
IOP PUBLISHING JOURNAL OF OPTICS A: PURE AND APPLIED OPTICS

J. Opt. A: Pure Appl. Opt. 9 (2007) 728–740 doi:10.1088/1464-4258/9/7/027

Improved differential method for
microstructured optical fibres
Philippe Boyer, Gilles Renversez, Evgeny Popov and
Michel Nevière
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Abstract
We describe an improved differential method for calculating the leaky modes
of finite size microstructured optical fibres. This method, which includes the
fast Fourier factorization method, is used here in cylindrical coordinates. The
method utilizes a reformulation of the Maxwell equations in a Fourier space
taking into account the Fourier expansion truncations and the possible
discontinuities of the permittivity. For waveguides fulfilling Cnv symmetries,
the symmetry properties of the modes are established in Fourier space for
cylindrical coordinates in real space. This result allows us to reduce the
required computer resources. The method can deal with arbitrary
cross-section microstructured optical fibres made of inhomogeneous
inclusions or matrix. We validate the method through several comparisons
with the well established multipole method and with other methods. We also
illustrate the application of the differential theory to calculate the modal
properties of complex microstructured optical fibres that cannot be studied
with the multipole method.

Keywords: differential method, microstructured optical fibres, symmetry
properties, leaky modes, mode searching, inhomogeneous waveguides

1. Introduction

Microstructured optical fibres (MOFs) are now a common
research topic in guided optics. Several powerful methods have
been developed to study numerically the modal properties of
these new devices [1–3]. Nevertheless only a few of them
are able to determine the imaginary part of the leaky mode
effective index found in MOFs [2, 4, 5]. This quantity is
required in order to study the losses of the fundamental mode
in finite size microstructured fibre [6, 7] or the transition of
the second mode in such structures [8, 9]. The multipole
method (MM), which is now used by many research groups
across the world to study MOFs, is certainly the fastest and
the most precise method when the guiding structure is only
made of circular and homogeneous inclusions. In this case,
it can be considered as the reference method. However, this
well established method has the limitation that the inclusions,

eventually not circular, must be included in non-overlapping
circles. This restriction limits the type of MOF profiles which
can be studied. A second limitation concerns the matrix, whose
refractive index must be constant in the region surrounding the
inclusions. These two limitations come from the use of the
Graf’s theorem that allows us to express the field diffracted
by an inclusion as an incoming field on the other inclusions
composing the structure [2].

The classic MM has already been extended in order to
deal with non-circular inclusions fulfilling the first limitation
detailed above [10]. To do so, an improved differential
method including the fast Fourier factorization (FFF) [11, 12]
has been used to provide the scattering matrix of each non-
circular inclusion of the MOF to the MM. In order to overcome
simultaneously the two limitations of the MM, extended or
not, but keeping as much as possible the accuracy of this
method, we used the differential method with the FFF to build
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a complete modal method giving directly and accurately the
complex effective index of the modes, as the MM does. We
recall that the main idea of differential methods is to get
a first order differential system instead of the second order
one obtained directly from the Maxwell’s equations, with the
differential system then being solved numerically.

Since the differential method in cylindrical coordinates
has already been published for diffraction problems [13], we
do not need to repeat its basic concepts. More recently, in
a preliminary study, we have proved that this method can be
formulated to study modal properties [14]. Nevertheless, due
to numerical instabilities, the proposed set of equations does
not permit us to study MOFs with an extended microstructured
region along the radial variable. Besides, the relations between
the modes and the symmetries of the studied MOF were not
described in complete detail and only a partial validation of the
method was realized. In the present work, all these issues are
fully treated in order to give a complete and useful version of
the improved differential method with the FFF applied to mode
searching in waveguides with discrete symmetries in their
cross-section. The purpose of this work is also to demonstrate
the accuracy and the versatility of the described method.

In section 2, we recall how we adapt the differential
method to modal analysis, and we provide the set of equations
which is numerically stable. In section 3, we explain in detail
how the possible symmetry properties of the studied waveguide
cross-sections are taken into account. In section 4, in order
to validate carefully this new method, several comparisons
especially with the MM results are made, and the convergence
properties according to the different parameters of the method
are described. Results that cannot be computed with the MM
(extended or not) are given for sectorial inclusion MOFs in
section 5, and are compared with those obtained with two
other methods. New results for this type of MOFs are also
given in this section. Finally, new results are obtained for
inhomogeneous MOFs in section 6.

2. An FFF based modal searching method: the
FFF-MS

2.1. Mode searching with the differential method

In order to concentrate on the modal problem and to avoid
repeating what we have already published in previous articles
dedicated to the FFF [13, 14], we refer to these references for
the description of the FFF. We simply recall that the key point
of the FFF is to rewrite the formulation of the linear relation
between E and D in a truncated Fourier space. We found that,
locally [13, 14],

[D] = Qε[E] (1)

in which the column matrices [D] and [E] are made up of three
blocks, each of these blocks (r, θ, z) containing 2N +1 Fourier
components, and Qε is a square matrix. The size of this matrix
is 3(2N + 1) since it comprises the Toeplitz matrices: [[n2

r ]],
[[nr nθ ]], [[n2

θ ]], built from the extended unit vectors (denoted by
n) normal to the surfaces of the inclusions. The matrix Qε also
contains the Toeplitz matrices [[ε]] and [[1/ε]]−1 arising from
the application of the correct factorization rules, described by
Li [15], used to reformulate the constitutive relation D = εE in

the truncated Fourier space (see section 4.7 of [16] and quoted
references for the detailed properties of Toeplitz matrices).

This rewriting of the constitutive relation is used explicitly
in a region called the ‘modulated area’. This area, which
lies between the inscribed circular cylinder Cmin with radius
Rmin and the circumscribed circular cylinder Cmax with radius
Rmax, contains all the diffracting cylindrical objects. For
MOFs, this region contains the inclusions which confine the
electromagnetic fields. In the modulated area, Maxwell’s
equations are reduced to a set of first order differential
equations written in a four block matrix form (one block for
each field component used in the theory):

d

dr

⎡
⎢⎢⎣

[Eθ ][
Ez

]
[Hθ ][
Hz

]

⎤
⎥⎥⎦ = iM(r)

⎡
⎢⎢⎣

[Eθ ][
Ez

]
[Hθ ][
Hz

]

⎤
⎥⎥⎦ (2)

in which M(r) is a square matrix, depending on the blocks of
the matrix Qε , with dimension 4(2N + 1) and whose general
expression valid for anisotropic, lossless or lossy, and/or
inhomogeneous media can be found in [13]. A simplified
expression of M(r) for the present case (z-invariance and
isotropic medium) can be found in [14].

2.2. First approach

Modes are homogeneous solutions of Maxwell’s equations, of
the form f (r, θ) exp(i(βz − ωt)), in which β is the modal
propagation constant and ω is the angular frequency.

In a homogeneous and isotropic medium, the Fourier
coefficients of the electromagnetic field components, Ez,n and
Hz,n , satisfy the following propagation equation, written in
cylindrical coordinates:

(
kt, j r

)2 d2uz,n

d
(
kt, j r

)2 +(
kt, j r

) duz,n

d
(
kt, j r

)+
[(

kt, j r
)2− n2

]
uz,n = 0

(3)
with uz,n ∈ {Ez,n, Hz,n}, k2

t, j = k2
j − β2, k2

j = ω2μ0ε j , and
j ∈ {int, ext}. The solutions are

Hz,n = A( j)
h,n Jn

(
kt, j r

) + B( j)
h,n H+

n

(
kt, j r

)

Ez,n = A( j)
e,n Jn

(
kt, j r

) + B( j)
e,n H+

n

(
kt, j r

)
.

