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Abstract. A phenomenological explanation is made of diŒerent types of

resonances in the re¯ ectivity curves of a prism coupler in the region of surface

plasmon excitation. The approach is based on the poles and zeros of the

scattering operator and demonstrates that the existence of peaks instead of dips

is natural and is determined by the positions of the pole and the zero in the

complex plane.

1. Introduction

In1993PrintzandSambles [1] investigated surface plasmonexcitation inprism

couplers. Contrary to the common opinion that this phenomenon leads to sharp

(resonance) minima in the re¯ ectivity, they found a case when a well-de® ned

maximum can be observed. The system under consideration is sketched in ® gure

1. It consists of a prism with its large facet covered with two layers of chromium

and gold. Under speci® c conditions, a plane wave incident on the upper interface

can excite a surface plasmon propagating along the lower (gold± air) interface.

When the thickness of Cr layer is zero, the excitation of this surface wave is

accompanied by a sharp minimum in the re¯ ectivity (see later; ® gure 2) with a

value depending on the Au thickness. The existence of a Cr layer can drastically

modify the system response so that a maximum is observed instead of a minimum

(see later; ® gure 3). In a recent paper [2] Bussjager and Macleod called this

observation `completely unexpected’ and correctly pointed out its connection with

the high absorption losses of the Cr layer.

Our aim in this paper is to go further towards a quantitative explanation. Using

the phenomenological approach well-known in the theory of grating resonance

anomalies, it is possible to completely determine the system response using only

a few parameters, namely the pole and the zero(s) of the scattering operator. This

approach has proved to be powerful in explaining and predicting the peculiarities

of grating anomalies in both linear and nonlinear optics [3± 5]. Moreover, it gives

a natural uni® cation of the cases with minima or maxima in the re¯ ectivity,

because in the grating studies both `normal’ and `inverted’ resonances (in the

context of references [1] and [2]) are equally frequent and usually exist together.
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Figure 1. Schematic representation of a prism coupler with two diŒerent metallic layers

deposited on the prism’s large facet. TM polarization, wavelength 632´5 nm. Prism

optical index nc = 1´8, optical index of Cr: nCr = 3´55789+ i 2´83876, and of Au:

nAu= 0´23783+ i 3´384755.

The maximum can be hidden in otherwise high re¯ ectivity conditions and can be

clearly observed when the background is low.

2. Guided waves and re¯ ection anomalies: the phenomenological

approach

The basic ideas of the phenomenological approach go back to the work of Fano

in 1941 [6]. Hessel and Oliner [7] contributed to the physical understanding of

grating anomalies from a phenomenological point of view. This was followed by

several reviews by Neviere [8], Maystre [3] and Popov [4].

Surface (guided) wave de® nition requires that there exist scattered ® elds

without incident waves. This de® nition immediately points to a solution of a

homogeneous scattering problem, which exists only if there is a pole of the scattering

operator of the system. Let us de® ne the scattering problem as follows. One (or

several) electromagnetic waves may be incident on the scattering system. We will

assume their number to be N and their amplitudes to an , n = 1, . . . , N. Column

vector A will contain {an} as components. These incident waves generate N

scattered waves of type and direction determined by the systems optogeometrical

parameters. For a ¯ at slab, the scattered waves are simply the re¯ ected and

transmitted waves. Their amplitudes are denoted by bn , which form a column

vector B. In linear optics, A and B are connected through a linear operator 3
called the system scattering operator and represented by a square matrix S so that:

B = SA . (1)

It is useful to de® ne another matrix M which is the inverse of S:

M = SÅ 1, (2)
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because usually in numerical studies the solution of the scattering problem is

found by solving a linear set of algebraic equations:

MB = A . (3)

Solution of the homogeneous problem (or equally the existence of a guided wave)

requires that equation (3) has a non-zero solution for B without incident ® elds:

A = 0. (4)

This is possible if only the determinant of M is null:

det (M) = 0, (5)

i.e. the determinant of the scattering matrix S has a pole. Usually the system

parameters are ® xed so that the solution of equation (5) is searched as a function

of the horizontal component kx of the wavevector k. It is also convenient to

introduce a normalized value

a = kx /|k | , (6)

called `propagation constant’. Then, in the close vicinity of the solution of equation

