angu-
lar dependence as minima. There are three peculiarities
in Fig. 8(c): a maximum near 244.5±, a minimum near
245.5±, and a step near 244.8±. The corresponding real
parts of the zeros and poles are

Resdz
1d ø 21.093 ­ n1svdsins245.44±d ,

Resdz
3d ø 21.081 ­ n1svdsins244.8±d ,

Resdp
1 d ø Resdp

2 d ø 21.077 ­ n1svdsins244.6±d ,
values that correspond quite well to the positions of the
minimum and the maximum.

From Figs. 7 and 8 it is clear that polology enables one
immediately to account for complicated, non-Lorenztian
(or Lorenztian) shapes of second-harmonic resonance
curves, provided that the complex values of both the
poles and the zeros of the S matrix are known.

Fig. 9. Schematic representation of a bistable corrugated wave-
guide.
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B. Kerr Effect and Optical Bistability
Let us now consider the corrugated waveguide repre-
sented in Fig. 9, which is filled with a Kerr-like medium.
At high incident power, the refractive index of the wave-
guide becomes a function of the field intensity:

n2
2 ­ n2

2,0f1 1 ajE2sx, ydjg ,

where the low-power value of n2 (equal to n2,0) is given in
Fig. 9 and a is the Kerr constant.

The main difference between the Kerr effect and
second-harmonic generation is that in the Kerr effect
the signal frequency is the same as the pump frequency.
The Kerr effect modifies the refractive index only by one
or a few percent, modifications that remain small com-
pared with the refractive-index step at the boundaries.
Thus the field distribution is only slightly modified, as
is discussed below, contrary to what happens in second-
harmonic generation, in which the nonlinearity is the
only source for the 2v field. That is why it is possible
for the Kerr effect to derive the phenomenological pa-
rameters from the linear study. We are then able to
derive a simple phenomenological formula that accounts
for complicated hysteresis loops.

Let us first consider the linear problem sa ­ 0d.
Equation (6), along with the existence of a pole and,
for propagating orders, the existence of a zero of the S
matrix, leads to

Bn ­ Cn
d 2 dz

n

d 2 dp
Ai , (24)

where Ai is the incident amplitude and Cn is a slowly
varying function near dp and dz

n. On the other hand, the
amplitude Agw of the guided wave inside the nonlinear
dielectric can be written as

Agw ­
tp

d 2 dp Ai , (25)

where tp is the incoupling coefficient of the guided mode.
Thus Eq. (24) gives

Bn ­ CnAi 1 Cn
dp 2 dz

n

d 2 dp
Ai ­ CnAi 1 gnAgw , (26)

where

gn ­
Cn

tp
sdp 2 dz

nd .

The resolution of the rigorous boundary value problem
in linear optics gives coefficients Cn, gn, and tp, which
depend only on the transverse field map Es0, yd, whose
shape in the vicinity of a resonance does not depend on d

in the linear regime. Thus Cn, gn, and tp are indepen-
dent of d in the linear regime.

In the nonlinear regime20,21 dp becomes a function of
Ai, denoted dp,NLsAid; so does dz

n, but because the Kerr
constant a is small, n

2
2 is only slightly changed, and the

field map near a resonance is also only slightly changed.
The result is that Cn and gn remain the same as in the
linear regime, and Eq. (26) can be replaced by

BNL
n ­ CnAi 1 gnANL

gw . (260)

From the equality of gn, dn, and tp in linear and nonlinear
regimes we get

Cn
sdp 2 dz

nd
tp

­ Cn
sdp,NL 2 dz,NL

n d
tp

.

Hence

dz,NL
n 2 dz

n ­ dp,NL 2 dp . (27)

This equation shows that the curves describing the
variations as functions of sAid2 of Resdz,NL

n d and Resdp,NLd,
as well as those of Imsdz,NL

n d and Imsdp,NLd, must be par-
allel curves. This prediction is confirmed for n ­ 0 in
Fig. 10, which is obtained from rigorous computations22

performed on the device shown in Fig. 9. Since for a
Kerr-like guiding material n

2
2 is real, only the real parts

of dz,NL
n and dp,NL are changed when Ai is increased,

the imaginary parts remaining constant. For photo-
absorbing materials the situation should be vice versa.