(4)

In order to simplify the equations, we introduce the
following column matrices with dimension 2(2N + 1):

[A(r)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

A( j)
e,n Jn

(
kt, j r

)
...

A( j)
h,n Jn

(
kt, j r

)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

[B(r)] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

B( j)
e,n H+

n

(
kt, j r

)
...

B( j)
h,n H+

n

(
kt, j r

)
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(5)
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We have omitted the j superscript in the left-hand sides of
equations (5). We recall that at r = Rmin, j = int, and at
r = Rmax, j = ext. The scattering matrix S of the entire
modulated area is defined by[

[B(Rmax)]
[A(Rmin)]

]
= S

[
[B(Rmin)]
[A(Rmax)]

]

=
[

S11 S12

S21 S22

] [
[B(Rmin)]
[A(Rmax)]

]
. (6)

To avoid a divergence of the field at the origin (H+
n (r) →

∞ when r → 0) we must have B(int)
e,n = 0 and B(int)

h,n =
0 ∀n, i.e. [B(Rmin)] = [0]. In the external region, the
amplitudes B(ext)

e,n and B(ext)
h,n , which are the coefficients of

Hankel functions, are associated with outgoing waves, whereas
the amplitudes A(ext)

e,n and A(ext)
h,n , which are the multiplicative

coefficients of Bessel functions, are associated with incident
waves. Then, recalling that modes are homogeneous solutions
of Maxwell’s equations, we must have A(ext)

e,n = 0 and A(ext)
h,n =

0 ∀n, i.e. [A(Rmax)] = [0]. Using equation (6), we obtain
that, for modal fields, the column matrices [A(Rmin)] and
[B(Rmax)] must be solutions of the following homogeneous set
of equations:

S−1

[
[B(Rmax)]
[A(Rmin)]

]
=

[
0
0

]
. (7)

Thus, the unknown amplitudes appear to be the eigenvectors
associated with null eigenvalues of the inverse scattering
matrix S−1. Once determined, equation (4) allows us to
compute the fields.

2.3. Improved approach in the S-matrix propagation
algorithm with the Z-matrix

In most cases, numerical instabilities do not permit us to
integrate the differential set (2) directly from r = Rmin to
r = Rmax; this is why we use the S-matrix propagation
algorithm [11]. In fact, for a fixed value of the argument
kt,int Rmin (see equation (4)), the spatial extension of the
divergence due to the singularity of the Hankel functions at
r = 0 spreads out along the r axis when the Bessel order n
increases towards its maximum value fixed by the truncation
order N . Consequently, the initial vectors of the integration
evaluated at r = Rmin and calculated from equation (34) of [13]
may contain high values which grow during the integration
process and can make some blocks of the transmission matrix
T ill conditioned. We remind the reader that the T -matrix links
the fields at r = Rmin and the fields at r = Rmax. In order
to avoid this numerical contamination, the principle of the S-
matrix propagation algorithm is to split the modulated area into
L slices. For each slice (s) limited by the circular cylinders
with radius rs and rs+1 (r1 = Rmin and rL+1 = Rmax), the
differential set (2) is integrated. At r = rs for s ∈ [2, L], we
add for each interface an infinite thin homogeneous layer with
permittivity εext. Consequently, the column matrices defined
by expression (5) can be generalized to the interfaces within
the modulated area (see also figure 6 of [13]). We obtain the
corresponding T -matrix denoted T (s) of the (s) slice which
links the fields at rs and the fields at rs+1. We use the S-matrix
of the (s) interface r = rs , denoted S(s), and fully defined in
equation (40) of [13]. The S-matrix S(s) was defined in order

to be better conditioned than the T -matrix T (s). We recall that
the S22 block is such that

S(s+1)
22 = S(s)

22 Z (s) (8)

with
Z (s) = {T (s)

11 + T (s)
12 S(s)

12 }−1. (9)

At the end of the S-matrix propagation algorithm process, we
obtain the S-matrix at the (L + 1) interface. This matrix
is simply the required S-matrix associated with the whole
modulated area (see equation (6)).

The modal problem initially described by equation (7),
with the large 4(2N +1) square matrix S−1, may be performed
using the benefits of the S-matrix propagation algorithm. From
equation (8), we deduce {S(s)

22 }−1 = Z (s){S(s+1)
22 }−1. Then we

multiply each side by the same vector [A(Rmin)]:
{S(s)

22 }−1 [A(Rmin)] = Z (s){S(s+1)
22 }−1 [A(Rmin)] . (10)

Using equation (40) of [13] and identifying the left- and right-
hand terms in equation (10), we obtain

[A(rs)] = Z (s)
[
A(rs+1)

]
. (11)

In order to complete the field expansion at the interface rs , we
use again equation (40) of [13], and we get

[B(rs)] = S(s)
12 [A(rs)] . (12)

For the Lth slice, using equation (11) we note that the modal
fields at the Lth interface are a solution of

[A(rL)] = Z (L) [0] or equivalently (13)

{Z (L)}−1 [A(rL)] = [0] (14)

and the fields at the other interfaces are deduced through an
iterative method by equations (11) and (12).

Equation (14) is a new formulation of the modal problem.
Solving this equation presents two important advantages. First,
the block {Z (L)}−1 = T (L)

11 + T (L)
12 S(L)

12 (see equation (9)) is
well conditioned by definition if the number of slices in the
S-matrix propagation algorithm is sufficient. The {Z (L)}−1-
matrix is better conditioned than the S−1-matrix and its size
is halved. These properties allow us to study waveguides
with a microstructured region, i.e. a modulated region in the
FFF terminology, more extended along the r variable than the
simple formulation we proposed previously [14]. We illustrate
this improvement in section 4.1. We can note that, as in
section 2.2, the fields can be computed in the entire device
cross-section from the eigenvectors of the {Z (L)}−1-matrix
associated with a null eigenvalue using equations (11) and (12).
In what follows, we will simply denote the {Z (L)}−1-matrix by
Z−1 and we will denote the FFF based mode searching method
that we develop the FFF-MS.