(5), the determinant of M can be represented through its ® rst term in the Taylor

series:

det (M) = q(a ± a p
), (7)

where a p
is the exact solution of equation (5):

det [M(a p
)] = 0. (8)

As an obvious consequence of the link between S and M (equation (2)) one

immediately ® nds that

det [S(a )] = c/(a ± a p
), c= 1/q, (9)

so that a p
is a pole of the determinant of S and thus of all its components.

Strictly speaking, for prism coupler, the existence of a guided wave requires

that the propagation constant is greater than the optical indices of the cladding nc

and the substrate ns:

a p > max (nc, ns), (10)

so that the electromagnetic ® eld of the guided wave is evanescent both in the

cladding and substrate. The metal ± dielectric boundary supports a guided wave

called a surface plasmon when Re (n
2
M) < ± Re (n

2
D) only in TM (or p, or S)

polarization, where M denotes the metal and D the dielectric. The propagation

constant of the plasmon is simply equal to:

a p = n
2
D/(n2

D+ n
2
M)

1/2
. (11)

For highly conducting metals, the real part of the plasmon propagation constant

is slightly greater than the optical index of the dielectric and its imaginary part

depends on the metal absorption. In the prism coupler, there are normally two

surface plasmons: one on the lower boundary and one on the upper. Their

propagation constants are a p
s and a p

c respectively. When the metal thickness is large,

these two plasmons are the plasmons propagating along the semi-in® nite metallic
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surface coated with the corresponding dielectric. It immediately follows from

equation (11) that the second (upper interface) plasmon cannot be excited through

the plane wave incident on the prism because

Re (a p
c ) > nc, (12)

and Snell’s lawrequiresphase matching between the incident and the surface wave:

a (º nc sin v i) = Re (a p
). (13)

The plasmon propagating on the lower (metal ± air) boundary can be excited

through the prismwhen the metal is thinner, so that coupling is provided between

the incident wave and the evanescent ® eld of the guided wave. In this case, the

plasmon is not a guided wave, strictly speaking, because it can be radiated in the

cladding. The ® nite thickness of the metal modi® es the plasmon propagation

constant. One of the obvious eŒects is the increase of its imaginary part because

the radiation losses in the cladding are added to the absorption losses in the metal.

The other direct consequence is that the re¯ ected wave amplitude has a pole in

the vicinity of the plasmon excitation. This can be immediately found by

substituting equation (9) into equation (1)):

b1 = a1c11/(a ± a p
). (14)

This equation is valid for any metal thickness and, in particular, when the thickness

increases to in® nity. However, in the latter case there is no resonance anomaly in

the re¯ ectivity. On the other hand, the amplitude of the re¯ ected wave is always

limitedÐ it can never exceed the incident wave amplitude. This means that

equation (14) is not su� cient to adequately determine the system response in the

resonance region. When the metal thickness increases, the numerator of equation

(14) has to compensate the pole, i.e. the numerator must have a zero a z
. Direct

evidence can be found by taking into account a second term in representation (14):

b1 = a1 3 c11

(a ± a p
)

+
c̄ Ã

11

(a ± a p
)24 º a1c11

(a ± a p + cÃ 11/c11)

(a ± a p
)

. (14a)

Thus the numerator is nul when a = a p ± cÃ 11/c11 and one arrives at the ® nal form

of the phenomenological formula:

b1 = r0a1(a ± a z
)/(a ± a p

), (15)

where r0 is the re¯ ectivity of the systemwithout the plasmon excitation. When the

metal thickness increases, the pole and the zero tend to merge together so that the

anomaly disappears (see later, ® gure 4).

