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Abstract
The extraordinary optical transmission of a metallic film pierced by a
two-dimensional subwavelength hole array, observed by Ebbesen et al, is
explained using rigorous electromagnetic analysis and a phenomenological
approach. The analysis is based on Li’s Fourier-modal method extended to
crossed gratings, which reduces the diffraction problem to the search for
eigenvalues and eigenvectors of a particular matrix. The computation of the
eigenvalues allows us to find a new channel for light transmission through
the subwavelength holes, which differs from the transmission channel in the
one-dimensional case (lamellar or rectangular-rod grating). It is
demonstrated that the enhanced transmission is due to the excitation of a
surface plasmon on the lower metallic surface.
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1. Introduction

The device under study consists of a silver film deposited on
a glass substrate and pierced by a two-dimensional (2D) hole
array. The periods of the hole array in the two perpendicular
(x and z) directions in the film plane are equal to d, which
is shorter than the incident wavelength λ, from where the
name ‘subwavelength’ comes. The film thickness is h and
the holes have square cross sections with side a. The device
is lighted at incidence close to the normal to the film surface.
In the original experiment by Ebbesen et al [1], the holes had
circular form with a diameter of 0.15 or 0.35 µm, d = 0.9 µm,
h = 0.2 µm, and the incidence was normal to the surface.
For several particular values of the wavelength, an unexpected
high transmission was observed, much higher than the ratio
between the hole array surface and the total silver film surface,
and orders of magnitude higher than predicted by the standard
aperture theory.

A great amount of theoretical effort was devoted to explain
this surprising phenomenon. Several authors [2–5] attributed it
to the excitation of surface plasmons, others related the effect
to cavity resonances [6, 7]. However, due to the theoretical
and numerical difficulties in analysing crossed (2D) gratings,
all these authors made their studies using a one-dimensional

(1D) classical lamellar grating. The problem was that this

simplification was highly inadequate, since the channel of light

transmission in the grooves of the 1D lamellar grating does

not exist for 2D hole arrays [8]. It is then necessary to make a

2D analysis to correctly model the extraordinary transmission

through such 2D subwavelength hole arrays (the same is also

valid for superwavelength arrays). A second paper has recently

reported on a fully three-dimensional theoretical study of the

actual biperiodic grating [9]. In this paper, the authors analyse

the coupling between the upper and lower interface surface

plasmons, when the structure is symmetric (the index above is

equal to the index below).

2. Fourier-modal theory

As already mentioned, we use a numerical implementation

of the Fourier-modal theory extended to crossed gratings by

Li [10]. The geometry is simplified by assuming square in-

stead of circular holes. Due to the invariance of the holes in the

y-direction perpendicular to the silver film surface, the permit-

tivity is also independent of y and its 2D Fourier components

in x and z have only to be computed once. The periodicity

of the structure in x and y results in a quasiperiodicity of all
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the field components, so that the diffraction problem inside

the silver layer reduces to an eigenvalue problem of a certain

matrix. Any component F of the electric and magnetic fields

can then be represented in the form of modes propagating or

evanescent in the y-direction, with propagation constants γp

equal to these eigenvalues [11]

F(x, y, z) =

N
∑

m,n,p=−N

[u+
p exp(iγp y) + u−

p exp(−iγp y)]

× exp(iαm x + iβnz) (1)

where u±

p are the upward (+) and downward (−) mode ampli-

tudes. αm and βn depend on the period d and on the incident

angles in the following manner

αm = α0 + m
2π

d

βn = β0 + n
2π

d

(2)

with α0 and β0 being the x and y components of the incident

wavevector.

When the hole dimensions are smaller than the

wavelength, all the modes are evanescent, so that the field

intensity below the film is governed by the modes having the

lowest attenuation constants, i.e., having minimal Im (γp).

3. The transmission channel

To better understand the role of different modes in light

transmission through the holes, we first consider a perfectly

conducting material, because the modes can be calculated

analytically, at least for a rectangular-rod (lamellar) grating

and for a hole array with square holes. Inside the grooves

of a rectangular-rod grating, one can find the propagating

and evanescent modes of a plane metallic hollow waveguide.