The search algorithm we use within the FFF-MS is similar
to the one detailed in chapter 5 of [2]. However, since the
computation of the S−1 scattering matrix of the whole MOF
is more time consuming with this method than with the MM,
we reduce as much as possible the number of evaluations of the
Z−1-matrix, even if this slightly reduces the capability of the
algorithm to find automatically the modes of a given structure.
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3. Modes and symmetries

3.1. Device with sub-periodicity according to the angular
variable θ

Typical MOF cross-sections often have a sub-periodicity
with respect to the angular variable θ , at least as a first
approximation. Nearly all the MOFs already realized fulfil
the Cnv symmetry, i.e. a sub-periodicity of 2π/n with
symmetry planes (n ∈ N

∗); most of them belong to the
C6v one. This property and the useful and general work
of McIsaac [17, 18] relating waveguide symmetry properties
and mode classification, using a group-theoretic approach,
have already motivated the exploitation of the putative sub-
periodicity according to θ . To use the symmetry properties of
the structures studied has the following advantages: it allows
a clear mode classification according to McIsaac’s results. In
addition, by reducing the size of the matrices in the numerical
implementation of the method, it reduces the computation time
and it avoids the loss of accuracy induced by the increase of
the number of numerical operations when the matrix size is
increased. For the already mentioned multipole method, all
these benefits have already been obtained [6, 2, 19]. It is
then obvious that such an improvement should be obtained
in the framework of the FFF-MS. It is worth mentioning
that both the MM and finite element method [2] deal with
real space. Consequently, the symmetry relations are defined
and used in this space. Bai and Li have established a
formulation of the differential method for diffraction problems
of crossed gratings using Cartesian coordinates using the
structure symmetries [20, 21]. In our work, the FFF method
is formulated in the Fourier space for cylindrical coordinates
(see section 3 of [13]), and symmetry properties have to
be found in the Fourier space using angular periodicities of
microstructured optical fibres.

The sub-periodicity in θ directly implies some properties
for the Fourier expansions of the optogeometric quantities
( ¯̄ε, nr , nθ , . . .) used by the FFF, and then induces a splitting
of the differential set into several independent sub-sets as we
show in the following.

First, let us define the Fourier expansion of a geometrical
quantity denoted w(θ) with sub-period T such that NT T = 2π

where NT is the sub-periodicity number (for a C6v structure,
we have NT = 6). On the 2π-period, the Fourier expansion of
w(θ) is written

w(θ) =
∞∑

n=−∞
wneinθ with wn = 1

2π

∫ 2π

0
w(θ)e−inθ dθ.

(15)
The Fourier expansion of w(θ) on the sub-period T is written

w(θ) =
∞∑

n=−∞
w′

nein 2π
T θ

with w′
n = 1

T

∫ T

0
w(θ)e−in 2π

T θ dθ. (16)

After a few calculations, we obtain the known result:

→ ∀n ∈ Z,

{
if n �= m NT , m ∈ Z then wn = 0,

if n = m NT , m ∈ Z then wn = wm NT = w′
m .

(17)

The Fourier spectrum of w(θ) on the 2π-range is the
Fourier spectrum of w(θ) on the sub-period T with an
enlargement of factor NT . Let us illustrate the consequences
of this property (17) on a simple example in which NT =
3. The Fourier coefficients of w(θ) in the T -range (w′

n)
are {. . . , w′

−4, w
′
−3, w

′
−2, w

′
−1, w

′
0, w

′
1, w

′
2, w

′
3, w

′
4, . . .} and,

according to the property (17), the Fourier coefficients of w on
the 2π-range (wn) are {. . . , 0, 0, w′

−2, 0, 0, w′
−1, 0, 0, w′

0, 0,

0, w′
1, 0, 0, w′

2, 0, 0, . . .}. Consequently, the Toeplitz matrix
of w(θ) denoted [[w]] (see section 4.7 of [16] and quoted
references for the detailed properties of Toeplitz matrices) on
the 2π-period contains non-null diagonals regularly separated
by (NT − 1) null diagonals.

Moreover, when we invert such a matrix, such as [[w]], or
multiply two such matrices, the matrix structure is preserved
even if the matrix obtained is not usually a Toeplitz matrix.

The blocks of the integration matrix M(r) in equation (2)
are not Toeplitz matrices since some of them contain the
matrix α and the blocks of the matrix Qε [13]; nevertheless,
these blocks keep the diagonal structure of the matrix [[w]].
Consequently, the differential set (2) is split into NT =
3 independent differential sub-sets which link the Fourier
coefficients of the field components (Eθ , Ez , Hθ or Hz)
among the following classes of expansion orders: {−4,−1, 2},
{−3, 0, 3} and {−2, 1, 4}.

To conclude, when we consider a sub-periodicity with NT

sub-periods, the differential set (2) is split into NT independent
and different sub-sets. However each block of the Qε-matrix
contains the same terms for all the differential sub-sets. The
computational time depends approximatively on the cube of
the matrix integration size, equal to 4(2N + 1), whereas the
size of the integration matrix of each sub-set is 4(2N + 1)/NT

or less. So the duration of an integration for all the differential
sub-sets scales as NT (4(2N + 1)/NT )3 = (4(2N + 1))3/N 2

T ,
while the computational time of the global differential set
scales as (4(2N + 1))3. Hence taking into account the
sub-periodicity permits us to reduce approximatively the
computation time by a factor of N 2

T (36 for a C6v structure).

3.2. Using the mode symmetries within the FFF-MS

In section 3.1, we have shown that the sub-periodicities
imply the splitting of the Fourier coefficient set of the modal
electromagnetic fields into NT independent sub-sets, all these
sub-sets being required to compute the modal fields. In the
present section, we first show that it is sufficient to study one or
two sub-sets to describe completely the modal field of a CNT v

structures. This result is related to the exhaustive description
of symmetry classes and field expressions of waveguide modes
established by McIsaac [17, 18] and improved by Fini [19].
Secondly, we explain explicitly how the modal fields (Fourier
amplitudes) are computed in the FFF-MS using the improved
approach in the S-matrix propagation algorithm.

For a sub-periodicity order NT , we choose to denote by Ii

the NT sub-sets of Fourier coefficient orders in the following
way:

Ii = {nNT + i − 1, n ∈ Z} with i ∈ [1, NT ] . (18)

We only consider a CNT v symmetry MOF; the CNT case
can be found in a similar way. When NT is odd, we know

731



P Boyer et al

Table 1. Fourier series representations of the longitudinal electric field for waveguides with CNT v symmetry (the first three columns come
from table IV in [17]). As in this reference, the q subscript indicates the qth mode of the considered mode class. See equation (18) for the
definition of the Ii .

NT

Mode
class p Ezpq

FFF-MS Fourier
coefficients sub-sets

Even, odd 1
∑n=+∞

n=0 F1qn(r) cos(NT nθ) I1

Even, odd 2
∑n=+∞

n=0 G1qn(r) sin(NT nθ) I1

Even, odd k
∑n=+∞

n=0

{
Fkqn(r) cos

[(
NT n − k−1

2

)
θ
] + Pkqn(r) cos

[(
NT n + k−1

2

)
θ
]}

I 1+k
2

, INT + 3−k
2

Even, odd k + 1
∑n=+∞

n=0

{
G(k+1)qn(r) sin

[(
NT n − k−1

2

)
θ
] + R(k+1)qn(r) sin

[(
NT n + k−1

2

)
θ
]}

I 1+k
2

, INT + 3−k
2

Even NT + 1
∑n=+∞

n=0 F(NT +1)qn(r) cos
[
NT

(
n + 1

2

)
θ
]

I
1+ NT

2

Even NT + 2
∑n=+∞

n=0 G(NT +2)qn(r) sin
[
NT

(
n + 1

2

)
θ
]

I
1+ NT

2

Table 2. Sub-sets of the Fourier coefficients in the FFF-MS
associated with the different mode classes as defined by McIsaac for
a CNT v waveguide for several values of NT .