There is another way of deriving equation (15). In fact, the resonance response

(equation (14)) must be added to the non-resonance system re¯ ectivity r0 which is

not zero even without the plasmon excitation, so that equation (14) must be

rewritten as

b1 = a1[r0 + c11/(a ± a p
)] , (16)

which immediately leads to equation (15) with

a z = a p ´ c11/r0. (17)

The zero, like the pole, is, in general, complex, but for some system parameters
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its imaginary part can become null so that the re¯ ectivity minimum can become

zero for real angles of incidence.

If the anomaly is single, the pole and the zero, as well as r0, depend only slightly

on the incident angle. The validity and the usefulness of equation (15) have been

demonstrated in the studies of grating anomalies. Numerical codes that are made

to determine the re¯ ection (and transmission) have to be generalized to work in

the complex plane of wavenumbers and have to be incorporated in a root-® nding

procedure. In fact, the numerical results presented in this paper were obtained

using a code devoted to the study of multilayered gratings. This code can be directly

applied to a prism coupler by simply stating that the groove depth is equal to zero.

3. The `normal’ and the `inverted’ resonances

The validity of the phenomenological formula (equation (15)) can be observed

in ® gures 2 and 3 where the rigorous results for both the `normal’ and the `inverted’

resonances are compared with the predictions of equation (15). It is obvious that

a simple change of the values of the pole and the zero converts the `normal’

resonance into an `inverted’ one. As already mentioned, it is possible to identify

the anomaly by tracing the pole and the zero when increasing the thickness of Au

layer. This is much safer than tracing the position of the maximum in the

re¯ ectivity because it does not always correspond to the plasmon propagation

constant, as demonstrated later. Figure 4 represents the dependencies of the real

and imaginary part of the pole and the zero on the Au layer thickness without a

Cr layer. Above a particular thickness (about 100 nm), the zero and the pole merge

together so that no anomaly is observed. The limit of a p
corresponds to the

propagation constant of a plasmon along the bulk Au± air interface. Below, say,

100 nm, the coupling between the incident ® eld in the prism and the plasmon at

Figure 2. Re¯ ectivity of prism coupler shown in ® gure 1 with a single gold layer. tCr = 0,

tAu= 45 nm. Solid lineÐ rigorous numerical results, crossesÐ results using equation

(15) with r0 = 0´8, a p
= 1´045575+ i 0´01417216, and a z

= 1´051165+ i 0´0000321.
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Figure 3. As in ® gure 2 except that tCr = 15 nm. r0 = 0´11, a p
= 1.042015+ i 0´010792,

a z = 1´052573+ i 0´01669.

Figure 4. The real and imaginary parts of the pole and the zero as a function of tAu,

tCr = 0.

the lower interface increases and so does the imaginary part of the pole, due to the

increase in the radiation losses of the plasmon in the cladding. The imaginary part

of the zero goes in the opposite direction. This fact can be explained by taking

into account the high conductivity of Au. When the layer is perfectly conducting,

it can be demonstrated rigorously, using the energy conservation, that the pole
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and the zero are complex conjugated, so that equation (15) will always lead to a

re¯ ectivity equal to unity. The ® nite conductivity of Au breaks the exact symmetry

but does not change qualitatively the behaviour (as can be observed later in ® gure

7): the imaginary part of the pole increases and the imaginary part of the

zero decreases with tAu. As a consequence, for some value of tAu (45 nm), the zero

becomes real and the prismcoupler can totally absorb the incident light at a suitable

angle of incidence:

a º nc sin v i = Re (a z
). (18)

Further decreases of the layer thickness moves the zero below the real axis so that

the minimum value of the re¯ ectivity grows.

It must be pointed out that, depending on the relative position of the pole and

the zero, the system can exhibit a variety of responses. When the zero is closer to

the real axis, a sharp minimum is observed, which can be accompanied by a

maximum if the real parts of the pole and the zero diŒer, as it is the case with

® gure 2. The maximum is shifted from the pole as can be clearly observed in ® gure

5(b). When a Cr layer is introduced, the imaginary part of a increases (® gure 6)

where Re (a p
), Im(a p

), and Re (a z
) do not move signi® cantly (see ® gures 5 (b) and

6). As directly follows from equation (15), this will lead to an increase of the

minimum in the re¯ ectivity. Also, the maximum moves closer to the real part of

the pole (upper part of ® gure 5 (b)). As the total absorption losses increase with

Cr thickness, the value of the maximum decreases (® gure 5 (a)).