Such a waveguide can support a TEM mode which has no

cut-off and can propagate whatever the distance between the

waveguide plates (i.e. the groove width) may be. It has

both transverse electric and magnetic field components and its

constant of propagation is equal to the free-space wavenumber.

When finite conductivity is taken into account, the TEM

mode attenuates slightly, but it is still responsible for the

light transmission through rectangular-rod (slit) gratings, as

demonstrated numerically elsewhere [7].

However, the main problem of using the 1D grating

model to explain the 2D hole array lies in the fact the TEM

mode does not exist in cylindrical metallic hollow waveguides,

contrary to the plane (hollow slab) geometry. More generally,

classical waveguide theory [12] teaches that TEM modes

cannot propagate in a simply-connected domain, as is the

case of a cylindrical hole in a perfectly or finitely conducting

material. Thus, some other channel(s) must be found. In our

previous work [8] we have studied the modes inside a periodic

2D hole array in both a perfectly conducting film and in silver

(refractive index equal to 0.1 + i8.94 at λ = 1.388 µm).

Figure 1 presents the results. Infinite conductivity (circles)

forbids completely the interaction between the modes in the

adjacent holes, so that the mode constants correspond to the

modes inside the hollow square metallic waveguide. For the

optogeometrical parameters chosen in the introduction, all
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Figure 1. Eigenvalues (vertical propagation constants of the modes)
of a square hole array in a silver plate: d = 0.9 µm; a = 0.25 µm;
λ = 1.388 µm; circles, infinite conductivity; triangles, finite
conductivity. The eigenvalues within the dashed boundary can only
be found for the finite conductivity case.

modes are below cut-off, so that they are purely evanescent,

which can be observed in the figure; their propagation

constants lie on the imaginary axis.

The finite conductivity slightly changes the constant of

propagation of these modes, but, in addition, introduces many

new modes, some of them having a much smaller imaginary

part of their propagation constant, so that their attenuation

within the layer thickness (h = 0.2 µm) could be 100 times

smaller, possibly leading to a 10 4 greater transmittivity. The

role of each mode in the enhancement of the transmittivity

will be determined by the coupling strength between the

incident (and transmitted) wave and the mode. In addition,

the periodicity of the holes plays some role by possibly phase-

matching the horizontal wavevector components of the mode

and the incident (and the transmitted) wave using equation (2)

(due to the periodicity of the structure, the calculated modes

in the holes are necessarily associated with a given value

of the tangential component of the wavevector). Thus it is

a priori impossible to distinguish between the contributions of

the different modes in the transmission.

In order to determine which mode(s) plays the important

role in the transmission, we made several numerical

experiments taking λ = 1.388 µm, which is close to

the last maximum in figure 1 of [1]. We first computed

the mode propagation constants and the transmission, and

then started to artificially double the imaginary part of the

propagation constant of each mode, one after the other, and

again calculated the transmission. The experiment revealed

that the transmission remains almost the same, except when

the propagation constant of one definite mode is changed, for

which the transmission falls 40 times, from 7.5 to 0.192%.

This was the mode with γp = 0.025 39 + i9.3813, the mode

which is the closest to the imaginary γ -axis with the lowest

imaginary part.

A second numerical experiment was carried out to support

this conclusion. The transmittivity T was computed as a

function of the thickness of the silver film and the results are

presented in figure 2 in a semi-logarithmic scale. As can be
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Figure 2. Zero-order transmittivity of the 2D hole array in silver as a
function of the thickness h for λ = 1.388 µm and normal incidence.

seen, ln T is a linear function of h in the interval 0.2–0.6 µ m,

which is a proof that the exceptional transmittivity occurs

through a single channel (single mode in equation (1)). The

slope of the line in figure 2 (approximately 20) pretty well

agrees with the imaginary part of γp = 0.025 39 + i9.3813,

determined above (γp is related to the attenuation of the field

and, then, 2γp is related to the attenuation of the energy).