NT

Mode
class
p 1 2 3 4 5 6 7 8

1 I1 I1 I1 I1 I1 I1 I1 I1

2 I1 I1 I1 I1 I1 I1 I1 I1

3 — I2 I2, I3 I2, I4 I2, I5 I2, I6 I2, I7 I2, I8

4 — I2 I2, I3 I2, I4 I2, I5 I2, I6 I2, I7 I2, I8

5 — — — I3 I3, I4 I3, I5 I3, I6 I3, I7

6 — — — I3 I3, I4 I3, I5 I3, I6 I3, I7

7 — — — — — I4 I4, I5 I4, I6

8 — — — — — I4 I4, I5 I4, I6

9 — — — — — — — I5

10 — — — — — — — I5

from McIsaac’s work that there are NT + 1 mode classes.
The number of non-degenerate mode classes is equal to two
and the number of pairs of twofold degenerate mode classes is
(NT − 1)/2. When NT is even, the number of non-degenerate
mode classes is equal to four and the number of pairs of
twofold degenerate mode classes is the same ((NT −2)/2). We
complete the three first columns given in table IV of [17] with
the sub-sets of Fourier coefficients needed to describe the fields
in the FFF-MS for each mode class (see table 1). We notice that
some mode classes (Ck and Ck+1) need two sub-sets of Fourier
coefficients. In table 2, we illustrate the splitting of the Fourier
coefficients into sub-sets for a CNT v symmetry waveguide for
NT from 1 to 8.

In the previous paragraph, we determine the FFF-MS sub-
sets of Fourier coefficients that describe each mode class for
CNT v waveguides. Now, we express the Fourier amplitudes
of the FFF-MS modal fields w′

n given by equation (16) by
comparison with the Fourier expansion expressions given by
the third column of table 1, distinguishing non-degenerate
mode classes and degenerate mode classes. For a CNT v

symmetry waveguide, we notice that a couple of successive
mode classes (p = 1 and 2; k and k + 1; NT + 1 and
NT + 2) need the same FFF-MS Fourier coefficient sub-sets
(for example I1 for p = 1 and 2). Thus, we limit the
following discussion to even values of NT ; the odd case can
be deduced immediately by eliminating the mode classes NT +1

and NT +2.

Field expansions in table 1 are expressed in a cosine
or sine function basis (cos(NT nθ) and sin(NT nθ)), and the
Fourier amplitudes Fpqn(r), G pqn(r), Ppqn(r), and Rpqn(r)

are real numbers. Using the Euler formula, we find the
Fourier expansion of the FFF-MS expressed on the exponential
function basis (eiNT nθ ) in equation (16) and the corresponding
Fourier amplitudes (w′

n) are complex numbers. Consequently,
we deduce from the cosine function that Fourier amplitudes
Fpqn(r) and Ppqn(r) satisfy w′−m = w′

m with m � 0 for mode
classes p = 1, k and NT + 1, and we deduce from the sine
function that Fourier amplitudes G pqn(r) and Rpqn(r) satisfy
w′−m = −w′

m with m � 0 for mode classes p = 2, k + 1 and
NT + 2.

Now we can come back to the link between the Z -
matrix and the above results. We start with the two pairs
of non-degenerate mode classes (p = 1 and 2; NT + 1
and NT + 2). The determinant map of the Z−1 sub-matrix
associated with the sub-sets (I1 or I1+ NT

2
) provides the effective

index of both mode classes. On one hand, the modal fields
(i.e. the eigenvectors associated with a null eigenvalue, see
equation (14)) corresponding to a Fourier expansion expressed
only with cosine functions (mode classes p = 1 and NT +
1) contain Fourier amplitudes with identical signs as shown
above. On the other hand, the modal fields corresponding to
a Fourier expansion expressed only with sine functions (mode
classes p = 2 and NT + 2) contain Fourier amplitudes with
opposite signs.

We now consider the case of degenerate mode classes
(p = k and k + 1): the determinant map of the Z−1 sub-
matrix associated with the sub-sets (I 1+k

2
or INT + 3−k

2
) provides

the same effective index. The Fourier coefficients of the modal
fields are linear combinations of eigenvectors (associated with
a null eigenvalue) of the Z−1 sub-matrix corresponding to the
subsets I 1+k

2
and INT + 3−k

2
. Before combining the eigenvectors,

we must normalize them. We choose to normalize through
the value of the smallest order Fourier coefficient. The
linear combination becomes a summation when the Fourier
expansions are expressed with a cosine function (mode class
p = k) and a difference when the Fourier expansions are
expressed with a sine function (mode class p = k + 1).

As an example, we consider a waveguide with C6v

symmetry (column for NT = 6 in table 2). The Fourier
expansion of Ezpq is written for the mode class p = 1 (first
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Figure 1. Convergence tests for the FFF-MS and CDM-MS for the
effective index of the fundamental mode of the C6v one-ring test
MOF described in the text versus the Fourier expansion order N .
Inset: zoom of FFF-MS results and MM value.

line of table 1):

Ez1q =
+∞∑
n=0

F1qn(r) cos (6nθ) . (19)

Identifying with equation (16), we finally obtain

Ez1q =
+∞∑

n=−∞
w′

nei6nθ

with w′
m = w′

−m = F1qm(r)

2
(m � 0). (20)

The eigenvector deduced from the equation (14) and
corresponding to the sub-set I1 contains these Fourier
coefficients w′

n . We can compute the Ezpq Fourier expansion
for the other mode classes in the same way.

4. Validation of the FFF-MS by comparison with the
MM results

In order to validate the FFF-MS as a modal method for
studying MOFs we use the MM as a reference method since
it is the most accurate method currently available in the case of
circular and homogeneous inclusions due to the fact that it is
then partially analytic [2]. Our first test system is the C6v, one-
ring solid core MOF described in [2]; the hole diameter d is
equal to 1 μm, the pitch 	 is equal to 2.3 μm, the matrix index
nmat = 1.443 903 5654 (the number of significant digits given
here has no relation to the accuracy with which the refractive
index of silica is known at that wavelength; the given values are
the ones used in the numerical simulations) and the cylinder
index ncyl = 1. The second test structure is a C2v six-hole solid
core MOF. It is worth mentioning that all the results computed
with the FFF shown in this section and the following ones are
obtained on a desktop computer with reasonable computation
times.

4.1. A C6v MOF

The MM finds an effective index value neff for the fundamental
mode such that neff = 1.420 7845 + i 7.209 52 × 10−4 for
λ = 1.56 μm for a value of the parameter M , which controls
the number of coefficients in the Fourier–Bessel expansion,
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Figure 2. Modulus of the relative difference between the effective
indices neff computed with the FFF-MS for 25, 35 and 45 slices in
the S-algorithm, and with the MM result, versus the Fourier
expansion order N (for the MM the number of Fourier–Bessel
coefficients is equal to 12).

equal to 12 (i.e. 2M + 1 coefficients). For N = 60, our mode
searching algorithm finds neff = 1.420 783 15 + i 7.204 65 ×
10−4. In this case the relative error between FFF-MS and
MM for the effective index modulus is around 10−6. We test
the convergence capability of the FFF-MS according to the
Fourier expansion of order N ; this is done in figure 1 for
the fundamental mode of our test structure. If the correct
factorization rules used for the description of the constitutive
relation linking E and D are not included, we are no longer
in the frame of the FFF but within the classical differential
method (CDM) [22]. It has already been shown that in this
case the convergence is much slower and even not attainable
(see figures 6 and 10 of [12]) for diffraction problems in TM
polarization. The results shown in figure 1 clearly demonstrate
that the effective index computed using the FFF-MS converges
toward the value obtained from the MM when the Fourier
expansion order N is increased. As expected, we can also state
that, in a modal problem, the FFF-MS convergence is much
faster than the one of the similar mode searching method based
on the classical differential method (denoted CDM-MS below).