The in¯ uence of the Cr layer can be more easily observed in ® gure 7, which

presents the trajectories of the pole and the zero in the complex a -plane as a

function of Au thickness for four diŒerent values of tCr. The starting point at

tAu = 200 nm corresponds to a virtually in® nite thickness of Au. Then the zero

and the pole merge together, there is no anomaly in the re¯ ectivity and the plasmon

properties are not aŒected by the presence of Cr. Going away from this central

point, the Au thickness decreases from 200 nm to 13 nm at the other end of the

trajectories. Below that thickness, the real part of the pole becomes less than 1 and

the plasmon is cut oŒ. The curves with tCr = 0 have been discussed already and

the trajectories of the pole and the zero are most symmetrical, with a z
crossing the

real axis at tAu = 45 nm, resulting in the re¯ ectivity dependence presented in ® gure

2. With the increase of Cr thickness, the trajectories of the pole and the zero

becomes less symmetrical with respect to the real a -axis. Although the absorption

losses increase, the radiation losses of the plasmon in the prism decrease due to

the buŒering eŒect of the Cr layer, so that the imaginary part of the pole slightly

decreaseswith tCr. The behaviourof the zero ismore spectacular. Below tCr = 10 nm

the trajectory of the zero always crosses the real axis, although at diŒerent points of

a and tAu. This means that for a suitable Au thickness, total absorption of incident

light always exists, the maximumand the minimumbeing more and more separated.

For example, when the Cr thickness is equal to 10 nm, a z
crosses the real axis at

tAu = 19´765 nm and total absorption occurs for a = 1´145 (® gure 7), which corres-

ponds to v i = 39´7Ê (® gure 8). Due to the large distance between the pole and the

zero, well distinguished maximum can also be observed.

Increasing tCr (for example, ® gure 7 with tCr = 15 nm) pushes the trajectory of

the zero completely above the real axis so that for any Au thickness the minimum

in the re¯ ectivity does not become zero. Moreover, as a z
moves far into the complex

plane with the imaginary part exceeding the imaginary part of the pole, the
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(a)

(b)

Figure 5. Re¯ ectivity of the prism coupler given in ® gure 1 as a function of the angle of

incidence and tCr. tAu = 45 nm. (a) A 3-D view, (b) an upper view with the re¯ ectivity

isolines and the trajectories of the real part of the pole (solid heavy line P) and the

zero (dashed line Z).
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Figure 6. The imaginarypartsof the pole andthezeroasa function of tCr for tAu= 45 nm.

Figure 7. The trajectories of the pole and the zero in the complex a -plane when the gold

® lm thickness is varied from 200 nm at the central point to 13 nm at the end of the

curves. Results are presented for four values of tCr of 0, 5, 10 and 15 nm, as indicated

in the ® gure.

in¯ uence of the zero on the re¯ ectivity (which is measurable for real values of a )

becomes negligible, as a direct consequence of equation (15). As a result, no

minimum in the re¯ ectivity is observed in ® gure 3. It must be pointed out that

the lack of a minimum does not mean that the zero has disappearedÐ when going
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Figure 8. The same as in ® gures 2 and 3 except that tCr= 10 nm and tZu= 19´765 nm.

The corresponding phenomenological parameters are r0= 0´0425, a p= 1´022762+
i 0´02907926, and a z

= 1´148013+ i 0´0000073.

from ® gure 2 to ® gure 8 and to ® gure 3, both pole and zero continue to exist, but

only their relative position changes.

4. Conclusion

We demonstrate in this paper that a phenomenological approach is capable of

a quantitative explanation of both the `normal’ and the `inverted’ resonance curves

in the re¯ ectivity of a prism coupler when a surface plasmon is excited. From that

point of view, both types of resonances are `normal’ and they diŒer simply by a

change of position of two phenomenological parameters, namely the complex pole

and zero of the re¯ ectivity amplitude.
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