The consequence of the parallelism of the trajectories of
dp,NL and dz,NL

n is that poles and zeros can be expressed as

dp,NL ­ dp 1 jpjANL
gw j2 , dz,NL

n ­ dz
n 1 jpjANL

gwj2 ,

where jp can be calculated in terms of overlap integrals23

from the coupled-mode analysis. Since the linear study

Fig. 10. Trajectories of the real parts of a pole (solid curve) and
a zero (dashed curve) of the S matrix when A2

i is varied.
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Fig. 11. Zeroth-order efficiency curve, E0 ­ sBNL
0 yAid2, as a

function of Ai: solid curve, results of rigorous computation;
crosses, results derived from Eqs. (250) and (260).

of gratings gives dp, dz
n, tp, Cn, and gn, both guided-wave

amplitude and reflected-order amplitudes can be obtained
through two simple formulas:

ANL
gw ­

tp

d 2 dp,NL
Ai , (250)

BNL
n ­ CnAi 1 gnANL

gw . (260)

Thus the nonlinear response of the device can be obtained
without resolution of the nonlinear problem of diffraction.
Figure 11 compares the prediction from Eqs. (250) and
(260) with those coming from rigorous study.22 It can
be seen that even the complicated butterflylike shape of
the curve is predicted by this simple analysis. Moreover,
Eq. (260) can be generalized to a beam with finite width21

and accounts for the so-called transverse effects linked
with spatial limitation of the incident wave.

4. CONCLUSION
The formalism of poles and zeros of the elements of the
scattering operators, which was used many years ago to
explain grating anomalies and other curious phenomena
in linear optics, has been extended to the study of diffrac-
tion in nonlinear optics in the presence of electromagnetic
resonances. The position of the zero(s) with respect to
the pole(s) is an important parameter. Indeed,

• In the case of second-harmonic generation, a zero
too close to a pole (relative distance close to the width of
the resonance line) limits, and even decreases, the second-
harmonic efficiency.

• For optical Kerr interactions, the position of the
zero(s) with respect to the pole(s) permits understanding
of the existence of exotic bistability loops.
Thus it can be seen that the knowledge of pole(s)
and zero(s) constitutes powerful information when one is
studying enhanced second-harmonic generation or optical
bistability in the presence of electromagnetic resonances.

APPENDIX A
Let us write the zeroth Rayleigh coefficient in the linear or
the nonlinear regime as the sum of a nonresonant term
and a resonant one:

B0sd, hd ­ Csd, hd 1
Dsd, hd
P sd, hd

, (A1)

where

P sd, hd ­ 0 for d ­ dp
n , n ­ 1, 2, 3, . . . N ,

lim
h!0

Dsd, hd ­ 0 , sA2d

Csd, 0d fi 0 . (A3)

In the range of d that we are dealing with, Csd, hd is
assumed to have no zero. On the other hand, the zeros of
P sd, hd induce resonant behaviors. Since such behaviors
are never found for a plane device, it is assumed that
limh!0 Dsd, hd ­ 0.

Equation (A1) can be rewritten as

B0sd, hd ­ Csd, hd
Rsd, hd
P sd, hd

,

where

Rsd, hd ­ P sd, hd 1
Dsd, hd
Csd, hd

.

At the limit of vanishing groove depth,

lim
h!0

Rsd, hd ­ lim
h!0

P sd, hd ­ P sd, 0d .

The result is that when h ! 0, the zeros of B0 tend toward
its poles, whatever the number of poles may be.

ACKNOWLEDGMENTS
The authors thank D. Maystre for helpful discussions;
they also acknowledge the support of the European Com-
munity through the Brite–Euram Contract Flat Optical
Antennas.

*On leave from the Institute of Solid State Physics, Bul-
garian Academy of Sciences, 72 Trakia Boulevard, Sofia
1784, Bulgaria.

REFERENCES
1. R. W. Wood, “On a remarkable case of uneven distribution

of light in a diffraction grating spectrum,” Philos. Mag. 4,
396–402 (1902).



Nevière et al. Vol. 12, No. 3 /March 1995/J. Opt. Soc. Am. A 523
2. J. W. S. Rayleigh, “Note on the remarkable case of diffraction
spectra described by Prof. Wood,” Philos. Mag. 14, 60–65
(1907).

3. U. Fano, “The theory of anomalous diffraction gratings and
of quasi-stationary waves on metallic surfaces (Sommerfeld’s
waves),” J. Opt. Soc. Am. 31, 213–222 (1941).

4. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-
Verlag, Berlin, 1980).

5. D. Maystre and M. Nevière, “Sur une méthode d’étude quan-
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