In order to quantify these convergences, we compute the
relative error between the FFF-MS results and the MM ones
and also the relative error between the CDM-MS and the MM
results. Since neff is a complex number we use the normalized
modulus of the difference between the two values. As can be
seen in figure 2, as soon as N = 60, the relative error for the
FFF-MS is around 10−6 for N = 60 and reduces to 3 × 10−7

for N = 162. The fall of the relative error obtained for 35
slices in the S-matrix propagation algorithm between N = 84
and N about 100 is due to the FFF-MS values crossing the
MM value. This fall shows that only the global behaviour of
the convergence curves must be considered. The field maps of
the fundamental mode found with the FFF-MS naturally fulfil
the symmetry properties (see section 3.1) as shown in figure 3,
and these maps are identical to those obtained with the MM.

Since we have solved the issue of the numerical
instabilities occurring in the previous formulation of the FFF-
MS applied to mode searching [14], we can now study
structures with more than one ring of inclusions, as is proven
below. For a two-ring MOF with the same optogeometric
parameters as the one-ring MOF described above, the MM
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(a) (b)for for

Figure 3. Moduli of electromagnetic field longitudinal components, in the core region for the degenerate fundamental mode which belongs to
symmetry class p = 3, neff = 1.421 0465 + i 8.117 × 10−7 for N = 150. The field moduli are normalized to unity.
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Figure 4. Convergence tests for the CDM-MS and FFF-MS versus
the Fourier expansion order N for the effective index of the higher
mode of symmetry class p = 2 with the highest effective index real
part. The studied MOF is the six-hole test MOF described in the text.
Inset: zoom of FFF-MS results and MM value.

gives neff = 1.421 0361 + i 2.380 70 × 10−5 for M = 12
at λ = 1.56 μm. In this case, the FFF-MS gives neff =
1.421 035 06 + i 2.364 53 × 10−5 for N = 60 and L = 45
and neff = 1.421 036 081 + i 2.379 84 × 10−5 for N = 150
and L = 105. Consequently, the relative error is 1.3 × 10−6

for the real part of the effective index and 6.8 × 10−3 for the
imaginary part for the first set of convergence parameters, and
the relative error decreases to 1.3 × 10−8 for the real part of
neff and to 3.6 × 10−4 for its imaginary part for the second set
of parameters.

For a three-ring MOF at the same wavelength, the MM
gives neff = 1.421 0465 + i 8.118 × 10−7 for M = 12 whereas
the FFF-MS gives neff = 1.421 0445 + i 7.928 × 10−7 for
N = 60 and L = 70 and neff = 1.421 0465 + i 8.117 × 10−7

for N = 150 and L = 160. The L values have been chosen in
order to describe each inclusion layer, in the two MOFs, with
the same number of layers in the S-algorithm. The relative
error on the effective index is 1.4 × 10−6 for the real part and
2.3×10−2 for the imaginary part for the first set of convergence
parameters, and the relative error decreases to 1.1 × 10−8 for
the real part, and to 1.7 × 10−3 for the imaginary part for the
second set of parameters.

We can conclude that the FFF-MS is now able to find
accurately the effective indices of MOFs made of several rings
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Figure 5. Modulus of electric field, in the core region for the higher
order mode of symmetry class p = 2 with the highest effective index
real part, neff = 1.387 329 18 + i 4.226 16 × 10−3 for N = 60. The
field modulus is normalized to unity.

of inclusions. It is worth mentioning that three-ring MOFs are
not only academic test fibres but also fabricated fibres as shown
in [23].

As shown theoretically in the previous sections, the FFF-
MS is also able to deal with the other symmetry classes. As an
example we give the results for two higher order modes of our
test MOF. The first one we consider belongs to symmetry class
p = 2. The effective index obtained with the MM for M = 12
is 1.387 3312+ i4.227 8502×10−3, whereas with the FFF-MS
we obtained a value of 1.387 329 18 + i4.226 16 × 10−3 for
N = 60. The convergence test for the FFF-MS is shown in
figure 4 and the computed field map of this mode is depicted
in figure 5. The third mode we study belongs to symmetry
class p = 1. The effective index found with the MM for
M = 12 is 1.388 9179 + i5.761 8884 × 10−3, with the FFF-
MS we obtained a value of 1.388 914 64 + i5.759 47 × 10−3

for N = 60. We can identify two properties when we compare
the results for these two modes (see figure 6). First, for both
modes the convergence of the FFF-MS is much faster than that
of the CDM-MS. Second, the CDM-MS convergence is slower
for the p = 1 mode (TM like) than for the p = 2 mode (TE-
like), and this is not the case for the FFF-MS results (note the
logarithmic y scale). These properties clearly illustrate the
improvement ensured by the FFF, this recent method being
initially proposed to solve the convergence problem of the
CDM in diffraction studies for the TM polarization case [11].
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Table 3. Comparison between the FFF-MS and the MM for the first modes of each symmetry class of the C6v MOF described in the text. The
results are computed at λ = 1.56 μm. For the MM the number of Fourier–Bessel coefficients is equal to 12, for the FFF-MS the number N of
Fourier coefficients is set to 162. The relative error is computed from the normalized modulus of the difference between the two effective
index values. Symmetry classes 3 and 4 are degenerate; so are classes 5 and 6.

Mode
class MM Re(neff) MM Im(neff) FFF-MS Re(neff) FFF-MS Im(neff)

Relative error
on Re(neff)

Relative error
on Im(neff)

1 1.388 917 884 5.761 8884 × 10−3 1.388 918 390 5.761 6371 × 10−3 3.6 × 10−7 4.4 × 10−5

2 1.387 331 199 4.227 8502 × 10−3 1.387 332 286 4.227 7231 × 10−3 7.8 × 10−7 3.0 × 10−5

3, 4 1.420 784 521 7.209 5221 × 10−4 1.420 784 943 7.209 4414 × 10−4 3.0 × 10−7 1.1 × 10−5

5, 6 1.386 872 247 5.037 6883 × 10−3 1.386 873 053 5.037 4468 × 10−3 5.8 × 10−7 4.8 × 10−5

7 1.332 197 539 1.942 9823 × 10−2 1.332 198 974 1.942 8629 × 10−2 1.1 × 10−6 6.1 × 10−5

8 1.351 325 880 2.155 3168 × 10−2 1.351 326 338 2.155 2000 × 10−2 4.0 × 10−7 5.4 × 10−5

Table 4. Computer resources needed, on the same computer, by the FFF-MS and the MM to compute the fundamental mode for different
MOF profiles. Note that several MOF structures cannot be treated by the multipole method. The number of coefficients in the Fourier–Bessel
expansion in the MM is equal to (2M + 1), and the number of coefficients in the Fourier expansion in the FFF-MS is equal to (2N + 1). The
considered sectorial C3v MOF is described in section 5 and the considered inhomogeneous C6v MOF is described in section 6.