4. Physical nature of the enhancement of
transmittivity

In the previous section we have shown that only one mode of

the entire set of eigenvalues is responsible for the transmission

channel which guides the incident light to the substrate through

the silver film. However, this channel exists for all the

wavelengths in the spectral interval considered in [1], whereas

the enhanced transmission is only observed around particular

wavelength values. A closer look at figure 1 of [1] reveals

that the positions of the two rightmost maxima (around the

wavelength of 0.9 and 1.4 µm) shows that they are situated

at wavelengths close to the Rayleigh anomalies linked with

the passing-off of the higher diffraction orders in the cladding

(nclad. = 1) and substrate (nglass = 1.5). In normal incidence

this passing-off condition is written

λ

d
= nclad., nglass . (3)

Since the work of Fano [13] it is well known that in metallic

gratings these anomalies, observed for the first time by

Wood [14], are due to the excitation of surface plasmons

propagating along the metallic–dielectric interface. For

highly conducting metals, the plasmon propagation constant is

slightly greater than the free wavenumber in the corresponding

dielectric.

There are several approaches to obtain a better

understanding of the physical nature of the resonant process.

One approach is to look for poles of the scattering operator and

for zeros of the transmission order amplitude in the complex

plane of the different variables. This study is common for

1D gratings and has previously explained (and predicted)

several curious resonance phenomena in linear [15] and non-

linear optics [16], such as total absorption of light by metallic

gratings and resonantly enhanced or reduced second-harmonic

generation. For classical gratings there are two ways of

describing the poles and the zeroes: (i) to choose the real

wavelength λ and complex propagation constant α0 along the

x-axis, which is perpendicular to the groove direction [15];

(ii) to fix α0 real and to work in the complex λ-plane.

For 2D gratings, the surface wave can be excited in

many different directions in the x–z plane due to the double

periodicity of the structure (see equation (2)). In addition,

α0 and β0 are mutually independent, so that the choice of

real λ would need two independent complex variables. This

determines our choice to work in the complex λ-plane and to

fix α0 and β0 real. Under normal incidence α0 and β0 are null

and we search for complex poles λp of the scattering matrix S

in the complex λ-plane. These poles correspond to a surface

wave that can propagate in the x–z plane. A single pole in

the complex λ-plane is found (λp
= 1.3878 + i0.002 0227).

Although, in general, there are four surface waves to be excited

in normal incidence, those propagating in +x , −x , +z and −z

directions, they are all coupled by the grating to form four

different standing waves, symmetrical or antisymmetrical with

respect to the origin. There is only one solution symmetrical

with respect to the change of signs of both x- and z-axes. The

other three solutions are antisymmetrical either with respect to

x or z, or both x and z and they cannot be excited in normal

incidence by the incident plane wave, which is symmetrical

with respect to both x and z. This is not the case in off-normal

incidence, as discussed later.

If the dimensions of the holes are gradually reduced, one

can plot the pole λp in the complex λ-plane (figure 3), and it is

observed that the pole tends toward a value λp
= 1.369 406 +

i0.000 4436, which is the complex pole corresponding to a

plasmon surface wave propagating along a plane silver–glass

interface. For a plane interface between dielectric and metallic

media with, respectively, refractive indices n1 and n2, the

constant of propagation is given by the simple formula

k p
z =

2π

λ

n1n2
√

n2
1 + n2

2

. (4)

When using the numerical values of silver and glass indices, for

λ = λp one obtains that k
p
z = 2π/d , i.e. the phase-matching

condition αn = α0 + n2π/d = Re (k
p
z ) is satisfied for n = +1

under normal incidence (α0 = 0). This shows that the surface

plasmon is excited through the +first diffraction order of the

grating illuminated at normal incidence.

The conclusion is that the pole, causing the enhanced

transmission at the wavelength close to 1.39 µm is linked with

this plasmon surface wave, excited via the grating periodicity.

In order to quantitatively investigate the role of the pole,

it is necessary to well understand that, as for 1D classical

gratings [15], when the propagating diffraction orders are

considered in the region of resonant guided wave excitation,

the pole of the scattering matrix (i.e., the pole of the amplitude

of the diffraction order) is always accompanied by a complex

zero, so that when the grating tends towards a plane, the

pole is compensated by the zero and no resonance anomaly

is found. And indeed, numerical investigations in the case
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Figure 3. The trajectory of the pole λp in the complex λ-plane when the square hole edge w is varied from 0.25 µm down to zero.
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Figure 4. Comparison of the computed resonance line of the
zero-order transmittivity (dots) with the values predicted from the
phenomenological formula, equation (5) (solid curve). The constant
c is determined by fitting the maxima values.