Configuration MM time MM RAM FFF-MS time FFF-MS RAM

Homogeneous C6v (M = 12) 10 s (M = 12) 9 Mo (N = 60) 191 s (N = 60) 16 Mo
(N = 162) 2700 s (N = 162) 50 Mo

Inhomogeneous C6v — — (N = 60) 210 s 16 Mo
Sectorial C3v — — (N = 60) 1062 s 16 Mo
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Figure 6. Comparisons of the effective index relative error versus the
Fourier expansion order N , for the higher modes of symmetry
classes p = 1 and 2 with the highest effective index real part. The
results for the FFF-MS and the CDM-MS are shown. The studied
MOF is the six-hole test MOF described in the text.

In table 3 we recapitulate the comparisons between the
effective indices obtained with the FFF-MS and the MM
for the one-ring MOF. As can be seen, for all the possible
mode classes of the C6v MOF the FFF-MS provides accurate
results. To complete the validation of the FFF-MS and to prove
its usefulness in MOF studies, we also compare the modal
dispersion computed with the two numerical methods for the
fundamental mode of the two-ring MOF already studied. As
can be seen in figure 7, the agreement between the two methods
is excellent both for the real part and the imaginary part of the
effective index.

In table 4, we give the resources needed on the same
computer by the MM and the FFF-MS in order to find
the fundamental mode of several MOF configurations. As
expected, the MM is much more rapid than the FFF-MS since
the MM involves fewer numerical computations. Nevertheless,
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Figure 7. Comparison between the FFF-MS (lines) and the MM
(crosses) for the modal dispersion of the degenerate fundamental
mode (p = 3 or 4) for the one- (Nr = 1) and two-ring (Nr = 2) C6v

MOFs described in the text, and for the modal dispersion of the
second mode (p = 2) for the same one-ring MOF. For the MM the
number of Fourier–Bessel coefficients is equal to 12, and for the
FFF-MS N is set to 60.

it can be seen that for complex structures which are not
treatable by the MM the duration and the memory required
by the FFF-MS are similar to the ones it requires for the
C6v homogeneous case. It is also worth mentioning that the
program for the MM has been optimized several times from
its first version in 2001; this is not yet the case for the FFF-
MS program which is a recent one. This difference may
enhance the gap due to the methods themselves seen in the
computational durations observed in table 4.

4.2. A C2v six-hole MOF

To conclude our tests of the FFF-MS method and its numerical
implementation for calculating leaky modes in MOFs, we now
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Table 5. Comparison between the FFF-MS, the FDM-ABC and the FEM-TBC for the effective index of the fundamental mode of the
one-ring C3v MOF described in the text.

neff Degenerate fundamental mode (p = 3, 4) Second mode (p = 2)

FDM-ABC 1.355 84 + i5 × 10−5 1.239 57 + i5.09 × 10−4

FEM-TBC (p = 3) 1.355 81 + i4.96 × 10−5 1.239 50 + i5.67 × 10−4

(p = 4) 1.355 80 + i4.95 × 10−5

FFF-MS N = 60 1.355 8867 + i5.012 × 10−5 1.239 615 + i5.138 × 10−4

FFF-MS N = 150 1.355 8863 + i5.011 × 10−5 1.239 619 + i5.140 × 10−4

consider a C2v six-hole MOF similar to the one described
in [2]. The MOF profile is a C2v six-hole MOF with two
types of holes. The pitch 	 = 2.3 μm and the diameter of
the four small holes is set to 1 μm and two symmetrically
positioned small holes are now big holes of diameters equal to
1.4 μm. Due to their symmetry, there are only four symmetry
classes (instead of eight in the C6v case), none of them being
degenerate [2]. Two core localized modes without nodes can
be identified with the fundamental modes of the fibre; they
belong respectively to symmetry classes p = 3 and 4. The
real part for the effective index of this p = 4 mode is bigger
than that of the p = 3 mode, whereas it is the contrary
for the imaginary part. With the FFF-MS for N = 60, we
obtain neff(p = 3) = 1.417 922 19 + i5.111 04 × 10−4 and
neff(p = 4) = 1.418 455 87 + i 5.275 61 × 10−4 instead of
neff(p = 3) = 1.417 9265 + i 5.114 57 × 10−4 and neff(p =
4) = 1.418 460 + i5.278 45 × 10−4 with the MM for M = 12.
The good agreement between these results clearly shows that
the FFF-MS can deal with other symmetries than the usual C6v

one, and can still reach a high accuracy.

5. Sectorial MOFs

To illustrate the capabilities of the FFF-MS to study the
modal properties of MOFs with arbitrary profiles that are not
treatable by the multipole method, extended [10] or not, we
now describe some properties of sectorial MOFs. This type of
MOF can be encountered when an extrusion process is used to
build the fibre instead of the more conventional stack and draw
technique [24, 25].

This structure with sectorial inclusions described in
cylindrical coordinates is similar to lamellar gratings in
Cartesian coordinates [11] since the cross-section profile is
invariant according to the integration variable r (the lamellar
grating profile is invariant according to the integration variable
commonly chosen as y). For both cases, the Qε-matrix (see
equation (1) and [13]) is independent of the integration variable
(r or y). In addition, the integration matrix M also becomes
independent of y for lamellar gratings. In this case, the
rigorous coupled-wave (RCW) method is preferentially used
(see chapter 6 in [11] and also [26]): the solutions of the
differential set are explicitly known through to the eigenvalues
and eigenvectors of the integration matrix. In contrast, the
RCW method cannot be used in cylindrical coordinates with
sectorial inclusions since the integration matrix M(r) remains
dependent on r owing to the terms 1

r and 1
r2 (see equations (7)–

(9) in [14]). Consequently, the staircase approximation [27],
which is based on the use of the RCW method, cannot be used.
Nevertheless, for sectorial inclusions, the θ component of the
normal vector to the inclusion surface is equal to unity along a

radial axis of the modulated area: r ∈ [Rmin, Rmax], [[n2
θ ]] = Id

and [[n2
θ ]] = [[nθ nr ]] = 0. This property allows us to reduce

the matrix Qε to

Qε =
⎡
⎣

[[ε]] 0 0
0 [[ 1

ε
]]−1 0

0 0 [[ε]]

⎤
⎦ . (21)

This matrix clearly illustrates the use of the inverse
factorization rules [15] on the normal component of D to the
considered surface, i.e. Dθ . The one-ring Cnv sectorial MOF
geometry is described by the following geometric parameters:
θm , the angle associated with one sector, Rmin, the minimum
sector radius, Rmax, the maximum sector radius, and n, the
number of sectors. We start with the last validation test
of our method: a C3v sectorial MOF studied in [28]. We
choose this example because the inclusions are not circular
and it illustrates symmetry properties not yet described in the
previous sections of the present work. It also has the advantage
that the results (table 2 in [28]) are obtained with two different
methods: a finite element method with transparent boundary
conditions (FEM-TBC) and a Fourier decomposition method
with adjustable boundary conditions (FDM-ABC) [4]. The
sectorial MOF parameters are λ = 1.55 μm, Rmin = 1 μm,
Rmax = 2 μm, θm = 54◦, nmatrix = 1 and nsector =
1.444 023 62.

As can be seen from table 5, the variation of the real part
of neff for the fundamental mode of the one-ring C3v MOF
between N = 60 and 150 is equal to 4 × 10−7 and the three
methods give quite similar results. The extent of the modulated
area is 1 μm, as in the C6v one-ring MOF studied in section 4.1,
and the wavelength is also similar. Besides, as pointed out in
the previous paragraph, sectorial inclusions allow us to use the
simpler expression given by equation (21) for the matrix Qε

than the one used for circular inclusions. Hence we can expect
that the accuracy of the computed results of this sectorial MOF
for N = 150 is at least equal to the one obtained for the
circular inclusion MOF, i.e. around 3 × 10−7 for the real part
of neff. We can use a similar argument for the imaginary
part. Consequently, the accuracy obtained with the FFF-MS is
better than that given with the FDM-ABC and the FEM-TBC
in [28]. We also notice that the degeneracy of the fundamental
mode, theoretically predicted for C3v structures by McIsaac’s
work [17], is obtained directly by the formalism detailed in
section 3 for the FFF-MS, unlike for the FEM-TBC, in which a
non-degenerate fundamental mode is found (see table 5). The
field maps computed with the FFF-MS for the longitudinal
component of the electric field are shown in figure 8. As
shown by the theory the irreducible geometric angular sector
where simple Dirichlet boundary conditions apply for this field
component, for symmetry classes p = 3 or 4, is π and not π/3.
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Figure 8. Moduli of electric field longitudinal component of the C3v sectorial MOF described in the text for the degenerate fundamental
mode, for symmetry classes p = 3 and 4, neff = 1.355 8863 + i5.011 × 10−5 for N = 150. The field moduli are normalized to unity.
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Figure 9. Modulus of electric field longitudinal components for the
degenerate fundamental mode which belongs to the symmetry
classes p = 3 for the C6v sectorial MOF (Rmin = 1.5 μm,
Rmax = 3.4 μm and θm = 40◦), neff = 1.403 2977 + i 2.9369 × 10−6

for N = 60 and L = 25. The field moduli are normalized to unity.
The thin circles correspond to the theoretical upper bound of the
circle diameters for the MM.

Part of the cross-section of a six-sectorial-cylinder MOF
is depicted in figure 9. We start our study by a MOF of
this type with the same air filling fraction as the test example
MOF we described in section 4.1. We have Rmin = 1.8 μm,
Rmax = 2.8 μm, and θm = 19.5652◦. In this case, the effective
index value is quite similar to the one already computed with
the six-circular-hole MOF: we find neff = 1.420 506 42 +
i7.6390 × 10−4 for N = 60. For N = 120, our search
algorithm finds neff = 1.420 508 87 + i 7.6427 × 10−4 for
the fundamental mode of this sectorial MOF. Figure 10 shows
the convergence test for this structure. The small loops which
appear in the curve are not yet explained but they might be
linked to the field expansions.

Going back to figure 9, we show the field map of the
fundamental mode of a six-sectorial-cylinder MOF that cannot
be studied even with an extended version of the MM since
the circles which include the inclusions are tangent. Mode
searching in such structure is straightforward with the FFF-MS
and does not require special treatment.

In figure 11, we give the trajectory in the complex plane
of the sectorial MOF fundamental mode effective index as
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Figure 10. Convergence test for the effective index of the
fundamental mode of the six-sectorial-inclusion MOF
(Rmin = 1.8 μm, Rmax = 2.8 μm, and θm = 19.5652◦) versus the
Fourier expansion order N . The step in N is equal to 6. The number
of slices in the S-algorithm L is set to 25.

a function of its geometrical parameters. The decrease of
the inner radius a induces an important decrease of Re(neff)

without any significant change in the losses. This can be
qualitatively understood as follows: the fields tend to spread
over the low-index inclusions, lowering the effective index. In
contrast, the increase of the outer radius b induces a fall in
the losses, keeping nearly constant the real part of neff. This
behaviour can also be explained; the change on the structure
does not modify the inner part of the confining region which
controls the field shape and so consequently Re(neff), but this
change isolates more deeply the fibre core from the outside
region, reducing strongly Im(neff). The increase of the angle
θm implies a decrease of both the real and the imaginary parts
of neff. We can again explain this quite simply: this change
alters the inner shape of the core through an increase of the
low-index region inducing a decrease of Re(neff), and at the
same time it isolates the core from the outside (decrease of
Im(neff)).

6. Inhomogeneous MOFs

In this penultimate section, we illustrate the capability of the
FFF-MS to deal with inhomogeneous inclusions. We start with
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Figure 11. Evolution of the effective index neff as a function of the
three geometrical parameters a, b and θm describing the C6v sectorial
MOF. The labels are written for the extremal values of the
parameters.

a validation study using a single high index cylinder with a
parabolic refractive index profile in a homogeneous matrix.
Then we study a MOF made of six inhomogeneous inclusions.

The first device is studied with two different algorithms.
The first one considers an inhomogeneous circular cylinder
centred at the coordinate origin and does not use the FFF-
MS but a semi-analytical calculus detailed below. In order
to model a fibre with an inhomogeneous radial index profile
which is centred at the origin, the interior region of this fibre
is split (in the same way as the modulated area in the S-matrix
propagation algorithm) into P homogeneous layers. For each
homogeneous layer (p) with p ∈ [1, P] between the two
circular cylinders with radius rp and rp+1, the corresponding
refractive index is chosen as the average of the parabolic index
profile between rp and rp+1. The higher the P value, the better
the index profile is described, and the transmission matrix of
all the P layers becomes the product of the P transmission
matrices of the homogeneous layers. In fact, the transmission
matrix (and the S-matrix) of a layer between two circular
cylinders centred at the origin and filled with a homogeneous
medium may be deduced directly from the explicit expressions
of the fields in such a medium (with the �( j)(r)-matrix in
equation (34) of [13]) by writing the continuity of the fields
at each interface. So, no integration is required and the
differential set (2) is not used.

It is important to distinguish the present splitting of a
radially inhomogeneous circular cylinder into P slices from
the moot procedure invoking the staircase approximation [27].
With this last method, the arbitrary diffracting surface is
split into several lamellar diffracting surfaces. However,
the discretization of the smooth profile in a staircase form
introduces edges leading to diverging fields and thus worsening
the convergence rate. In our case, there is no diffracting surface
but only fictitious surfaces created at the interfaces of the
homogeneous layers. In other words, the splitting concerns
the index profile and not a diffracting surface.

The second algorithm deals with the same inhomogeneous
fibre but not centred at the coordinate origin, and it uses
the complete FFF-MS described in the present work: the
differential set (2) must be integrated numerically.

To describe the refractive index profile of both the test
fibre of this paragraph and the MOF we consider below we
write for r ∈ [0, rmax] : n(r) = ncyl,cent − (ncyl,cent −
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Figure 12. Chosen parabolic profile of the inhomogeneous
inclusions for several values of the refractive index gap �ncyl

between the inclusion centre and the inclusion outer boundary. The
analytic form of the refractive index profile is given in the text.

ncyl,bord)(r/rmax)
2, in which ncyl,cent is the refractive index at

the inclusion centre and ncyl,bord the refractive index at the
inclusion boundary (r = rmax). For the test fibre we set:
radius rmax = 0.5 μm, ncyl,cent = 1.5, ncyl,bord = nmat =
1.47, λ = 0.4 μm, n(r) = ncyl − (ncyl − nmat)(r/rmax)

2.
For the fundamental mode H E11, an approximate semi-
analytical solution associated with an infinite parabolic profile
is known [29]. It gives for the approximate effective index
value neff = 1.487 277 47. It is important to notice that in
the special case in which the centre of the fibre corresponds to
the coordinate origin we can use the first algorithm described
at the beginning of this section. In this case, we obtain neff =
1.487 275 14 for N = 1 and P = 200. This accurate value will
be our reference value for the next test. In order to validate the
second algorithm associated with the FFF, we study the same
inhomogeneous fibre but not centred at the origin (we set the
fibre centre position such that Rcentre = 3 μm). In this case, the
symmetry is broken; thus more Fourier coefficients are needed
to correctly describe the fields and we must use the algorithm
of the FFF. The convergence is easily reached in this example;
we obtain neff = 1.487 273 82 for N = 30 and L = 50.