of the 2D grating of hole array reveal the existence of a

complex zero of the transmission amplitude λz
= 1.368 88 +

i0.000 476 45. Using the values of the zero and the pole,

figure 4 presents a comparison of the transmittivity E0,

calculated by using the rigorous electromagnetic theory and

the so-called phenomenological formula

E0(λ) = c

∣

∣

∣

∣

λ − λz

λ − λp

∣

∣

∣

∣

2

(5)

where c is a constant which does not depend on λ and the

power 2 is due to the fact that the efficiency is proportional

to the squared modulus of the amplitude. As is observed, the

two curves match perfectly in the spectral region of enhanced

transmission, which shows that the resonance enhanced

transmission, experimentally observed in [1] can be explained

by a plasmon excitation on the lower interface of the silver film.

The channel for this excitation has already been discussed in

a previous section of this paper.
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Figure 5. Spectral dependence of the zero-order transmittivity for
an off-normal incidence (θ = 1◦, ϕ = −150◦) and for two incident
polarization angles ψ .

When going out of normal incidence, the incident plane

wave is no longer symmetric with respect to the origin, thus one

can expect that the antisymmetric solutions can also be excited.
Strictly speaking, these solutions no longer have such simple

symmetry, because their field distribution is also affected by

the off-normal incidence direction. To study this phenomenon,
we chose an incident wavevector out of both the x–y and y–z

planes. Its projection on the x–y plane makes an angle θ with

the y-axis, while its projection on the x–z plane makes an angle

ϕ with the x-axis. One more degree of freedom determines
the polarization direction, when a linearly polarized incident

plane wave is chosen. It will be characterized by the angle ψ ,

defined so that ψ = 90◦ when the electric field vector lies in
the plane of incidence, and ψ = 0 when the electric field vector

is perpendicular to the plane of incidence.

In the next example we chose θ = 1◦ and ϕ = −150◦.

Instead of a single pole λp , 3 different poles are observed:
λ

p

1 = 1.3455 + i0.064 926, λ
p

2 = 1.3737 + i0.006 1341 and

λ
p

3 = 1.3878 + i0.002 022, while the general arguments have

led us to expect the existence of four poles. In order to clarify
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Figure 6. Spectral dependence of the phase 	 of the determinant of
the scattering matrix (θ = 1◦, ϕ = −150◦, ψ = 90◦).

this point, figure 5 presents the spectral dependence of the

transmittivity and, indeed, one can observe four resonance

peaks, more or less pronounced, the two on the right part of the

figure almost coinciding. Further numerical studies confirmed

that the pole λ
p

3 is a double one; at least, we were not able

to separate it numerically into two different poles. Evidence

can be found in figure 6, which represents the phase 	 of the

determinant of the scattering matrix in the case presented in

figure 5. One can observe three spectral regions where the

phase varies strongly:

(i) λ ∼= 1.355 µm: phase shift close to π ;

(ii) λ ∼= 1.375 µm: phase shift close to π ;

(iii) λ ∼= 1.39 µm: phase shift close to 2π .

This shows that the first two poles are single, while the

rightmost one is double.

As happens in normal incidence or for 1D gratings, the

poles are accompanied by zeros of the diffracted order ampli-

tudes. The influence of these zeros is well observed in figure 5

where they lead to a splitting of the rightmost maximum.

It is worth noticing that the poles do not depend on the

incident polarization, since they are poles of the total scat-

tering matrix, which accounts for the system response to all

kinds of polarization. And indeed, the existence of the poles

is well pronounced for the two orthogonal polarizations of the

incident wave, as observed in figure 5. In contrast, the zeros

depend on the excitation (incident) conditions, thus the differ-

ent responses to the different values of ψ .

5. Conclusion

Using the eigenvalue technique, we were able to find a new

channel which allows light propagation along subwavelength

holes arranged in a periodic array in a highly conducting

metallic film. We have proven that the previously observed

extraordinary transmission is due to the resonant excitation

through this channel of surface plasmons at the array lower

interface between the metal and the glass substrate. The

phenomenological study using complex poles of the scattering

operator and complex zeros of the transmitted amplitude was

able to account for this unexpected effect in both qualitative

and quantitative ways.
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