The MOF model we consider now is the one-ring MOF
already described in section 4.1, but in the present case the
refractive index profile of each inclusion follows a radial
parabolic law. We recall that in the type of MOFs studied
the inclusion refractive index is lower than that of the matrix
(in the previous paragraph the isolated fibre has a higher
refractive index than the matrix one). We introduce �ncyl =
(ncyl,cent − ncyl,bord), the refractive index gap of the inclusions
(not the gap between the inclusion and the matrix indices).
These parabolic profiles are depicted in figure 12. We may
discuss the accuracy of the results according to the expansion
order N , and to the number of integration steps (and the
number of S-slices L). In the case of the homogeneous
inclusions, we know that the higher the N value, the better
the discontinuities of the ε, n2

θ , n2
r and nθ nr functions are

described according to θ . In the same way, the higher the
number of integration steps, the better the radial refractive
index profile is defined along a radial axis. For inhomogeneous
inclusions in a matrix such that ncyl,bord = nmat, the refractive
index profile becomes continuous in the whole space. This
property explains why, in this case, the Gibbs phenomenon due
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Figure 13. Refractive index profile of the one-ring C6v

inhomogeneous MOF described in the text; this profile is rebuilt
from the Fourier series of the theoretical parabolic profile with
ncyl,bord = nmat.

to discontinuities with respect to θ does not occur. However,
the shape of the parabolic refractive index profile requires
more Fourier coefficients (higher value of N ) but also more
integration steps according to r , in order to describe accurately
the structure compared to a homogeneous profile. For these
reasons, we have observed that the accuracies obtained for a
MOF with inhomogeneous inclusions but continuous refractive
index profile remains of the same order of magnitude as those
of a similar MOF with homogeneous inclusions when the N
and L values are identical. In figure 13, we show the rebuilt
profile of the whole MOF from the Fourier series used in
the FFF-MS and not the theoretical profile. As can be seen,
the resulting profile is regular, and fits well the parabolic
law. In figure 14, we give the computed effective indices
of the fundamental mode for the inclusion parabolic profiles
described in figure 12. As expected, both the real part and the
imaginary part of the effective indices decrease when �ncyl

increases up to zero.

7. Conclusion

Thanks to various and complete comparisons with the well
established multipole method and with more recent numerical
methods, we can state that the FFF-MS, a mode searching
method based on the differential method with the fast Fourier
factorization, can find the different modes of solid core MOFs
with a high accuracy both for the real part and the imaginary
part of the effective index. This method can deal with both
the fundamental mode and higher order modes. It can study
arbitrary refractive index profile MOFs in contrast to the
multipole method. New results are given for C6v sectorial
MOFs and inhomogeneous MOFs. The counterpoints to the
versatility of the developed method are its lower accuracy,
which however is largely sufficient to compute accurately the
modal dispersion, and its need for larger computer resources
compared to the multipole method.

In the case of a profile periodic according to the angular
variable, the symmetry properties of the modes are established,
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Figure 14. Effective index of the fundamental mode for the one-ring
C6v inhomogeneous MOF according to the inclusion refractive index
gap �ncyl, for �ncyl = 0 we recover homogeneous inclusions (see
the text and figures 12 and 13).

not in the real space as for the MM, but in Fourier space.
The results given are valid for all waveguides fulfilling Cnv

symmetries and can be easily extended to Cn waveguides, not
just MOFs, and apply to all differential methods formulated
using cylindrical coordinates (not just the FFF). These results
allow both a clear mode classification and a large reduction of
the necessary computational resources.

In future work we plan to analyse the properties
of anisotropic (longitudinal/transverse relative permittivities
induced by liquid crystals for example) MOFs since the
differential method with the fast Fourier factorization is also
able to deal with such structures even if the matrix which links
D and E becomes more complicated.
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par un cylindre diélectrique Opt. Commun. 5 261–6

[23] Brilland L, Smektala F, Renversez G, Chartier T, Troles J,
Nguyen T, Traynor N and Monteville A 2006 Fabrication of
complex structures of holey fibers in chalcogenide glass Opt.
Express 14 1280–5

[24] Kiang K M, Frampton K, Monro T M, Moore R, Tucknott J,
Newak D W, Richardson D J and Rutt H N 2002 Extruded
single-mode non-silica glass holey optical fibres Electron.
Lett. 38 546–7

[25] Ravi Kanth Kumar V V, George A K, Reeves W H, Knight J C,
Russell P St, Omenetto F G and Taylor A J 2002 Extruded
soft glass photonic crystal fiber for ultrabroad
supercontinuum generation Opt. Express 10 1520–4

[26] Peng S T, Tamir T and Bertoni H L 1975 Theory of periodic
dielectric waveguides IEEE Trans. Microw. Theory Tech.
23 123–33

[27] Popov E, Nevière M, Gralak B and Tayeb G 2002 Staircase
approximation validity for arbitrary shaped gratings J. Opt.
Soc. Am. A 19 33–42

[28] Uranus H P and Hoekstra H J W M 2004 Modelling of
microstructured waveguides using a finite-element-based
vectorial mode solver with transparent boundary conditions
Opt. Express 12 (12)

[29] Snyder A W and Love J D 1983 Optical Waveguide Theory
(New York: Chapman and Hall)

740

http://dx.doi.org/10.1364/JOSAA.21.002146
http://dx.doi.org/10.1364/JOSAA.23.001146
http://dx.doi.org/10.1109/TMTT.1975.1128584
http://dx.doi.org/10.1109/TMTT.1975.1128585
http://dx.doi.org/10.1364/JOSAB.21.001431
http://dx.doi.org/10.1364/JOSAA.22.000654
http://dx.doi.org/10.1016/0030-4018(72)90093-4
http://dx.doi.org/10.1364/OE.14.001280
http://dx.doi.org/10.1049/el:20020421
http://dx.doi.org/10.1109/TMTT.1975.1128513
http://dx.doi.org/10.1364/OPEX.12.002795

	1. Introduction
	2. An FFF based modal searching method: the FFF-MS
	2.1. Mode searching with the differential method
	2.2. First approach
	2.3. Improved approach in the S -matrix propagation algorithm with the Z -matrix

	3. Modes and symmetries
	3.1. Device with sub-periodicity according to the angular variable theta
	3.2. Using the mode symmetries within the FFF-MS

	4. Validation of the FFF-MS by comparison with the MM results
	4.1. A C_{6v} MOF
	4.2. A {C_{2v}} six-hole MOF

	5. Sectorial MOFs
	6. Inhomogeneous MOFs
	7. Conclusion
	Acknowledgments
	References

